1. Field of the Invention
This application relates generally to building ventilation and specifically to roof ventilation.
2. Description of the Related Art
Energy efficiency is a serious consideration in new home design. New homes require ways to minimize energy requirements to maintain comfortable living spaces. One of the most common energy losses in a home is due to heat transfer through the attic. In warm climates, heat builds up in the attic from solar energy incident on the roof. In colder climates, moisture builds up in the attic, robbing the insulation of much of its R value. Early efforts at minimizing the effects of heat and/or moisture build-up focused on insulation between the living space and the attic. Gable vents and dormer type passive ventilation systems have been incorporated to ventilate the attic. U.S. Pat. No. 6,050,039 to O'Hagin describes one such camouflaged passive ventilation system. However, this passive ventilation system does not teach a camouflaged active ventilation system.
In other systems, active grid-powered ventilation systems using gable vents and powered dormer type vents have been used to increase the ventilation of the attic. These grid-powered active ventilation systems require increased operation and installation costs compared with passive systems. In the southwest, many homes have low pitch, hip roofs which have no gables, and dormers may destroy the aesthetics of a design if improperly located or too numerous. Therefore, these systems have proven to be inadequate.
What is needed is an improved ventilation system that will minimally detrimentally affect the appearance of a building design if used in adequate numbers to properly ventilate the attic, and is applicable to many roof configurations and with many types of roofing materials, while offering low operation and installation costs relative to other active ventilation systems. In addition, there is a need to provide a ventilation system automatically operable based on varying environmental conditions with minimal energy consumption.
Preferred embodiments of the present invention provide a roof ventilation system which is operable based on varying environmental conditions with minimal energy consumption. In accordance with a preferred embodiment, a roof ventilation system is provided for a sloped roof having a ridge and an eave. The system comprises a first plurality of vents arranged generally linearly and positioned within the roof proximate one of the ridge and the eave. Each of the vents comprises a vent member comprising an opening that permits airflow between regions above and below the roof; and a fan configured to generate an air flow through the opening. In addition, the ventilation system includes a controller in communication with the fans of the vents. The controller is configured to drive the fans based on at least one environmental parameter.
In accordance with another preferred embodiment, a roof ventilation system is provided for a sloped roof having a ridge and an eave. The system comprises a first plurality of vents arranged generally linearly and positioned within the roof proximate the ridge. Each of the first plurality of vents comprises: a vent member comprising an opening that permits airflow between regions above and below the roof, and a fan configured to generate an air flow through the opening. The system also comprises a second plurality of vents arranged generally linearly and positioned within the roof proximate the eave. The second plurality of vents permits airflow between the regions above and below the roof. The second plurality of vents includes no fans. The system further comprises a controller in communication with the fans of the first plurality of vents. The controller is configured to drive the fans based on at least one environmental parameter.
In accordance with another preferred embodiment, a roof ventilation system is provided comprising a vent configured to be positioned within a field of a roof. The vent includes a first opening configured to allow airflow between regions above and below the roof. In addition, the ventilation system includes a fan configured to be positioned to generate an air flow through the vent, and a solar panel configured to be positioned on the roof in a location such that the solar panel receives solar radiation. The ventilation system also includes a battery configured to be electrically connected to the solar panel so that the solar panel charges the battery from solar radiation. The system is operated by a controller adapted to communicate with the fan. The controller is configured to drive the fan based on at least one environmental parameter.
In accordance with yet another preferred embodiment, a roof having a ventilation system is provided comprising: a roof comprising a layer of roof cover elements; and a vent configured to be positioned within the layer of roof cover elements. The vent includes a first opening configured to allow airflow between regions above and below the roof. The vent mimics an appearance of one or more of the roof cover elements. The system also comprises a fan configured to be positioned to generate an air flow through the vent; a solar panel configured to be positioned on the roof in a location such that the solar panel receives solar radiation; a battery configured to be electrically connected to the solar panel so that the solar panel charges the battery from solar radiation; and a controller adapted to communicate with the fan. The controller is configured to drive the fan based on at least one environmental parameter. The controller is configured to be powered by the battery.
For purposes of summarizing the invention and the advantages achieved over the prior art, certain objects and advantages of the invention have been described above and as further described below. Of course, it is to be understood that not necessarily all such objects or advantages may be achieved in accordance with any particular embodiment of the invention. Thus, for example, those skilled in the art will recognize that the invention may be embodied or carried out in a manner that achieves or optimizes one advantage or group of advantages as taught herein without necessarily achieving other objects or advantages as may be taught or suggested herein.
All of these embodiments are intended to be within the scope of the invention herein disclosed. These and other embodiments of the present invention will become readily apparent to those skilled in the art from the following detailed description of the preferred embodiments having reference to the attached figure, the invention not being limited to any particular preferred embodiment(s) disclosed.
The first vent member 21 is configured to be positioned at an opening in the roof. The first vent member 21 includes a vent opening 29 penetrating the first member 21. The vent opening 29 is configured to allow airflow between regions above and below the roof. The regions below the roof may include an attic or a living space of a building. The vent opening 29 is covered by a screen to prevent entry of insects, vermin, and debris larger than the screen openings.
The second vent member 22 is configured to reside above the first vent member 21, serving as a cap for the first vent member 21. The second vent member 22 also includes a vent opening (not shown) which is in fluid or ventilating communication with the vent opening 29 of the first vent member 21. This configuration allows airflow while preventing water or rain from entering the regions below the roof. Further details of the first and second vent members are disclosed in U.S. Pat. No. 6,050,039, the disclosure of which is incorporated herein by reference. In the illustrated embodiment, the second vent member 22 mimics an appearance of one or more of the roof cover elements (e.g., tiles, shingles, or sheeting).
The fan 23 is configured to generate airflow through the vent openings of the vent members 21 and 22. In the illustrated embodiment, the fan 23 is positioned in a region (for example, the attic) below the roof adjacent the vent opening 29 of the first vent member 21. The fan 23 is in line with the vent opening 29 to efficiently generate airflow through the vent opening 29. Preferably, the fan 23 includes a fan blade driven by a motor, both contained within a fan housing which is attached to the underside of the first vent member 21 by a fan adaptor (not shown). A skilled artisan will appreciate that the position and configuration of the fan 23 may be varied depending on the design of the ventilation system. For example, it may be possible to mount the fan 23 and its associated motor between the first and second vent members 21, 22.
The controller 26 is configured to drive the motor of the fan 23. The controller 26 is electrically connected to the fan 23. As will be later described, the controller 26 is configured to drive the fan 23 based on at least one environmental parameter. The controller preferably includes a CPU or microprocessor, a memory device, and other peripheral components so as to collect, process, store, and transmit electronic data.
The battery 25 is configured to supply power to the controller 26. The battery 25 is electrically connected to the controller 26. The battery 25 preferably serves as a main power source for the controller 26. In certain embodiments, an additional or auxiliary power source (not shown) may be provided to the controller 26. An exemplary additional power source is a domestic AC power source (e.g., from a municipal power grid). The domestic power source may be directly connected to the controller 26. In other embodiments, the domestic power source may be connected to the battery 25 to charge the battery 25 in case the solar panel 24 is not functional.
The solar panel 24 is configured to convert solar energy into electricity, and to supply the electricity to the battery 25 for storage. In the illustrated embodiment, the solar panel 24 is electrically connected to the battery. In certain embodiments, the solar panel 24 may be indirectly connected to the battery via the controller 26. The solar panel 24 is configured to be positioned on the roof in a location such that the solar panel receives solar radiation. The illustrated solar panel 24 is mounted on the second vent member 22. In other embodiments, the solar panel may be positioned at any suitable site on the roof. Preferably, the site is where the solar panel can effectively collect solar radiation. It will be appreciated that more than one solar panel can be associated with each ventilation system 20.
The one or more sensors 27 are configured to collect various environmental parameters on which the controller operation is based. Examples of environmental parameters include, but are not limited to, temperature, humidity, toxicity, moisture, precipitation, airflow, and ambient light level. The sensors 27 are configured to measure environmental parameters and convert the parameters into electronic data. Each of the sensors has means for measuring a respective environmental parameter. In addition, each of the sensors may further include a microprocessor, a memory, and peripheral components to collect, process, store, and transmit data to the controller 26.
Examples of the sensors include, but are not limited to, a temperature sensor, a humidity sensor, an air flow sensor, and a toxicity sensor. In certain embodiments, two or more of the sensors may be combined to provide measurements of multiple environmental parameters. The sensors 27 are all electrically connected to or adapted to communicate with the controller 26. The sensors may be powered by the battery via the controller or by another power source. The sensor positions will be later described with reference to
The user interface 28 is configured to display measurements of the at least one environmental parameter collected from the sensors 27. The user interface 28 may also be configured to allow a user to control the fan via the controller 26. The user interface 28 includes a display device such as an LCD or CRT screen. Optionally, the user interface 28 may include an input device such as a touch pad screen and/or push buttons. In certain embodiments, the input device may be a key board or key pad. The user interface 28 is electrically connected to or adapted to communicate with the controller 26. In certain embodiments, the user interface 28 and the controller 26 may be integrated into one device.
The vent member 31 is configured to reside over an opening 303 in the roof deck 302. The vent member 31 includes an upper member 31a and a lower member 31b. The lower member 31b is mounted on the roof deck 302 (either on the sheathing 302a or on the underlay material 302b). The illustrated upper member 31a is configured to slightly protrude above the level of the top surfaces of the shingles 301. In addition, the upper member 31a has a flange 31c at its lower edge. The flange 31c may be configured to allow airflow underneath it to the opening 303 while preventing ingress of rain or snow. The vent member 31 includes one or more vent openings 39. The vent openings 39 are configured to allow airflow between regions above and below the roof. The illustrated vent openings 39 comprise louvers. A louver includes a number of narrow slits formed in parallel to each other. The slits, however, are not directly over the opening 303 in the roof. Yet, the vent openings 39 are configured to be in fluid or ventilating communication with the opening 303 of the roof by having space between the vent member 31 and the roof deck 302. This configuration allows ventilation while preventing water or rain from entering the regions below the roof. The vent member 31 also includes a solar panel 34 mounted on its upper surface.
Configurations and interconnections of the fan 33, the solar panel 34, the battery 35, the controller 36, the one or more sensors 37, and the user interface 38 are as described above with respect to
Other types or configurations of roof vents may be suitable for being adapted to the ventilation systems of the present invention. Examples of such roof vents without limitation are shown and disclosed in U.S. Pat. Nos. 6,050,039; 6,129,628; 6,447,390; and 6,491,579; and U.S. Design patent application Ser. No. 29/195,520 filed on Dec. 11, 2003, the full disclosures of which are incorporated herein by reference.
A roof is designed to shed rain and snow and shield the living space from sun. A roof is composed of structural elements to support its weight and form a slope to assist in shedding rain and snow.
The first structural element is the roof rafter 15 or truss which creates the basic slope of the roof as shown in
Structural layer D forms a very strong structural element and is likely to leak only along the seams between sheets of plywood 16 if left as the complete roof. However, wood requires frequent attention and treatment to retain its weather resistance, and thus is not a good long term roof material.
Plywood 16 is usually covered with lapped layers of roofing felt 14 or paper or other suitable material which is treated with tar and or other chemicals to render it water resistant. The lapped layers of felt 14 may become sealed together by the heat on the roof and form a true water proof membrane or layer and could be used for a roof topping. However conventional roof felt or paper such as felt 14 is fairly fragile and susceptible to damage from sun or wind. If left unshielded in the sun it would dry and crack in a short time and thus is inadequate as a lone weatherproofing material.
By covering felt 14 with a layer of material resistant to sun and other weather effects, felt 14 may be protected from direct solar radiation and may produce a weather-tight roof. Layer 12 may be composed of asphalt shingles, wood shingles, clay tiles, concrete tiles, metal tiles or similar conventional materials. In this example, layer 12 is composed of interleaved clay tiles such as cap tiles 12C and pan tiles 12P. Battens, such as batten B, may be used as securing sites for metal, clay or concrete tile roofs.
Layer 12 sheds the majority of rain and snow and is generally impervious to long term weather effects. Layer 12 does have many small openings and spaces between the tiles or other elements, thus felt 14 remains as the waterproof layer and sheds any water or snow which passes through layer 12.
Referring now to
Due to the complex shapes required, conventional camouflaged vents, such as vent 17 are often fabricated from moldable materials such as plastics. Plastic permits a vent to survive moisture yet may not be as durable as conventional roofing materials due to the effects of solar radiation and/or airborne chemicals.
Referring now to
Referring now to
In this embodiment of the invention, roof shield layer 82 is formed of tiles or other suitable roof shield elements that are disposed with respect to one another so as to cover structural layer 86 and protect it from the effects of weather, and also to provide air flow passages between the tiles to allow air flow into and out of ventilation layer 90. Thus, in one embodiment of the invention each tile 91 is disposed with the downslope edge overlying the upslope edge of the adjacent downslope tile, in a manner well known in the art, and spaced from the upslope edge of the adjacent tile by a sufficient distance to create an air flow passage therethrough. The distance between overlapping edges of adjacent tiles need not be great, as the combined effect of such air flow passages over the entire surface of roof shield layer 82 can be significant. Therefore merely providing cracks between overlapping tile edges may be enough to effectuate a combined venting performance sufficient to effectively exhaust any air 88 pushed through from, or sucked into, attic 87. Additionally, roofs will typically not be sealed around their edges, and these edges will therefore also act as air flow passages to and from ventilation layer 90. The team “venting performance” as used above and in the claims is understood to encompass any measure or definition of air flow, including but not limited to a measure of the effective or total cross sectional area, the effective air flow volume, or the effective air flow speed.
In another embodiment of the present invention, roof shield layer 82 may include hollow vent tiles such as tile 85 to improve the efficiency of ventilation. As air 88 is drawn out through primary vent 84 it may be diverted by tiles 91 or one or more diverters such as frame diverters. Diverters divide attic air 88 into twining or primary flow 94 and secondary flow 96. Primary flow 94 circulates within ventilation layer 90 and is exhausted as exhaust air 98 through the cracks or openings provided over the entirety of roof shield layer 82, as detailed above. With reference once again to
Referring now to
In one aspect of the present invention, a ventilated roof includes a first roofing layer having a primary vent through which air from an attic is to be ventilated; and a second roofing layer constructed from a plurality of similar roofing tile elements disposed over the first roofing layer and having an effective third vent in air flow communication with the primary vent to vent said attic, said effective third vent combining air flow passages between the tile elements; and a secondary vent disposed in the second roofing layer and including an airflow passage therethrough so that the effective third vent combines the air flow passages between the tile elements with the air flow passage through the secondary vent.
Each of the first plurality of vents 50a-50d includes a vent member having an opening that permits airflow between regions above and below the roof. Each of the vents 50a-50d also includes a fan configured to generate airflow through the opening, and a solar panel positioned to receive solar radiation. The configurations of the vents 50a-50d may be as described above with respect to
Each of the second plurality of vents 50e-50h is configured to permit airflow between the regions above and below the roof. Optionally, the second plurality of vents 50e-50h may have the same configuration as that of the first plurality of vents 50a-50d either with or without fans.
The ventilation system is configured to generate airflow to enter the second plurality of vents 50e-50h and to exit the first plurality of vents 50a-50d, as denoted by an arrow in
Each of the first vents 50a-50d is provided with a fan and a solar panel. The solar panels may be mounted on the vents or the cover members of the vents as described with respect to
The battery 55 is configured to supply power to the controller, and is electrically connected to the solar panels of the vents 50a-50d. The illustrated system includes only one battery. In certain embodiments, however, the system may have back-up batteries.
The controller 56 is configured to be in electrical communication with the fans 53a-53d of the vents 50a-50d. The controller 56 is configured to drive the fans based on at least one environmental parameter as described above with respect to
In one embodiment, the controller 56 is configured to operate on a software program for providing optimal ventilation. The program first determines whether the environmental parameters are within predetermined ranges. If not, the program instructs the controller 56 to drive the fans 53a-53d. In certain embodiments, the program may turn on some of the fans while turning off the others. In other embodiments, the program may control the speed of each fan. The configurations of the sensors 57 and the user interface 58 are as described above with respect to
In block 71, the controller of the system receives toxicity data from a toxicity sensor positioned preferably in a living space. The controller determines whether the airborne concentration of a toxic gas is above a predetermined level A1. An exemplary toxic gas is carbon monoxide (CO). The predetermined level for carbon monoxide (CO) can be set to, for example, 35 PPM, the limit allowed by the U.S. Occupational Safety and Health Administration (OSHA). In one embodiment, the system does not allow a user to adjust the predetermined level. In another embodiment, the system allows the adjustment of the predetermined level. If the airborne concentration of the toxic gas is above the predetermined level A1, the controller turns on a fan at block 74. In an embodiment in which the system includes a plurality of fans, the controller can turn on two or more fans for effective removal of the toxic gas.
If the airborne concentration is below the predetermined level A1, the controller preferably determines whether the current temperature of the attic or living space is above a predetermined temperature T1 (block 72). If yes, the controller preferably turns on the fan(s). If no, the controller preferably determines whether the current humidity exceeds a predetermined humidity level H1 (block 73). For example, the predetermined humidity level can be 35% RH. The predetermined toxicity level A1, temperature T1, and humidity level H1 can be adjusted using a user interface. In other embodiments in which other parameters are used for the ventilation control, the predetermined levels of the other parameters can also be adjusted using a user interface. If the current humidity exceeds the predetermined humidity level H1, the controller turns on the fan(s). If not, the process goes to block 75, in which the controller waits a predetermined period of time before restarting the entire process. Similarly, the controller can, in one embodiment, only turn on the fan(s) for a predetermined period of time at block 74, and wait at block 75 before restarting the process. The block 75 can be omitted in certain embodiments. It will be understood that the control of the fans may be based on the outcome of various different logical and/or mathematical formulae involving the sensed environmental parameters.
This configuration allows the system to save power while achieving optimal conditions for an attic and/or living space. The controller can also control the speed of the fan(s) depending on needs. These configurations are particularly useful when the system is powered only by solar energy and not by a municipal power grid. A skilled artisan will appreciate that various other algorithms can be provided for suitable ventilation.
In certain embodiments, any of the roof ventilation systems described above can be combined with a central air conditioning system of a house or building. The roof ventilation system can enhance the efficiency of air conditioning by removing heat build-up from an attic space. In the embodiments described above, the roof ventilation system can be powered by solar energy, and thus can effectively reduce overall energy consumption in climate control of a house or building. The roof ventilation system also helps to more efficiently comply with regulations on indoor air quality such as ASHRAE (The American Society of Heating, Refrigerating and Air-Conditioning Engineers) Standard 62-1989 (or similar later provisions), OSHA proposed regulations on indoor air quality, and OSHA general regulation (29 CFR 1910).
Although this invention has been disclosed in the context of certain preferred embodiments and examples, it will be understood by those skilled in the art that the present invention extends beyond the specifically disclosed embodiments to other alternative embodiments and/or uses of the invention and obvious modifications thereof. Thus, it is intended that the scope of the present invention herein disclosed should not be limited by the particular disclosed embodiments described above, but should be determined only by a fair reading of the claims that follow.
This application is a continuation of and claims priority to U.S. patent application Ser. No. 12/428,346, filed Apr. 22, 2009, which is a divisional of and claims priority to U.S. patent application Ser. No. 11/736,498, filed Apr. 17, 2007, which is a non-provisional of and claims priority to U.S. provisional application No. 60/793,337, filed Apr. 18, 2006. The disclosures of the foregoing applications are hereby incorporated by reference in their entireties.
Number | Name | Date | Kind |
---|---|---|---|
2299317 | Fink | Oct 1942 | A |
2733649 | LeBarron | Feb 1956 | A |
3376164 | Bachwansky | Apr 1968 | A |
3658596 | Osborne | Apr 1972 | A |
4040867 | Forestieri et al. | Aug 1977 | A |
4051999 | Granger et al. | Oct 1977 | A |
4083097 | Anagnostou et al. | Apr 1978 | A |
4097308 | Klein et al. | Jun 1978 | A |
4189881 | Hawley | Feb 1980 | A |
4201121 | Brandenburg, Jr. | May 1980 | A |
4224081 | Kawamura et al. | Sep 1980 | A |
4239555 | Scharlack et al. | Dec 1980 | A |
4251026 | Siegel et al. | Feb 1981 | A |
4314548 | Hanson | Feb 1982 | A |
4382435 | Brill-Edwards | May 1983 | A |
4383129 | Gupta et al. | May 1983 | A |
4432273 | Devitt | Feb 1984 | A |
4433200 | Jester et al. | Feb 1984 | A |
4574160 | Cull et al. | Mar 1986 | A |
D285829 | Lock | Sep 1986 | S |
4625469 | Gentry et al. | Dec 1986 | A |
4633769 | Milks | Jan 1987 | A |
4651805 | Bergeron, Jr. | Mar 1987 | A |
4692557 | Samuelson et al. | Sep 1987 | A |
4759272 | Zaniewski | Jul 1988 | A |
4803816 | Klober | Feb 1989 | A |
4843794 | Holtgreve | Jul 1989 | A |
4850166 | Taylor | Jul 1989 | A |
4965971 | Jean-Jacques et al. | Oct 1990 | A |
5048255 | Gonzales | Sep 1991 | A |
5049801 | Potter | Sep 1991 | A |
5060444 | Paquette | Oct 1991 | A |
5078047 | Wimberly | Jan 1992 | A |
5131200 | McKinnon | Jul 1992 | A |
5131888 | Adkins, II | Jul 1992 | A |
5228925 | Nath et al. | Jul 1993 | A |
5232518 | Nath et al. | Aug 1993 | A |
5296043 | Kawakami et al. | Mar 1994 | A |
5316592 | Dinwoodie | May 1994 | A |
5364026 | Kundert | Nov 1994 | A |
5391235 | Inoue | Feb 1995 | A |
5480494 | Inoue | Jan 1996 | A |
5486238 | Nakagawa et al. | Jan 1996 | A |
5505788 | Dinwoodie | Apr 1996 | A |
5528229 | Mehta | Jun 1996 | A |
5697192 | Inoue | Dec 1997 | A |
5706617 | Hirai et al. | Jan 1998 | A |
5722887 | Wolfson et al. | Mar 1998 | A |
5740636 | Archard | Apr 1998 | A |
5746653 | Palmer et al. | May 1998 | A |
5746839 | Dinwoodie | May 1998 | A |
5990414 | Posnansky | Nov 1999 | A |
6008450 | Ohtsuka et al. | Dec 1999 | A |
6036102 | Pearson | Mar 2000 | A |
6050039 | O'Hagin | Apr 2000 | A |
6051774 | Yoshida et al. | Apr 2000 | A |
6061978 | Dinwoodie et al. | May 2000 | A |
6077159 | Clayton | Jun 2000 | A |
6105317 | Tomiuchi et al. | Aug 2000 | A |
6129628 | O'Hagin et al. | Oct 2000 | A |
6155006 | Mimura et al. | Dec 2000 | A |
6241602 | Allen | Jun 2001 | B1 |
6242685 | Mizukami | Jun 2001 | B1 |
6243995 | Reeves et al. | Jun 2001 | B1 |
6294724 | Sasaoka et al. | Sep 2001 | B1 |
6306030 | Wilson | Oct 2001 | B1 |
6311436 | Mimura et al. | Nov 2001 | B1 |
6336304 | Mimura et al. | Jan 2002 | B1 |
6365824 | Nakazima et al. | Apr 2002 | B1 |
6415559 | Reeves et al. | Jul 2002 | B1 |
6418678 | Rotter | Jul 2002 | B2 |
6439466 | Fikes | Aug 2002 | B2 |
6447390 | O'Hagin | Sep 2002 | B1 |
6453629 | Nakazima et al. | Sep 2002 | B1 |
6491579 | O'Hagin | Dec 2002 | B1 |
6501013 | Dinwoodie | Dec 2002 | B1 |
6541693 | Takada et al. | Apr 2003 | B2 |
6606830 | Nagao et al. | Aug 2003 | B2 |
6695692 | York | Feb 2004 | B1 |
6799742 | Nakamura et al. | Oct 2004 | B2 |
6870087 | Gallagher | Mar 2005 | B1 |
6941706 | Austin et al. | Sep 2005 | B2 |
7053294 | Tuttle et al. | May 2006 | B2 |
7097557 | Kutschman | Aug 2006 | B2 |
7101279 | O'Hagin et al. | Sep 2006 | B2 |
7178295 | Dinwoodie | Feb 2007 | B2 |
D549316 | O'Hagin et al. | Aug 2007 | S |
7320774 | Simmons et al. | Jan 2008 | B2 |
7469508 | Ceria | Dec 2008 | B2 |
7506477 | Flaherty et al. | Mar 2009 | B2 |
7509775 | Flaherty et al. | Mar 2009 | B2 |
7531740 | Flaherty et al. | May 2009 | B2 |
7578102 | Banister | Aug 2009 | B2 |
7587864 | McCaskill et al. | Sep 2009 | B2 |
7618310 | Daniels | Nov 2009 | B2 |
7642449 | Korman et al. | Jan 2010 | B2 |
7678990 | McCaskill et al. | Mar 2010 | B2 |
7736940 | Basol | Jun 2010 | B2 |
8079898 | Stevenson | Dec 2011 | B1 |
8167216 | Schultz et al. | May 2012 | B2 |
20010027804 | Inoue et al. | Oct 2001 | A1 |
20030159802 | Steneby et al. | Aug 2003 | A1 |
20050144963 | Peterson et al. | Jul 2005 | A1 |
20050239394 | O'Hagin et al. | Oct 2005 | A1 |
20060052051 | Daniels | Mar 2006 | A1 |
20070067063 | Ahmed | Mar 2007 | A1 |
20070072541 | Daniels et al. | Mar 2007 | A1 |
20070094953 | Galeazzo et al. | May 2007 | A1 |
20070207725 | O'Hagin | Sep 2007 | A1 |
20080098672 | O'Hagin et al. | May 2008 | A1 |
20080220714 | Caruso et al. | Sep 2008 | A1 |
20090203308 | O'Hagin et al. | Aug 2009 | A1 |
20100229940 | Basol | Sep 2010 | A1 |
20100330898 | Daniels | Dec 2010 | A1 |
20120110924 | Makin | May 2012 | A1 |
Number | Date | Country |
---|---|---|
198 23 356 | Nov 1999 | DE |
2183819 | Jun 1987 | GB |
2279453 | Jan 1995 | GB |
2345536 | Jul 2000 | GB |
59060138 | Apr 1984 | JP |
06241517 | Aug 1994 | JP |
06272920 | Sep 1994 | JP |
09-158428 | Jun 1997 | JP |
11044035 | Feb 1999 | JP |
11-229576 | Aug 1999 | JP |
2000274032 | Oct 2000 | JP |
2004-092298 | Mar 2004 | JP |
2007-534924 | Nov 2007 | JP |
WO 2005108708 | Nov 2005 | WO |
Number | Date | Country | |
---|---|---|---|
20140099878 A1 | Apr 2014 | US |
Number | Date | Country | |
---|---|---|---|
60793337 | Apr 2006 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 11736498 | Apr 2007 | US |
Child | 12428346 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 12428346 | Apr 2009 | US |
Child | 14105617 | US |