This application is a non-provisional application of U.S. Provisional Application No. 62/025,057 filed on Jul. 16, 2014, which is herein incorporated in its entirety.
Statement of the Technical Field
The invention relates generally to Electronic Article Surveillance (“EAS”) systems, and more particularly to improvements in EAS tag detection performance.
Description of the Related Art
EAS systems use EAS transmitters to excite markers or tags which are present in a detection zone. The transmitter periodically generates a burst of electromagnetic energy at a particular frequency to excite the EAS tag. When a marker tag is excited in the detection zone during the time of the burst, the marker tag will generate an electromagnetic signal which can usually be detected by a receiver. One type of EAS system utilizes acousto-magnetic (AM) markers. The general operation of an AM type EAS system is described in U.S. Pat. Nos. 4,510,489 and 4,510,490. As is known, the transmitter or exciter in many common AM type EAS systems will transmit bursts or pulses of electromagnetic energy at 58 kHz and then listen for a response from an EAS tag that is present in a detection zone.
The invention concerns an Electronic Article Surveillance (EAS) resonant antenna system with self-contained automatic selective damping. An antenna resonant circuit is responsive to an exciter signal produced by a remotely located EAS transceiver. The exciter signal is comprised of a periodic burst of alternating current (AC) electrical energy which, when applied to the antenna resonant circuit, produces an electromagnetic field which is capable of exciting an EAS marker tag. A damping control system is provided at the location of the antenna resonant circuit, remote from the EAS transceiver. The damping control system detects each periodic burst received at the antenna resonant circuit, and is responsive to the detecting to selectively decrease a Q factor of the antenna resonant circuit at a predetermined time. Notably, the damping control system initiates a timing trigger signal for decreasing the Q factor based exclusively on the periodic burst received at the antenna resonant circuit, absent any other control signal from the EAS transceiver or other remote circuitry. The predetermined time is advantageously chosen to reduce ringing at a trailing edge of each burst of the exciter signal. The damping control system automatically restores the Q factor of the antenna resonant circuit to a higher Q factor value before a next periodic burst is received.
According to one aspect, the damping control system detects a beginning of each the periodic burst and in response thereto generates a switch control signal after a predetermined delay to selectively decrease the Q factor. For example, the predetermined delay can correspond to a predetermined duration of each periodic burst. Accordingly, the Q factor is reduced at a predetermined time corresponding to the end of each burst.
A power supply system is disposed at the location of the antenna resonant circuitry. The power supply system rectifies and filters electrical power contained in the periodic bursts to provide a primary source of electrical power to the damping control system. As such, the power supply system is connected to receive at least a portion of the exciter signal from the remotely located EAS transceiver. The power supply is coupled to at least one component of the damping control system.
The invention also concerns an Electronic Article Surveillance (EAS) system. The EAS system includes an EAS system controller, including an EAS transceiver, and a resonant antenna system as described above. The resonant antenna system is located remote from the EAS system controller and coupled to the EAS system controller through an antenna cable. The resonant antenna system includes a damping control system as described above.
The invention also concerns a method for selectively controlling a Q-factor of an antenna resonant circuit in an EAS system. The method involves using a damping control system disposed at a location of an antenna resonant circuit. The damping control system detects an exciter signal produced by a remotely located EAS transmitter. The exciter signal is comprised of periodic bursts of alternating current (AC) electrical energy which, when applied to the antenna resonant circuit, produce an electromagnetic field which is capable of exciting an EAS marker tag. The method further involves operating the damping control system to generate a switch control signal in response to the detecting, and using the switch control signal to reduce a Q factor of the antenna resonant circuit by controlling at least one switching element connected to the antenna resonant circuit. The damping control system controls a timing of the switch control signal so as to reduce the Q factor at a predetermined time selected to reduce ringing at a trailing edge of each periodic burst.
The invention is described with reference to the attached figures. The figures are not drawn to scale and they are provided merely to illustrate the instant invention. Several aspects of the invention are described below with reference to example applications for illustration. It should be understood that numerous specific details, relationships, and methods are set forth to provide a full understanding of the invention. One having ordinary skill in the relevant art, however, will readily recognize that the invention can be practiced without one or more of the specific details or with other methods. In other instances, well-known structures or operation are not shown in detail to avoid obscuring the invention. The invention is not limited by the illustrated ordering of acts or events, as some acts may occur in different orders and/or concurrently with other acts or events. Furthermore, not all illustrated acts or events are required to implement a methodology in accordance with the invention.
In an EAS system, a resonant circuit used to radiate electromagnetic energy into a EAS detection zone will have a relatively high Q. Consequently, the burst of electrical energy used to excite the resonant circuit will not terminate instantaneously at the end of each burst, but will instead ring-down slowly over time. Extended ring-down periods are problematic because they interfere with the ability of an EAS receiver to detect marker tags in an EAS detection zone. To alleviate this problem, resistive loss can be selectively added to the resonant circuit, at the location of the antenna and remote from the burst source. The resistive loss is selectively added to the resonant circuit temporarily at the termination of each burst to increase damping and thereby reduce the Q of the resonant circuit. Reducing the Q in this way advantageously reduces the ring-down time and improves performance of the EAS. Improved ring-down control is obtained by adding resistive loss directly at the antenna as opposed to at the burst source (which may be located remotely from the antenna). Moreover, the improved automatic damping can be obtained without modifying a conventional existing EAS control system or the circuitry between the control system and a remotely located antenna. Accordingly, the improvements can easily be retrofit to existing EAS systems for improved performance at minimal cost.
Referring now to the drawings figures in which like reference designators refer to like elements, there is shown in
A number of different types of EAS detection schemes are well known in the art. For example, known types of EAS detection schemes can include magnetic systems, acousto-magnetic systems, radio-frequency type systems and microwave systems. For purposes of describing the inventive arrangements, it shall be assumed that the EAS detection system 100 is an acousto-magnetic (AM) type system. Still, it should be understood that the invention is not limited in this regard and other types of EAS detection methods can also be used with the present invention.
An exemplary EAS detection system 100 includes a pair of pedestals 102a, 102b, which are located a known distance apart (e.g. at opposing sides of entry/exit 104). The pedestals 102a, 102b are typically stabilized and supported by a base 106a, 106b. Pedestals 102a, 102b will each generally include one or more antennas that are suitable for aiding in the detection of the special EAS tags as described herein. Other types of antenna arrangements are also possible. For example, one or more EAS antennas can be disposed in a wall, ceiling or floor adjacent to a detection zone. For convenience, the inventive arrangements will be described in relation to a pedestal type EAS configuration. Still, it should be understood that the invention is not limited in this regard and the arrangements described herein are applicable to any type of EAS system where it is desirable to control a damping of a resonant antenna.
An EAS pedestal 102a can include at least one antenna 302a that is suitable for transmitting or producing an electromagnetic exciter signal field and receiving response signals generated by marker tags in the detection zone 108. In some embodiments, the same antenna can be used for both receive and transmit functions. However, a pedestal 102b can include at least a second antenna 302b. The second antenna can be suitable for transmitting or producing an electromagnetic exciter signal field and/or receiving response signals generated by marker tags in the detection zone 108. In certain embodiments of the invention described herein, the antennas provided in pedestals 102a, 102b can be comprised of a resonant circuit which includes an exciter coil in the form of a conventional conductive wire loop. Antennas of this type are commonly used in AM type EAS pedestals. In some embodiments, a single antenna can be used in each pedestal and the single antenna is selectively coupled to the EAS receiver and the EAS transmitter in a time multiplexed manner. However, it can be advantageous in some scenarios to include two antennas in each pedestal as shown, with an upper antenna positioned above a lower antenna.
The antennas located in the pedestals 102a, 102b are electrically coupled to a system controller 110, which controls the operation of the EAS detection system to perform EAS functions as described herein. The system controller can be located within a separate chassis at a location spaced apart from the pedestals such that the controller is remote from the antenna. For example, the system controller 110 can be located in a ceiling just above or adjacent to the pedestals.
EAS detection systems are well known in the art and therefore will not be described here in detail. However, a brief description of the operation of such systems will be provided as an aid to understanding the inventive arrangements. An antenna of an acousto-magnetic (AM) type EAS detection system is used to generate an electro-magnetic field which serves as a marker tag exciter signal. The marker tag exciter signal causes a mechanical oscillation of a strip (e.g. a strip formed of a magnetostrictive, or ferromagnetic amorphous metal) contained in a marker tag within a detection zone 108. As a result of the stimulus signal, the tag will resonate and mechanically vibrate due to the effects of magnetostriction. This vibration will continue for a brief time after the stimulus signal is terminated. The vibration of the strip causes variations in its magnetic field, which can induce an AC signal in the receiver antenna. This induced signal is used to indicate a presence of the strip within the detection zone 108.
Referring now to
The system also includes at least one EAS transceiver 408, including transmitter circuitry 410 and receiver circuitry 412. The transmitter and receiver circuitry are electrically coupled to antenna 302a and/or the antenna 302b. A suitable multiplexing arrangement can be provided to facilitate both receive and transmit operation using a single antenna (e.g. antenna 302a or 302b). Transmit operations can occur concurrently at antennas 302a, 302b after which receive operations can occur concurrently at each antenna to listen for marker tags which have been excited. Alternatively, transmit operations can be selectively controlled so that only one antenna is active at a time for transmitting marker tag exciter signals. Input exciter signals are applied to the one or more antennas by transmitter circuitry (transmitter) 410.
Additional components of the system controller 110 can include a communication interface 424 configured to facilitate wired and/or wireless communications from the system controller 110 to a remotely located EAS system server. The system controller can also include a real-time clock, which is used for timing purposes, an alarm 426 (e.g. an audible alarm, a visual alarm, or both) which can be activated when an active marker tag is detected within the EAS detection zone 108. A power supply 428 provides necessary electrical power to the various components of the system controller 110. The electrical connections from the power supply to the various system components are omitted in
Those skilled in the art will appreciate that the system controller architecture illustrated in
An antenna 302a, 302b is comprised of a resonant circuit. As such, the antenna will include an inductive component L and a capacitive element C. The inductive element is generally provided in the form on an exciter coil similar to that which is shown in
It will be appreciated by those skilled in the art that the quality factor or Q factor of a resonant circuit is a dimensionless parameter that is used to characterize the amount of damping in a resonant circuit. Methods for calculating Q factor are well known in the art and therefore will not be described here in detail. In general however, higher Q indicates less dissipation (less damping) of energy occurs in a resonant circuit, and lower Q indicates more dissipation (more damping) of energy in the circuit. As is known in the art, energy dissipation in a resonant circuit is generally due to dissipative elements in the form of resistance or ohmic losses in the circuit.
During the time when an antenna resonant circuit is actually being excited in an EAS system it is desirable for the resonant circuit to have a high Q factor for greater efficiency. But resonators with high quality factors have low damping so that they ring for a longer period after a source of energy is removed at an end time. The ringing effect 602 is apparent in
Referring now to
An automatic damping circuit for a series resonant circuit that is provided remotely (e.g. at a burst source, or at the control system 110) can provide a limited amount of damping. But parasitic reactance present in the wiring between the transmitter and the antenna will inherently limit the effectiveness of such damping. This is because the dissipative or resistive element added to the circuit at the control system for damping purposes is physically remote from the exciter coil of the resonant circuit. Still, it has been found that an acceptable amount of damping effectiveness is still obtained when an antenna utilizes a series resonant circuit with a remotely located damping circuit. In contrast, it has been found that a damping circuit for a parallel resonant circuit that is provided remotely from an antenna will have little or no damping effect at all. The parasitic reactance in the circuitry between the antenna and the damping circuit is sufficient to substantially limit the interaction of the remote damping circuit with the parallel resonant circuit. As such, a remote damping circuit for an antenna utilizing a parallel resonant circuit has been found to have little or no effectiveness at reducing ringing. Similarly, a remotely located damping circuit for a hybrid antenna resonant circuit has been found to have little or no effectiveness at reducing a ringing effect. From the foregoing it will be understood that arrangements which facilitate automatic damping directly at the antenna are particularly advantageous for use in systems that utilize parallel or hybrid resonant circuits. Moreover, for all three types of resonant circuits, it has been found that the most effective way to reduce the ring-down time is by placing a switched dissipative element (e.g. a resistor) in parallel with the exciter coil. For maximum effectiveness, the switched dissipative element should be connected in parallel directly or in very close proximity to the exciter coil.
Referring now to
In the exemplary arrangement shown in
In the exemplary embodiment shown in
As shown in
In some scenarios, the only connection between the EAS system controller 801 and the antenna housing 803 will be the antenna cable 805 which couples the EAS transceiver to the antenna resonant circuit. In such systems, there is no readily available primary power source available at the antenna housing that can be used for powering the automatic damping circuits described herein. It is desirable to avoid making modifications to an existing system controller and antenna cable when retrofitting such existing systems with an antenna-based automatic damping system. Accordingly, a power supply 808 can be provided for the damping control system at the antenna housing 803, remote from both the system controller 801 and EAS transceiver 802. According to one aspect of the invention, the power supply can derive power for the automatic damping system from the exciter signal burst.
A detailed drawing of an exemplary power supply 808 for the automatic damping system is shown in
The arrangement shown in
Referring now to
Two separate switch control signal drivers 824-1 and 824-2 each receive trigger signals from the delay device 822. The switch control drivers 824-1, 824-2 respectively generate switch control signals 807-1, 807-2 to simultaneously control switches 816 respectively associated with antenna resonant circuits 804-1, 804-2. A single common power supply 808 can provide primary electrical power for all modules in antenna system 1200 by using a small portion of the electrical power contained in the exciter bursts and communicated to the antenna system by one antenna cable (e.g. antenna cable 805). A single set of burst detection and delay modules (818, 822) are acceptable in such a scenario provided that exciter signal bursts received on antenna line 1205 have the same timing as those received on antenna line 805.
Although the invention has been illustrated and described with respect to one or more implementations, equivalent alterations and modifications will occur to others skilled in the art upon the reading and understanding of this specification and the annexed drawings. In addition, while a particular feature of the invention may have been disclosed with respect to only one of several implementations, such feature may be combined with one or more other features of the other implementations as may be desired and advantageous for any given or particular application. Thus, the breadth and scope of the present invention should not be limited by any of the above described embodiments. Rather, the scope of the invention should be defined in accordance with the following claims and their equivalents.
Number | Name | Date | Kind |
---|---|---|---|
4510489 | Anderson, III et al. | Apr 1985 | A |
4510490 | Anderson, III et al. | Apr 1985 | A |
5257010 | Rehder | Oct 1993 | A |
5815076 | Herring | Sep 1998 | A |
20090189741 | Rowland | Jul 2009 | A1 |
20110095889 | Yang et al. | Apr 2011 | A1 |
20130278426 | Sayegh | Oct 2013 | A1 |
Number | Date | Country | |
---|---|---|---|
20160019766 A1 | Jan 2016 | US |
Number | Date | Country | |
---|---|---|---|
62025057 | Jul 2004 | US |