This application relates to security systems and more particular to wireless sensors used within such systems.
Systems are known to protect people and assets within secured areas. Such systems are typically based upon the use of one more wireless sensors that detect threats within the secured area.
Threats to people and assets may originate from any of number of different sources. For example, a fire may kill or injure occupants who have become trapped by a fire in a home. Similarly, carbon monoxide from a fire may kill people in their sleep.
Alternatively, an unauthorized intruder, such as a burglar, may present a threat to assets within the area. Intruders have also been known to injure or kill people living within the area.
In the case of intruders, sensors may be placed in different areas based upon the respective uses of those areas. For example, if people are present during some portions of a normal day and not at other times, then sensors may be placed along a periphery of the space to provide protection while the space is occupied while additional sensors may be placed within an interior of the space and used when the space is not occupied.
In most cases, threat detectors are connected to a local control panel. In the event of a threat detected via one of the sensors, the control panel may sound a local audible alarm. The control panel may also send a signal to a central monitoring station.
While conventional security systems using wireless sensors work well, they are sometimes subject to unexpected failures. Accordingly, a need exists for better methods and apparatus for diagnosing such systems.
While disclosed embodiments can take many different forms, specific embodiments thereof are shown in the drawings and will be described herein in detail with the understanding that the present disclosure is to be considered as an exemplification of the principles thereof as well as the best mode of practicing same, and is not intended to limit the application or claims to the specific embodiment illustrated.
Accordingly, the sensors may be embodied in any of a number of different forms. For example, at least some of the sensors may be switches placed on the doors and windows providing entry into and egress from the secured area. Other sensors may be passive infrared (PIR) sensors placed within the secured area in order to detect intruders who have been able to circumvent the sensors along the periphery of the secured area. Still other of the sensors may be smoke and/or fire detectors.
Also included within the secured area is a control panel or controller 18. The control panel may be located within the secured area as shown in
The control panel may monitor the sensors for activation. Upon activation of one of the sensors, the control panel may compose an alarm message and send it to a central monitoring station 20. The central monitoring station may response by summoning the appropriate help (e.g., police, fire department, etc.).
The security system may be controlled by a human user through a user interface 22. Included within the user interface may be a display 24 and a keyboard 26.
Located within the control panel, the user interface and each of the sensors may be one or more processor apparatus (processors) 30, 32, each operating under control of one or more computer programs 34, 36 loaded from a non-transitory computer readable medium (memory) 38. As used herein, reference to a step performed by a computer program is also reference to the processor that executed that step.
The security system may be armed and disarmed through the user interface. In this regard, an authorized user may enter a personal identification number (PIN) and an instruction through the keyboard. The instruction may be an arm instruction, an arm away and/or a disarm command.
A status processor may monitor the user interface for input from the human user. Upon detecting a PIN, the status processor may compare the entered PIN with the PINs of authorized users. If the entered PIN matches the PIN of an authorized user, then the status processor executes the instruction. If not, then the input may be ignored or an error message is generated.
In the armed state, an alarm processor monitors each of the sensors for activation. Upon detecting activation of one of the sensors, the alarm processor composes and sends an alarm message to the central monitoring station. The alarm message may include an identifier of the system (e.g., account number, street address, etc.), an identifier of the sensor and the time of activation.
In general, the sensors of
For example, the control panel may include one or more communication processors that define a super frame for communication between the control panel and sensors. The super frame, in turn, may be defined by a number of time division multiple access (TDMA) slots that re-occur over a predetermined time period. Some of the slots may be reserved for use by the sensors under a 6LowPan/IPv6/IoT protocol.
The super frame may include a slot reserved for a beacon and slots reserved for the exchange of messages between the sensors and the control panel under an IEEE 802.15.4 and/or 6LowPAN protocol. The beacon may identify a starting point of the super frame and incorporates a number of data fields that each define respective aspects of the superframe
Each sensor of the system of
The status of the control panel (e.g., armed, disarmed, trouble, etc.) may be carried as part of the beacon payload. If necessary, a detailed indicator of panel status may also be carried within respective slots under the 6LowPAN/802.15.4 protocols. The control slots of the beacon may also be used to send request messages from the control panel to end devices (e.g., sensors, etc.) based upon the IEEE802.15.4 addresses of the end devices.
Under one illustrated embodiment, a monitoring processor of the control panel monitors a number of internal operational and environmental aspects of each sensor for indications of potential failure. This may be accomplished via a reporting system within each of the sensors that collects and periodically reports on a number of reliability indicators of the sensor. This may be accomplished via a reporting processor within the sensor that automatically collects and periodically sends the indicators to the control panel or the monitoring processor of the control panel may periodically poll each of the sensors for the reliability indicators.
The reliability indicators may be provided from any of a number of different sources within each sensor. For example, one source may be a voltage monitoring processor that monitors a battery voltage of the sensor. Another source may be a signal strength processor that monitors a power level of packets transmitted by the sensor to the panel either directly or through another of the sensors. Still another source may be one or more counter processors that count the number of packets that are transmitted and received per time period (e.g., per hour, per day, etc.). In this regard, one counter processor may count the number of packets that originate from within the sensor and that are exchanged with the control panel. Another counter processor may count the number of packets that are exchanged with the control panel on behalf of a child sensor of the mesh network.
Another source may be a link quality processor that monitors a link quality of the communication channel between the sensor and panel. The link quality processor may monitor the number of errors over some time period as a measure of the quality of the communication link between the sensor and panel.
Still another source of reliability information may be provided by a temperature sensing processor within the sensor. In this case, the temperature sensing processor may be coupled to a sensing element that detects and measures a temperature of the processors of the sensor.
Under the illustrated embodiment, the reporting processor of each sensor may collect such reliability indicators (e.g., temperature, link quality, transmission power, number of packets transmitted per time period, etc.) and transmit these values to the monitoring processor of the control panel. The reported indicators from each sensor may be saved in a respective file 50, 52. The monitoring processor or one more related processor may compare the reliability indicators with a number of criteria 54, 56 to identify one or more potential failure modes for the sensor reporting the indicators.
Upon detecting a potential failure mode, the monitoring processor may send a corresponding notification 58, 60 associated with the criteria to a cloud app 44 through the Internet 42. The cloud app, in turn, may report the potential failure to a portable device 48 of a person responsible for the sensor.
In this regard, the cloud app may include one or more computer programs executing on a processor apparatus (processor) 46. Similarly, the portable device of the responsible person may be a smartphone.
The notification sent to the responsible person may be determined by the type of failure mode involved. Included with the notification is an identifier of the sensor by location and a time. The identification of the sensor may be based upon a geographic location of the sensor and/or security system (e.g., an address of the security system, GPS location, etc.). Alternatively, or in addition, the notification may include a separate identifier and/or a GPS location of the sensor within the secured area.
The notifications and criteria are formatted for the potential failure involved. For example, one notification of a potential failure may be a prediction of battery failure or low battery level based upon the number of packets transmitted and received by the sensor. In this case, the criteria may be based upon a threshold level of packets that may be transmitted and received per time period.
The situation where a sensor transmits and receives too many packets during a time period may be caused by any of a number of different factors. For example, a sensor in a mesh network may be located in a central location where a number of child sensors must rely on the centrally located sensor in order to communicate with the control panel. However, this may result in an early battery failure of the centrally located sensor that is disproportionate with the surrounding sensors.
In order to address this particular potential failure mode, one of the criteria may compare the number of packets exchanged on behalf of a child node with a child node threshold value. If a sensor exceeds the threshold value, then an appropriate notification may be sent to the responsible person. The notification may include a notice that the sensor is in danger of battery failure because of excessive child node packet activity and the suggestion that the sensors in the area should be relocated to reduce the child node activity through the sensor.
Another criteria may be based upon the transmitted signal power level of each sensor. For example, a steep and consistent decrease in signal strength can be detected by the panel and flagged for a low signal strength notification. In this case, a low signal strength indication is of greater value than a low battery voltage level because it is a much earlier indication of impending battery failure.
Another criteria may be based upon a measured or detected sensor temperature. In this case, a steep and continuous increase in temperature can be an indicator that the sensor is too close to an external heat source or that the sensor processor is malfunctioning either because of a software glitch or hardware failure. High temperature is a likely indication of impending sensor failure. In this case, the notification sent may be a high temperature warning for the sensor.
Another criteria may be based upon the quality level of the radio frequency link between the sensor and control panel. In this case, the criteria may simply be a link quality threshold value. In this case, poor link quality may be caused by poor sensor location and by an incompatibility of the sensor with its location. For example, the sensor may be located behind a metal post or other conductive structure. The notification in this case may include the suggestion that the sensor should be moved to be better location.
Each of the conditions of potential failure may be reported by the panel to the cloud. The cloud receives notification of the potential failure along with the GPS location of the panel and may notify installers who may be working near the panel premises for their immediate attention. The cloud application may send notification to an authorized user, sensor dealer or other responsible person including an indication of the reason for the sensor failure or potential failure or battery draining condition or environmental issues or malfunction along with the criticality of the situation. If the responsible person is a dealer, the dealer can call-up the end-users and advise the end-user as to the maintenance activity needed to avoid false alarm penalties that would otherwise be incurred due to a faulty sensor.
In general, the system includes a plurality of wireless sensors arranged into a mesh network where each of the plurality of sensors detect threats within a secured geographic area, a processor of each of the plurality of sensors that detects internal operational conditions of the sensor and reports the detected conditions, a processor that receives and correlates at least one of the detected conditions of a sensor to a potential failure mode and reports the potential failure mode to a cloud app and a cloud processor of the cloud app that determines a location of the sensor and reports the potential failure and location to a person responsible for the sensor.
Alternatively, the system includes a plurality of wireless sensors arranged into a mesh network where each of the plurality of sensors detect threats within a secured geographic area, a processor of each of the plurality of sensors that detects internal operational conditions of the sensor and reports the detected conditions to a control panel, a processor of the control panel that receives and correlates at least one of the detected conditions of a sensor to a potential failure mode and reports the potential failure mode to a cloud app and a cloud processor of the cloud app that determines a location of the sensor and reports the potential failure mode and location to a person responsible for the sensor.
Alternatively, the system includes a security system that protects a secured area, a plurality of wireless sensors of the security system arranged into a mesh network where each of the plurality of sensors detect threats within the secured geographic area, a control panel of the security system that monitors each of the plurality of sensors, a processor of each of the plurality of sensors that detects internal operational conditions of the sensor and reports the detected conditions to the control panel, a processor of the control panel that receives and correlates at least one of the detected conditions of a sensor to a potential failure mode and reports the potential failure mode to a cloud app and a cloud processor of the cloud app that determines a location of the sensor and reports the potential failure mode and location to a person responsible for the sensor.
From the foregoing, it will be observed that numerous variations and modifications may be effected without departing from the spirit and scope hereof. It is to be understood that no limitation with respect to the specific apparatus illustrated herein is intended or should be inferred. It is, of course, intended to cover by the appended claims all such modifications as fall within the scope of the claims. Further, logic flows depicted in the FIGURE do not require the particular order shown, or sequential order, to achieve desirable results. Other steps may be provided, or steps may be eliminated, from the described flows, and other components may be add to, or removed from the described embodiments.