Embodiments of the present disclosure relate, in general, to an apparatus for automatically equalizing uneven tension of ropes of a system where load countermeasures are needed, such as elevators, lifts, cranes, dumbwaiters, boat lifts, and suspension bridges.
When a system, such as an elevator having a plurality of ropes for supporting a load, is used over time, each of the plurality of ropes have their own individual service life. This may be caused by the ropes having different expansion rates, different lengths causing different tensions, misalignment of equipment, improper installation of equipment, a fault of a sheave material or rope material, uneven wearing of sheave grooves, an eccentric load applied, and/or any combinations thereof. For instance, if a length difference exists between the ropes of an elevator system, the ropes may be subject to uneven tension because the load is unevenly applied to the ropes. Due to a variation in length among ropes, the rope having relatively short length when compared to the others may be subject to over-tension such that the wires of those ropes are more rapidly worn. In practice, when one rope has reached its maximum load capacity, all ropes in the system are replaced and not just a single rope. This leads to unnecessary expense and waste. Furthermore, when the ropes are initially established or when the ropes are exchanged, it is difficult to precisely match the lengths of the ropes with each other due to a bending structure and rigidity of the wire ropes, so the length difference of the ropes occurs again and the cycle repeats.
A typical elevator system includes an elevator car and counterweight suspended by a tension member within a hoistway. Terminations are fixed to the end of the tension member, which are in turn attached to a structure such as a mounting plate or beam that is fixed relative to the hoistway. A load cell is fixed between a spring and a mounting plate such that the load cell measures the weight borne by the tension member. For elevators having multiple tension members, there may be a load cell for each tension member. The total load of the elevator car is then measured by adding each of the loads measured at each of the plurality of tension members.
Therefore, it may be advantageous to provide an automatic rope tension equalizing system for an elevator system having a plurality of ropes that compensates for the tension in each rope to equalize the tension of all ropes. It may also be advantageous to provide such an elevator load measurement system that works in real time. Furthermore, it may be desirable for such a system to dampen any vibration energy in the ropes.
The following presents a simplified summary of the disclosure in order to provide a basic understanding of some aspects of the disclosure. This summary is not an extensive overview of the disclosure. It is not intended to identify critical elements of the disclosure or to delineate the scope of the disclosure. Its sole purpose is to present some concepts of the disclosure in a simplified form as a prelude to the more detailed description that is presented elsewhere.
Novel and unobvious rope tension equalizers and systems having such devices are set forth herein, as will be evident from reviewing the description below and the accompanying drawings.
According to one embodiment, an automatic rope tension equalizer system has a hitch plate, first and second plungers, and first and second cam assemblies. The hitch plate has first and second apertures, and each aperture having a cavity. The first plunger is at least partially situated in the cavity of the first aperture, and the second plunger is at least partially situated in the cavity of the second aperture. The first and second cam assemblies are respectively positioned at least partially within the first and second apertures. Each cam assembly has a cam and a rod extending therefrom. The cam of the first cam assembly engages the first plunger, and the cam of the second cam assembly engages the second plunger. A network connects each cavity to each other cavity, and fluid in the network automatically equalizes pressure on the first and second plungers, thereby affecting positioning of the first and second plungers and, through each cam, tension on each rod.
In an embodiment, the fluid is a hydraulic fluid.
In an embodiment, the fluid is a pneumatic gas.
In an embodiment, each plunger has a rotational interfacing member contacting a respective cam.
In an embodiment, the rotational interfacing member of the first plunger rotates about a single axis.
In an embodiment, the rotational interfacing member of the first plunger rotates in a ball and socket arrangement.
In an embodiment, each rod is integrated with or permanently connected to a rope.
In an embodiment, excess tension on the rod of the first cam assembly causes, via interaction between the cam of the first cam assembly and the first plunger, the first plunger to further enter the cavity of the first aperture.
In an embodiment, the first plunger further entering the cavity of the first aperture displaces the fluid in the network, causing the second plunger to further exit the cavity of the second aperture, thereby causing, via interaction between the cam of the second cam assembly and the second plunger, tension to increase on the rod of the second cam assembly.
In an embodiment, the cam of the first cam assembly is adjacent a cam retainer plate. And the rod of the first cam assembly passes through a hole in the cam retainer plate.
In an embodiment, the rod of the first cam assembly has a first coupling member engaging a first rope, and the rod of the second cam assembly has a second coupling member engaging a second rope.
In an embodiment, the first and second ropes support an elevator car.
In an embodiment, the first and second ropes support an elevator car and a counterweight.
In an embodiment, the cam of the first cam assembly has a face engaging the first plunger. The face has a conical, planar, concave, or convex shape.
In an embodiment, the rod of the first cam assembly extends perpendicularly to a direction of travel of the first plunger.
In an embodiment, the hitch plate further includes a third aperture having a cavity, and a third plunger is at least partially situated in the cavity of the third aperture. A third cam assembly is positioned at least partially within the third aperture, and the third cam assembly has a cam and a rod extending therefrom. The cam of the third cam assembly engages the third plunger. The fluid in the network automatically equalizes pressure on the first, second, and third plungers, thereby affecting positioning of the first, second, and third plungers and, through each cam, tension on each rod.
In an embodiment, the cam of the first cam assembly is positioned between a roller and the first plunger.
According to another embodiment, an automatic rope tension equalizer system includes a hitch plate, first, second, and third plungers, and first, second, and third cam assemblies. The hitch plate has first, second, and third cavities. The first plunger is at least partially situated in the first cavity, the second plunger is at least partially situated in the second cavity, and the third plunger is at least partially situated in the third cavity. Each cam assembly has a cam and a rod extending therefrom. The cam of the first cam assembly engages the first plunger, the cam of the second cam assembly engages the second plunger, and the cam of the third cam assembly engages the third plunger. A network connects each cavity to each other cavity, and fluid in the network automatically equalizes pressure on the first, second, and third plungers, thereby affecting positioning of the first, second, and third plungers and, through each cam, tension on each rod.
In an embodiment, the rod of the first cam assembly has a first coupling member engaging a first rope, the rod of the second cam assembly has a second coupling member engaging a second rope, and the rod of the third cam assembly has a third coupling member engaging a third rope. The first, second, and third ropes support an elevator car.
In an embodiment, excess tension on the rod of the first cam assembly causes, via interaction between the cam of the first cam assembly and the first plunger, the first plunger to further enter the first cavity. The first plunger further entering the first cavity displaces the fluid in the network, causing the second plunger to further exit the second cavity and the third plunger to further exit the third cavity. The second plunger further exiting the second cavity causes, via interaction between the cam of the second cam assembly and the second plunger, tension to increase on the rod of the second cam assembly. The third plunger further exiting the third cavity causes, via interaction between the cam of the third cam assembly and the third plunger, tension to increase on the rod of the third cam assembly.
According to yet another embodiment, an elevator system includes an elevator car, a first rope supporting the elevator car, a second rope supporting the elevator car, a hitch plate having a first cavity and a second cavity, a first plunger at least partially situated in the first cavity, a second plunger at least partially situated in the second cavity, and first and second cam assemblies. Each cam assembly has a cam and a rod extending therefrom. The cam of the first cam assembly engages the first plunger, the cam of the second cam assembly engages the second plunger, the rod of the first cam assembly has a first coupling member engaging the first rope, and the rod of the second cam assembly has a second coupling member engaging the second rope. A network connects each cavity to each other cavity, and fluid in the network automatically equalizes pressure on the first and second plungers, thereby affecting positioning of the first and second plungers and, through each cam, tension on each rod.
In an embodiment, excess tension on the rod of the first cam assembly causes, via interaction between the cam of the first cam assembly and the first plunger, the first plunger to further enter the first cavity. And excess tension on the rod of the second cam assembly causes, via interaction between the cam of the second cam assembly and the second plunger, the second plunger to further enter the second cavity. The first plunger further entering the first cavity displaces the fluid in the network, causing the second plunger to further exit the second cavity, thereby causing, via interaction between the cam of the second cam assembly and the second plunger, tension to increase on the rod of the second cam assembly. The second plunger further entering the second cavity displaces the fluid in the network, causing the first plunger to further exit the first cavity, thereby causing, via interaction between the cam of the first cam assembly and the first plunger, tension to increase on the rod of the first cam assembly.
Referring to
The ropes 12, 12′, 12″ (
The shackle rod 52 is shown passing through an aperture 57 in a center axis of the cam 56 (which is generally perpendicular to the directions L, W1, W2), and is coupled to the cam 56 by at least one nut 59 or other fastener (e.g., pins, welding, et cetera). A cam retaining plate 58 is illustrated between the cam 56 and the nut 59, though in some embodiments the plate 58 may be unitary with the cam 56 or omitted. The geometry of the cam retaining plate 58 prevents the cam assemblies 50, 50′, 50″ from being able to fall through the hitch plate 20 in the event of catastrophic fluid or gas loss from a reservoir (which includes, for example, channels 62, network 60, and at least a portion of chambers 23, with each being defined in additional detail below). The cam 56 may separate opposite ends the shackle rod 52, such that the fastener 59 (
The plunger 40 is seated in chamber (or “cavity”) 23 of the aperture end 22b and is movable in directions W1 and W2, which are generally transverse to the direction L. The interaction between the plunger 40 and the plate 20 at the chamber 23 is sufficiently sealed such that fluid or gas in the chamber 23 does not escape, and gaskets may be used as necessary or desired. An interfacing member 42 (preferably a rotational member 42a, though in some embodiments a non-rotating member) is located at an end of the plunger 40 that is closest to the cam 56. The rotational member 42a may be captured between a first side arm 43 and a second side arm 44 (
A network 60 connects the chamber 23 to a chamber 23′ of the end 22b′ and to a chamber 23″ of the end 22b″, such that the chambers 23, 23′, 23″ are effectively in parallel to one another (instead of a serial arrangement). Fluid (i.e., hydraulic fluid or gas) is situated within the network 60, and the network 60 more particularly includes a channel 62 and branch lines 62a, 62a′, 62a″ connecting the chambers 23, 23′ 23″.
Each plunger 40, 40′, 40″ has three basic states (or positions) that correspond to states of the associated ropes 12, 12′, 12″: an over-tensioned state, an under-tensioned state, and an equalized state. When at least one of the plungers 40, 40′, 40″ is at an over-tensioned position, at least one of the other plungers 40, 40′, 40″ is at an under-tensioned position; and when at least one of the plungers 40, 40′, 40″ is at an under-tensioned position, at least one of the other plungers 40, 40′, 40″ is at an over-tensioned position. Ideally, all of the plungers 40, 40′, 40″ are at the equalized state. When at the over-tensioned state, the respective plunger 40, 40′, 40″ has entered into the respective cavity 23, 23′, 23″ further than if at the under-tensioned or equalized state; and when at the under-tensioned state, the respective plunger 40, 40′, 40″ has exited the respective cavity 23, 23′, 23″ further than if at the over-tensioned or equalized state. In practice, the fluid in the network 60 automatically equalizes the pressure on the plungers 40, 40′, 40″, affecting the positioning of the plungers 40, 40′, 40″, and in turn (through interaction between the plungers 40, 40′, 40″ and the cams 56, 56′, 56″) affects positioning of the rods 52, 52′, 52″ and tension on the ropes 12, 12′, 12″.
For example,
Many different arrangements of the various components depicted, as well as components not shown, are possible without departing from the spirit and scope of the present disclosure. Embodiments of the present disclosure have been described with the intent to be illustrative rather than restrictive. Alternative embodiments will become apparent to those skilled in the art that do not depart from its scope. A skilled artisan may develop alternative means of implementing the aforementioned improvements without departing from the scope of the present disclosure. Further, it will be understood that certain features and subcombinations may be of utility and may be employed within the scope of the disclosure. Further, various steps set forth herein may be carried out in orders that differ from those set forth herein without departing from the scope of the present methods. This description shall not be restricted to the above embodiments.
It is to be understood that while certain forms of the present disclosure have been illustrated and described herein, it is not to be limited to the specific forms or arrangement of parts described and shown.
Number | Name | Date | Kind |
---|---|---|---|
1323357 | Evans | Dec 1919 | A |
1516727 | Hawkins | Nov 1924 | A |
1632083 | Kieckhefer | Jun 1927 | A |
1991538 | Beatty | Feb 1935 | A |
2001007 | Wilson | May 1935 | A |
3052320 | Dardy | Sep 1962 | A |
6223862 | Barnes | May 2001 | B1 |
8162110 | Smith et al. | Apr 2012 | B2 |
20040154876 | Choi | Aug 2004 | A1 |
20190119070 | Kang | Apr 2019 | A1 |
Number | Date | Country |
---|---|---|
699728 | Dec 1940 | DE |
1171130 | May 1964 | DE |
1171130 | May 1964 | DE |
772966 | Oct 1980 | SU |
WO-2018109881 | Jun 2018 | WO |
Number | Date | Country | |
---|---|---|---|
20190177127 A1 | Jun 2019 | US |