AUTOMATIC SENSOR SELECTION

Information

  • Patent Application
  • 20220028542
  • Publication Number
    20220028542
  • Date Filed
    October 13, 2021
    3 years ago
  • Date Published
    January 27, 2022
    3 years ago
Abstract
Automatic electromyography (EMG) electrode selection for robotic devices is disclosed. A plurality of signals from a corresponding plurality of sensors coupled to a skin of a user is received. For each pair of at least some pairs of the plurality of sensors, a sensor pair signature is generated based on differences in signals that are generated by the respective pair of sensors. Each of the sensor pair signatures is compared to a predetermined sensor pair signature to identify a particular pair of sensors. A signal difference between two signals generated by the particular pair of sensors is subsequently utilized to generate a command to drive a motor.
Description
TECHNICAL FIELD

The embodiments relate generally to the use of sensors (i.e. electrodes) in conjunction with devices, such as prosthetics and exoskeletons, and, in particular, to automatic sensor selection.


BACKGROUND

The use of electromyography (EMG) in robotic devices, such as prosthetics and exoskeletons, requires proper placement of EMG sensors on a user's skin over the relevant muscle groups. Proper placement requires knowledge of muscle anatomy, or a skilled physiologist, neither of which may be available at the time such a robotic device will be used.


Accordingly, robotic devices could be more widely used if EMGs could be properly placed on an individual by someone with little to no knowledge of physiology.


SUMMARY

The embodiments implement automatic electromyography (EMG) sensor selection for use in robotic devices. The embodiments, among other advantages, eliminate a need to precisely place a pair of EMG sensors on a skin of a user. While the embodiments will be discussed herein in the context of an exoskeleton, the embodiments have applicability in any application where EMG sensor signals are used to drive a motor in conjunction with the movements of a user. For example, the embodiments also have applicability in the use of motorized prosthetics.


In one embodiment a method is provided. The method includes receiving, by a computing device comprising a processor device, a plurality of signals from a corresponding plurality of sensors coupled to a skin of a user, the plurality of sensors comprising at least three sensors. The method further includes, for each respective pair of sensors of a plurality of pairs of sensors of the plurality of sensors, generating a corresponding sensor pair signature based on differences in signals that are generated by the respective pair of sensors. The method further includes comparing each of the sensor pair signatures to a predetermined sensor pair signature to identify a particular pair of sensors, and subsequently utilizing a signal difference between two signals generated by the particular pair of sensors to generate a command to drive a motor.


In another embodiment a system is provided. The system includes an electromyography (EMG) sensor assembly comprising at least three EMG sensors configured to be coupled to a skin of a user. The system further includes a processor device coupled to the EMG sensor assembly. The processor device is configured to receive a plurality of signals from the at least three EMG sensors. The processor device is further configured to, for each respective pair of EMG sensors of a plurality of pairs of EMG sensors of the at least three EMG sensors, generate a corresponding sensor pair signature based on differences in signals that are generated by the respective pair of EMG sensors. The processor device is further configured to compare each of the sensor pair signatures to a predetermined sensor pair signature to identify a particular pair of EMG sensors, and subsequently utilize a signal difference between two signals generated by the particular pair of EMG sensors to generate a command to drive a motor.


In another embodiment another method is provided. The method includes receiving a plurality of signals from a corresponding plurality of sensors coupled to a skin of a user. The method further includes based on the plurality of signals and a predetermined signal signature, selecting at least one sensor, and subsequently utilizing a signal generated by the at least one sensor to generate a command to drive a motor.


Those skilled in the art will appreciate the scope of the disclosure and realize additional aspects thereof after reading the following detailed description of the preferred embodiments in association with the accompanying drawing figures.





BRIEF DESCRIPTION OF THE DRAWINGS

The accompanying drawing figures incorporated in and forming a part of this specification illustrate several aspects of the disclosure, and together with the description serve to explain the principles of the disclosure.



FIG. 1 is a block diagram of an environment in which embodiments can be practiced;



FIG. 2 is a flowchart of a method for automatic electromyography (EMG) sensor selection according to one embodiment; and



FIG. 3 is a block diagram of an EMG sensor assembly according to another embodiment.





DETAILED DESCRIPTION

The embodiments set forth below represent the necessary information to enable those skilled in the art to practice the embodiments and illustrate the best mode of practicing the embodiments. Upon reading the following description in light of the accompanying drawing figures, those skilled in the art will understand the concepts of the disclosure and will recognize applications of these concepts not particularly addressed herein. It should be understood that these concepts and applications fall within the scope of the disclosure and the accompanying claims.


Any flowcharts discussed herein are necessarily discussed in some sequence for purposes of illustration, but unless otherwise explicitly indicated, the embodiments are not limited to any particular sequence of steps. The use herein of ordinals in conjunction with an element is solely for distinguishing what might otherwise be similar or identical labels, such as “first format” and “second format,” and does not imply a priority, a type, an importance, or other attribute, unless otherwise stated herein. The term “about” used herein in conjunction with a numeric value means any value that is within a range of ten percent greater than or ten percent less than the numeric value.


The use of electromyography (EMG) in robotic devices, such as prosthetics and exoskeletons, requires proper placement of EMG sensors on a user's skin over the relevant muscle groups. Proper placement requires knowledge of muscle anatomy, or a skilled physiologist, neither of which may be available at the time a robotic device will be used.


The embodiments implement automatic EMG sensor selection for use in robotic devices that eliminates a need to precisely place a pair of EMG sensors on a skin of a user. While the embodiments will be discussed herein in the context of an exoskeleton, the embodiments have applicability in any application where EMG sensor signals are used to drive a motor in conjunction with the movements of a user. For example, the embodiments also have applicability in the use of motorized prosthetics.



FIG. 1 is a block diagram of an environment 10 in which embodiments can be practiced. The environment 10 includes a computing device 12. The computing device 12 includes a processor device 14 that is communicatively coupled to a memory 16, a motor interface 18, a sensor interface 20 and a storage device 22. The sensor interface 20 is communicatively coupled to an EMG sensor assembly 24. The EMG sensor assembly 24 comprises a plurality of EMG sensors 26-1-26-9 (generally, EMG sensors 26). In this example, there are nine EMG sensors 26 arranged in a grid, although the embodiments are not limited to any particular pattern or number of EMG sensors 26. The EMG sensor assembly 24, in this embodiment, may have a width 28 and an equal height 30 of, for example, 2 inches to 4 inches. The EMG sensor assembly 24 may include a flexible and adhesive substrate to which the EMG sensors 26 are fixed, facilitating coupling of the EMG sensor assembly 24 to a skin over a desired muscle group of a body part 32 of a user 33. The body part 32 may comprise any suitable part of the body, such as, by way of non-limiting example, a calf of the user 33, a thigh of the user 33, a forearm of the user 33, or the like.


Each of the EMG sensors 26 generates a signal that is received by the processor device 14. The processor device 14 may communicate with the EMG sensor assembly 24 wirelessly or via a wired connection. The processor device 14 determines the different combinations of pairs of EMG sensors 26 in the EMG sensor assembly 24. As an example, one pair of EMG sensors 26 includes the EMG sensor 26-1 and the EMG sensor 26-2; another pair of EMG sensors 26 includes the EMG sensor 26-1 and the EMG sensor 26-3; and another pair of EMG sensors 26 includes the EMG sensor 26-1 and the EMG sensor 26-4. In total, for nine EMG sensors 26, the processor device 14 may determine that thirty-six different pairs of EMG sensors 26 exist.


For each pair of EMG sensors 26, the processor device 14 generates a difference signal, sometimes referred to herein as a sensor pair signature, based on a difference between signals received by the EMG sensors 26 in the respective pair. As an example, for the pair of EMG sensors 26-1 and 26-2, the processor device 14 generates a sensor pair signature 34-1; for the pair of EMG sensors 26-1 and 26-3, the processor device 14 generates a sensor pair signature 34-2; for the pair of EMG sensors 26-1 and 26-4, the processor device 14 generates a sensor pair signature 34-3; for the pair of EMG sensors 26-1 and 26-4, the processor device 14 generates a sensor pair signature 34-4; and for the pair of EMG sensors 26-8 and 26-9, the processor device 14 generates a sensor pair signature 34-N.


Because a pair of EMG sensors 26 is sensitive to both the magnitude and orientation of the pair of EMG sensors 26 relative to the desired muscle, a difference signal generated between the same two respective EMG sensors 26 will have the opposite sign. For example, the difference signal between the pair of EMG sensors 26-1 and 26-2 will have the opposite sign from the difference signal between the pair of EMG sensors 26-2 and 26-1. Thus, in this example, with nine EMG sensors 26, the processor device 14 identifies a total of seventy two different sensor pair signatures 34. In one embodiment, the difference signal is generated by subtracting a recorded voltage of a first EMG sensor 26 from a recorded voltage of a second EMG sensor 26 of a pair of EMG sensors 26.


The storage device 22 contains one or more predetermined sensor pair signatures 36-1-36-N (generally, predetermined sensor pair signatures 36). Each predetermined sensor pair signature 36 corresponds to a particular body part of the user 33. The predetermined sensor pair signatures 36 contain a sensor pair signature against which the sensor pair signatures 34 are compared in order to select one of the sensor pair signatures 34 for use. In particular, the processor device 14 compares each sensor pair signature 34 against the predetermined sensor pair signature 36 that corresponds to the relevant body part, and selects a particular sensor pair signature 34 that is a closest match to the predetermined sensor pair signature 36.


The predetermined sensor pair signatures 36 may be generated in any of a number of different ways. In one embodiment, prior to the application of the EMG sensor assembly 24 to the user 33, an individual trained in EMG sensor placement places two EMG sensors at appropriate locations on the skin of an individual. The individual then performs one or more predetermined activities. While the individual is performing the one or more predetermined activities, the signals generated by the two EMG sensors are recorded. A predetermined sensor pair signature 36 may be generated based on the recorded sensor signals. In some embodiments, this process may be repeated with a group of individuals, and the predetermined sensor pair signature may be based on signatures generated from each of the individuals, such as via an averaging or other suitable process. In some embodiments, this process may be performed using the actual individual, in this example the user 33, to whom the EMG sensor assembly 24 will be later applied.


After the EMG sensor assembly 24 is applied to the body part 32 of the user 33, the user 33 may be requested to perform the same one or more predetermined activities used to generate the corresponding predetermined sensor pair signature 36. As an example, if the EMG sensor assembly 24 is applied to the thigh area of the user 33, the user 33 may be asked to perform a walking activity, a jogging activity, and a squat activity. While the user 33 is performing such activities, the processor device 14 generates the sensor pair signatures 34. The processor device 14 then compares the sensor pair signatures 34 to the predetermined sensor pair signature 36-2 (for the thigh body part 32 in this example) and selects a particular sensor pair signature 34 based on a closest match algorithm.


The processor device 14 subsequently utilizes the two EMG sensors 26 that correspond to the selected sensor pair signature 34 to subsequently generate commands to drive a motor 38 via the motor interface 18. The motor interface 18 may comprise, for example, a communications path, wired or wireless, and any suitable firmware and/or software used to translate commands from the processor device 14 to corresponding signals to the motor 38. The motor 38 may be any suitable motor used to drive any suitable robotic device. In one embodiment, the motor 38 comprises an exoskeleton motor used to move an exoskeleton 40. In another embodiment, the motor 38 comprises a prosthetic motor used to move a prosthetic 42. As an example, the processor device 14 may receive signals from the two EMG sensors 26 that identify the beginning of a muscle contraction of the user 33 that would result in the movement of a limb of the user 33 and, in response to such signals, generate a command to move an exoskeleton link that is coupled to the limb of the user 33 that would be moved in response to the muscle contraction. The processor device 14 may disregard any other signals received from the EMG sensors 26 other than the selected pair of EMG sensors 26.



FIG. 2 is a flowchart of a method for automatic EMG sensor selection according to one embodiment. FIG. 2 will be discussed in conjunction with FIG. 1. Initially, the EMG sensor assembly 24, which comprises at least three EMG sensors 26, is placed on the skin of the body part 32 of the user 33 over a desired muscle group, such as a thigh muscle, a calf muscle, or the like. In this example it will be assumed that the EMG sensor assembly 24 is placed over a thigh muscle group. The processor device 14 receives a plurality of signals from the corresponding plurality of EMG sensors 26 of the EMG sensor assembly 24 (FIG. 2, block 100). In particular, for each EMG sensor 26 in the EMG sensor assembly 24, the processor device 14 receives a separate signal. The processor device 14 determines the different combinations of pairs of EMG sensors 26 in the EMG sensor assembly 24. For each pair of at least some pairs of the plurality of EMG sensors 26, the processor device 14 generates a sensor pair signature 34 based on the differences in signals that are generated by the corresponding pair of EMG sensors 26 (FIG. 2, block 102). During this step, the user may be performing a known calibration movement, such as walking, squatting, or the like. This process may be referred to as a calibration step.


The processor device 14 compares each of the sensor pair signatures 34 to the predetermined sensor pair signature 36-2 (FIG. 1) to identify at least one pair of EMG sensors 26 (FIG. 2, block 104). The predetermined sensor pair signature 36-2 is a sensor pair signature that represents an ideal signal difference for a human performing the known calibration movement, and may be generated, for example, as discussed above. The comparison step may involve, for example, determining which pair of EMG sensors 26 generates a signal difference that most closely matches the predetermined sensor pair signature 26-2.


The processor device 14 stores identifiers of the at least one pair of EMG sensors 26 to use for subsequent operation of the motor 38. The processor device 14 subsequently utilizes a signal difference between the two signals generated by the at least one pair of EMG sensors 26 to generate a command to drive the motor 38 to move, for example, the exoskeleton 40 or prosthetic 42 (FIG. 2, block 106). For example, based on the signal difference between the two signals generated by the at least one pair of EMG sensors 26, the processor device 14 may generate a torque command that directs the motor 38 to apply a particular torque to a limb of the exoskeleton 40.



FIG. 3 is a block diagram of an EMG sensor assembly 24-1 according to another embodiment. Other than the difference in pattern, the EMG sensor assembly 24-1 operates substantially similarly to the EMG sensor assembly 24 discussed above.


While the embodiments have been discussed in the context of pairs of EMG sensors, the embodiments have applicability with other numbers of EMG sensors, such as a single EMG sensor, or groups of EMG sensors greater than two, such as a set of three EMG sensors, four EMG sensors, or any other size set of EMG sensors. In the context of a single EMG sensor, the embodiments receive a plurality of signals from a corresponding plurality of sensors coupled to a skin of a user, based on the plurality of signals and a predetermined signal signature, select at least one sensor, and subsequently utilize a signal generated by the at least one sensor to generate a command to drive a motor.


While the embodiments have been discussed in the context of EMG sensors as examples, the embodiments are not limited to EMG sensors and have applicability to any types of sensors that require some knowledge of placement.


Those skilled in the art will recognize improvements and modifications to the preferred embodiments of the disclosure. All such improvements and modifications are considered within the scope of the concepts disclosed herein and the claims that follow.

Claims
  • 1. A system comprising: a sensor assembly comprising a plurality of sensors configured to be coupled to a skin of a user, the plurality of sensors comprising at least three sensors including a plurality of pairs of sensors between each of the at least three sensors and each other of the at least three sensors; anda processor device coupled to the sensor assembly, the processor device configured to: receive a plurality of signals from the plurality of sensors coupled to the skin of the user;for each respective pair of sensors of the plurality of pairs of sensors of the plurality of sensors, generate a corresponding sensor pair signature based on differences in signals that are generated by the respective pair of sensors;compare each of the sensor pair signatures to a predetermined sensor pair signature to identify a particular pair of sensors of the plurality of pairs of sensors, the predetermined sensor pair signature corresponding to a body part; andsubsequently utilizing a signal difference between two signals generated by the particular pair of sensors to generate a command to drive a motor.
  • 2. The system of claim 1, wherein the sensor assembly comprises an electromyography (EMG) sensor assembly, and the at least three sensors comprise at least three EMG sensors.
  • 3. The system of claim 1, wherein the motor comprises an exoskeleton motor coupled to an exoskeleton, and wherein to subsequently utilize the signal difference between the two signals generated by the particular pair of sensors to generate the command to drive the motor, the processor device is further configured to: subsequently utilize the signal difference between the two signals generated by the particular pair of sensors to generate the command to drive the exoskeleton motor to move the exoskeleton.
  • 4. The system of claim 1, wherein the motor comprises a prosthetic motor coupled to a prosthetic, and wherein to subsequently utilize the signal difference generated between the two signals generated by the particular pair of sensors to generate the command to drive the motor, the processor device is further configured to: subsequently utilize the signal difference between the two signals generated by the particular pair of sensors to generate the command to drive the prosthetic motor to move the prosthetic.
  • 5. The system of claim 1, wherein the plurality of sensors are fixed to an adhesive substrate configured to be placed on the skin of a body part of the user.
  • 6. The system of claim 1, wherein the at least three sensors are fixed to an adhesive substrate and have a dimension of less than about 3 inches by 3 inches.
  • 7. The system of claim 1, wherein to generate the sensor pair signature based on the differences in the signals that are generated by the respective pair of sensors, the processor device is further configured to: for each different pair of sensors of the at least three sensors, generate the sensor pair signature based on a difference in a voltage signal generated by each EMG sensor of the respective pair of sensors.
  • 8. The system of claim 1, wherein the processor device is further configured to: after comparing each of the sensor pair signatures to the predetermined sensor pair signature to identify the particular pair of sensors, disregard signals generated by each sensor of the at least three sensors other than the sensors in the particular pair of sensors.
  • 9. The system of claim 1, wherein to receive the plurality of signals from the at least three sensors coupled to the skin of the user, the processor device is further configured to receive the plurality of signals from the at least three sensors coupled to the skin of the user during a period of time the user is performing a predetermined activity.
  • 10. The system of claim 1, wherein the processor device is further configured to: maintain a plurality of predetermined sensor pair signatures, each predetermined sensor pair signature corresponding to a different body part of a plurality of body parts of the user, and wherein to compare each of the sensor pair signatures to the predetermined sensor pair signature to identify the particular pair of sensors, the processor device is further configured to compare each of the sensor pair signatures to the predetermined sensor pair signature that corresponds to a body part on which the at least three sensors are attached to identify the particular pair of sensors.
  • 11. The system of claim 1, wherein the plurality of sensors is fixed to a common adhesive substrate configured to couple the plurality of sensors over the body part, and the processor device is further configured to: after identifying the particular pair of sensors, generate commands to drive the motor based on signals generated by sensors of the particular pair of sensors and disregarding signals generated by each sensor of the plurality of sensors other than the sensors of the particular pair of sensors.
  • 12. The system of claim 1, wherein each of the plurality of sensors comprises an electromyography (EMG) sensor, and the motor comprises an exoskeleton motor coupled to an exoskeleton.
  • 13. A method comprising: receiving a plurality of signals from a corresponding plurality of sensors coupled to a skin of a user;comparing the plurality of signals with a predetermined signal signature, the predetermined signal signature corresponding to a body part;selecting at least one sensor based on the comparison between the plurality of signals with the predetermined signal signature; andsubsequently utilizing a signal generated by the at least one sensor to generate a command to drive a motor.
  • 14. The method of claim 13, wherein selecting the at least one sensor based on the comparison between the plurality of signals with the predetermined signal signature further comprises: selecting at least one sensor of the plurality of sensors and not all of the plurality of sensors based on the comparison between the plurality of signals with the predetermined signal signature.
  • 15. The method of claim 13, wherein the motor comprises an exoskeleton motor coupled to an exoskeleton, and wherein subsequently utilizing the signal generated by the at least one sensor to generate the command to drive the motor further comprises: subsequently utilizing a signal difference between two signals generated by a particular pair of sensors to generate the command to drive the motor to move the exoskeleton.
  • 16. The method of claim 13, wherein the plurality of sensors are fixed to an adhesive substrate configured to be placed on the skin of a body part of the user.
  • 17. The method of claim 13, further comprising: after comparing the plurality of signals with the predetermined signal signature, disregarding signals generated by each sensor of the plurality of sensors other than the at least one sensor.
  • 18. The method of claim 13, further comprising: maintaining a plurality of predetermined sensor pair signatures, each predetermined sensor pair signature corresponding to a different body part of a plurality of body parts of the user; andwherein comparing each of the plurality of signals to the predetermined sensor pair signature to identify the at least one sensor further comprises: comparing each of the plurality of signals to the predetermined sensor pair signature that corresponds to a body part on which the plurality of sensors are attached to identify the at least one sensor.
  • 19. The method of claim 13, wherein the plurality of sensors is fixed to a common adhesive substrate configured to couple the plurality of sensors over the body part, and further comprising: after identifying the at least one sensor, generating commands to drive the motor based on signals generated by sensors of the at least one sensor and disregarding signals generated by each sensor of the plurality of sensors other than the at least one sensor.
  • 20. The method of claim 13, wherein each of the plurality of sensors comprises an electromyography (EMG) sensor, and the motor comprises an exoskeleton motor coupled to an exoskeleton.
RELATED APPLICATION

This application is a continuation of co-pending U.S. patent application Ser. No. 16/116,048, filed on Aug. 29, 2018 and published as U.S. Patent Application Publication No. 2019/0059774, which claims the benefit of U.S. Provisional Application No. 62/552,171, filed on Aug. 30, 2017, entitled “AUTOMATIC EMG ELECTRODE SELECTION FOR ROBOTIC DEVICES,” the disclosure of which is hereby incorporated herein by reference in its entirety.

Provisional Applications (1)
Number Date Country
62552171 Aug 2017 US
Continuations (1)
Number Date Country
Parent 16116048 Aug 2018 US
Child 17500001 US