The present invention relates to trap machines that shoot clays, and more particularly, relates to a trap machine that can automatically change the trajectory of each target clay as the machine is operated in one mode.
Trap machines are conventionally used to shoot sporting clays, skeet, and trap. Sporting clays involves shooting clays at various locations which are launched at different velocities and angles, i.e., across the shooter's view, towards the shooter, or away from the shooter. This experience closely resembles actual hunting conditions since the sporting clays can be shot to resemble quail, pheasants, doves, and other game birds, as well as high-flying ducks or geese. Thus, it is more difficult for shooters to become accustomed to the shots as they might for trap or skeet shooting.
Skeet shooting involves shooting clays which are flung into the air at high speed and is meant to simulate the action of bird hunting. In one conventional arrangement, the shooter can be positioned along a semi-circle connecting two launching stations, a high house target and a low house target. The high house target launches the target from a point up to 10 feet above ground, and the low house target launches the target from a point up to 3 feet off above ground.
Trap shooting involves shooting clays which are launched from a single launching location, namely, a trap house positioned at a distance in front of the shooter, at varying angles within a range of 45 degrees to the left or right of a center position from the trap house. The shooter rotates to several different positions relative to the trap house.
Whether for shooting sporting clays, skeet, or trap, a conventional trap machine has a spring-loaded throwing arm for launching the clays. However, conventional trap machines are designed to shoot clays at a single trajectory angle. Even if the conventional trap machine is adapted to allow the user to adjust the trajectory angle, the conventional trap machines are typically manually adjustable and require the user to set the trap machine to the desired trajectory angle. Thus, the operation of such a machine is rather cumbersome and require considerable effort.
Furthermore, conventional trap machines are difficult to maintain. When parts, such as the threads in the connection between the magazine and the housing, become worn due to the vibration of the trap machine when releasing and launching the clays, major components including the main deck must be replaced, and often, the user will replace the entire machine rather than replace the major components of the trap machine.
Conventional trap machines also often break the clays due to excessive vibrations from a lack of rigidity in the structure of the trap machine and mistiming between the release of the clay and the swing of the throwing arm. Conventional trap machines are also typically limited to holding 70 clays in a single stack trap machine.
What has heretofore not been available is a reliable trap machine that automatically changes the trajectory angle, is easy to maintain, is capable of storing more than 70 clays in a single stack, and accurately times the throwing arm with the release of the clay.
A clay target launching machine, according to one aspect of the present invention, includes a magazine containing a predetermined number of clay targets; a first motor assembly; a throwing arm operatively coupled to the first motor assembly such that actuation of the first motor assembly is translated into pivoting of the throwing arm to launch the clay target; a housing that is pivotable about a base and supports, at least in part, the magazine, the first motor assembly, and the throwing arm; and an automatic trajectory changer assembly including a second motor that is operatively coupled to the housing through a linkage such that rotation of a drive shaft of the second motor is translated into vertical and lateral movement of the housing relative to the base so as to cause a continuous change in an angle at which the throwing arm is positioned when launching clays, thereby causing a variable trajectory path for successively launched clay targets; wherein the first motor assembly operates at a different speed than the second motor.
A clay target launching machine, according to another aspect of the present invention, includes a magazine containing a predetermined number of clay targets; a first motor assembly; a throwing arm operatively coupled to the first motor assembly such that actuation of a first motor of the first motor assembly is translated into pivoting of the throwing arm to launch the clay target; a housing that is pivotable about a base and supports, at least in part, the magazine, the first motor assembly, and the throwing arm; an automatic trajectory changer assembly including a second motor that is operatively coupled to the housing through a linkage; and a control panel that permits a user to select between a first operation mode and a second operational mode, the first operational mode being one where both the first and second motors are powered causing the launcher to launch the clays along continuously changing trajectory paths, the second operational mode being one where only the first motor is operational and the launcher launches clays continuously along a substantially fixed trajectory path.
A clay target launching machine, according to another aspect of the present invention, includes a magazine containing a predetermined number of clay targets; a launching device for launching one of the clay targets; a main motor assembly supporting at least a part of the magazine, the main motor assembling comprising a main motor that activates the launching device; and an automatic trajectory changer assembly comprising: a trajectory gear motor that automatically changes the orientation of the main motor assembly and a trajectory of the clay target; a pivot base disposed under a housing of the main motor assembly; and a linkage connected to the main motor assembly; wherein: the trajectory gear motor transfers rotational motion to the linkage; and the linkage transfers the rotational motion to the main motor assembly, thereby causing the main motor assembly to pivot with respect to the pivot base, thereby changing the trajectory of the launched clay target.
A clay target launching machine, according to another aspect of the present invention, includes a magazine containing a predetermined number of clay targets; a launching device for launching one of the clay targets; a main motor assembly comprising a main motor that activates the launching device and at least one replaceable thread plate, the magazine being mounted to the thread plate; and an automatic trajectory changer assembly comprising a trajectory gear motor that automatically changes the orientation of the main motor assembly and a trajectory of the clay target.
A clay target launching machine, according to another aspect of the present invention, includes a magazine containing a predetermined number of clay targets; a throwing arm for launching one of the clay targets; a main motor assembly supporting at least a part of the magazine, the main motor assembling comprising: a main motor that activates the launching device; and a cam cap comprising a cam portion and a shaft portion with a rounded portion and a timing flat; and a snap switch; and an automatic trajectory changer assembly comprising a trajectory gear motor that automatically changes the orientation of the main motor assembly and a trajectory of the clay target, wherein: the throwing arm rotates when the snap switch contacts the rounded portion of the shaft portion of the cam cap; and the throwing arm stops rotating when the snap switch contacts the timing flat of the shaft portion of the cam cap.
The foregoing and other features of the present invention will be more readily apparent from the following detailed description and drawings of the illustrative embodiments of the invention wherein like reference numbers refer to similar elements and in which:
a is a close-up perspective view of a cam cap and switch member in an open position;
Structure
The magazine 200 stores the clays 10, and deposits a clay one-by-one into the main motor assembly 400. The magazine 200 of the present invention typically stores at least 80 clays 10. The main motor assembly 400 launches the clays 10 and is operatively coupled to the automatic trajectory changer assembly 300, which varies the trajectory at which the clays 10 are launched. The housing 500 and the housing base 510 both contain and support the main motor assembly 400, and allow the housing 500 and the main motor assembly 400 to pivot with respect to multiple axes of motion. The trajectory changer assembly 300 includes a trajectory gear motor 320 operatively coupled to a rear end of the housing 500, and moves the housing 500 and the main motor assembly 400 so that they pivot with respect to multiple axes of motion. Preferably, the entire trap machine 100 is supported by and carried on a frame 600 such that it can be easily moved from one location to another location. For example, and as shown in the Figures, the frame 600 can be in the form of two or more spaced rails 610 that are connected at one end thereof to a pair of wheels 620 to permit the entire machine 100 to be moved. The opposite ends of the rails 610 can be coupled to a hitch assembly or the like that permits the frame 600, and the carried machine 100, to be attached to a vehicle or the like (not shown) that can essentially tow the frame 600 and machine 100 from one location to another. It will also be appreciated that a brake mechanism can be built into the frame 600. Alternatively, the frame 600 can be fixed to the ground.
Automatic Trajectory Changer Assembly
The automatic trajectory changer assembly 300 includes a trajectory motor assembly 310 formed of a motor mounting bracket 312 that is fastenly attached to the frame 610. For example, the motor mounting bracket 312 can be arranged across the space between the rails 610 such that the opposite ends of the bracket 312 are attached to the opposing rails 610, respectively, as shown in
The trajectory gear motor 320 is fixedly mounted to a front surface (or rear surface) of the motor mounting bracket 312 and controls the angle at which the throwing arm is positioned when launching the clays as described below in great detail and as a result of the manner of coupling and transferring the action of the gear motor 320 to the housing 500 and the main motor assembly 400 for that matter. According to one embodiment of the invention, the trajectory gear motor 320 is a 12 volt DC magnetic right-angle gear motor mounted vertically with a drive shaft 322 thereof facing forward toward the front of the trap machine 100. The shaft 322 is mounted to a clevis 332 that is formed as part of the crank mechanism 330 such that the shaft 322 interlocks with the clevis 332. The crank mechanism 330 also includes a rod or second shaft 334 that faces forward toward the front of the trap machine 100 in a similar fashion to the drive shaft 322. The rod 334 is mounted to the clevis 332 so that the drive shaft 322 of the trajectory gear motor 320 is offset from the rod 334. In other words, the two shafts 322, 334 are not axially aligned with one another. The rod 334 is mounted to the clevis 332 in such a way that the two rotate in unison.
The slip-tube 340 is slidingly mounted onto a free end (distal end) 336 of the rod 334 such it can free slide longitudinally along the length of the rod 334. In the illustrated embodiment, the slip-tube 340 has a base portion 342 that has a bore formed therethrough for receiving the rod 344. A coupling or fastening feature 344 is formed as part of the slip-tube 340 to permit coupling between the slip-tube 340 and another member and more particularly, the feature 344 can be in the form of a tab or protrusion that extends outwardly from the base portion 342 and includes an opening formed therein. In the illustrated embodiment, the slip-tube 340 is fixedly mounted to the link 350, which can be in the form of a right-angle or L-shaped link, that attaches a top end (feature 344) of the slip-tube 340 to an underside of the tail bracket 360. Controls, which are described below, can be conveniently mounted to the tail bracket 360 since this is an area that is easily accessible by the user when the user assumes a traditional shooting position. As is apparent from the Figures, the housing 500 is supported by and mounted to a top surface of the tail bracket 360.
As will be apparent below during the discussion of the operation of the trap machine 100, this type of coupling between the automatic trajectory changer assembly 300 and the housing 500, as well as the main motor assembly 400, permits the position of the housing 500 to be constantly changed from one clay launch to the next clay launch, thereby resulting in a continuously changing trajectory angle of the launched object when the user operates the machine 100 in a mode where the automatic trajectory changer assembly 300 is activated (turned on). The automatic trajectory changer assembly 300 is positioned relative to the frame 600 such that the frame 600, more particularly, the rails 610 thereof, accommodate the movement of the automatic trajectory changer assembly 300. For example, the automatic trajectory changer assembly 300 can be disposed between the rails 610 such that during operation thereof, the crank mechanism 330, the slip-tube 340 and the link 350 are free to rotate and the tail bracket 360 is permitted to move in an up/down and/or left/right motion.
The housing 500 is pivotably supported by the housing base 510, which in turn is supported by the spacer disk 390 and the pivot base 380. The pivot base 380 preferably extends across between the rails 610 and is fastenly attached to the spaced rails 610 so as to securely ground the housing 500 to the frame 600. In the illustrated embodiment, the pivot base 380 has a pair of side members 382 that are disposed over and attached to the rails 610, as well as a raised portion 384 that is formed between and is elevated relative to the side members 382. It is on a planar surface of the raised portion 384 that the housing base 510 sits and is attached thereto with the spacer disk 390 being disposed therebetween.
One side (i.e., one side member 382) of the pivot base 380 is supported by the list support block 370, which causes the supported structure, including the spacer disk 390, the pivot base 380, housing base 510, and housing 500 to tilt a predetermined angle γ. Similarly, the list support block 370 will result in the main motor assembly 400 and the magazine 200 tilting by the predetermined angle γ toward the left side (facing forward). The tilt angle γ produced by the list support block 370 can be selected and varied by simply changing the actual construction of the block 370 and/or the manner of mounting the block 370. For example and according to one exemplary embodiment, the list support block 370 can tilt the supported structure 8 degrees; however, it will be appreciated that this is merely exemplary in nature and that other tilt angles can be chosen.
The tilt ensures that these components tilt the predetermined angle γ (e.g., 8°) so that when the clay 10 drops, the clay 10 tends to slide into a throwing arm 700, which is part of the main motor assembly 400, due to gravity. Thus, even if the clay dropping motion were mistimed or if the throwing arm 700 were dirty, the clay 10 maintains a consistent position on the throwing arm 700. Otherwise, without the 8° list, the clay 10 would have a tendency to rest away from the throwing arm 700 which would cause the throwing arm 700 to strike the clay if the clay dropping motion were mistimed or if the throwing arm 700 were dirty.
The trajectory gear motor 320 is connected to a conventional power supply and when power is supplied thereto, the drive shaft 322 rotates is the direction of arrow B of
As the rod 334 rotates around the drive shaft 322 of the trajectory gear motor 320, the distance between the free end of the rod 334 and the tail bracket 360 changes. The vertical and lateral (left-right) movement of the rod 334 is transferred to the slip-tube 340, right-angle link 350, and tail bracket 360 that is locate at the rear of the main motor assembly 400. To prevent binding between the trajectory gear motor 320 and the main motor assembly 400 and housing 500, the slip-tube 340 is designed to slide longitudinally over the free end 336 of the rod 334. Another mechanism that helps to prevent binding of the trap machine 100 is the spacer disk 390, which acts as a bearing surface of the housing base 510, and the pivot base 380. The spacer disk 390 and the pivot base 380 allow the housing base 510 to rotate with respect to the axis of rotation at the center of the spacer disk 390 in the direction of arrow C of
The housing 500 is provided with slots 502 on the left and right sides thereof to allow the housing 500 to pivot with respect to the housing base 510 in the direction of arrow D of
Thus, the trajectory of the clay 10 includes the lateral component a and the elevation component β. As the trajectory motor 320 rotates the drive shaft 322, the trajectory motor assembly 310 alters the lateral component a and the elevation component β of the trajectory of the clay 10 through at least a portion of a conical pattern as shown in
Thus, the trajectory motor assembly 310 provides an automatic trajectory changer mechanism for providing a dynamic way of altering the trajectory angle of the clays 10. This dynamic way is in contrast to the conventional devices that permitted only very simple adjustments to the trajectory path, ones which were certainly not automatically and continuously changing as the device was operated. As previously mentioned, the user typically had to stop shooting and then manually adjust the device to alter the trajectory path or angle and then resume shooting. However, as soon as the user wanted to again alter the trajectory path or angle, the user again would need to stop and manually alter the trajectory angle.
Main Motor
The main motor assembly 400 includes a main motor 410 that is fixedly mounted to the housing 500 and controls the actuation and movement of the throwing arm 700. The throwing arm 700 is cocked each time the main motor 410 rotates through one cycle, i.e., one revolution. By providing two separate motors, namely, the main motor 410 and the trajectory motor 320, to control the movement and relative positioning of the throwing arm 700 and the trajectory angle of the clays 10, the trap machine 100 provides the user with two different configurations. In the first configuration, the trap machine 100 shoots the clays 10 at a “fully automatic” continuously changing trajectory mode as described above, and in the second configuration, the trap machine 100 shoots the clays 10 repeatedly at a fixed trajectory mode, where the trajectory motor assembly 310 is turned off.
In the “fully automatic” continuously changing trajectory, the user switches the respective switches 902, 904 for the main motor 410 and the trajectory motor 320 to the “full auto on” positions, i.e., switched up, in the control panel 900. When the switches 902, 904 are in this position, power is supplied to both the trajectory motor 320 and the main motor 410. Then, the trajectory motor 320 rotates the crank mechanism 330 and stops as the main motor 410 stops in the armed or cocked position.
The rotational angle through which the trajectory motor 320 rotates the throwing arm 700 is determined by the difference in RPM of the trajectory motor 320 and the main motor 410. As will be appreciated that are a vast number of different motor selections that will yield a number of different RPM differences between the motors 320, 410. According to one exemplary embodiment of the invention as shown in
With a 60° change in trajectory angle, the throwing arm 700 would launch a clay 10 in one of only 6 different positions per cycle (60°, 120°, 180°, 240°, 300°, and 360° from the original position). However, due to fluctuations in direct current (power supply), the change in trajectory angle slightly deviates from exactly 60°. Therefore, the positions usually never repeat exactly, and the trajectory of the clays continues to change because of the fluctuating nature of direct current (power supply).
An example of 6 consecutive trajectory angles are shown in
It will be appreciated that in another alternative embodiment, one or more of the motors 320, 410 are of a type that has a variable speed so as to permit the user to controllably alter and change the RPM value for the one or more of the motors 320, 410 and thus alter the RPM ratio between the two motors, thereby varying the trajectory angle change each time the clay 10 is launched. For example, if the RPM ration of the main motor 410 remains at 60, but the trajectory motor 320 now has a 20 RPM rating. The RPM value (20) of the trajectory motor 320 divided by the RPM value (60) of the main motor 410 equals 120°, and therefore, the trajectory angle changes 120° each time one clay 10 is launched. By having at least one motor that can be programmed or controlled to vary the RPM of the motor, an increased level of continuous trajectory change can be incorporated into the machine 100. For example, the motor may be electronically connected to a control panel that has an input screen that permits the user to input the desired RPM speed of the motor, e.g., as by entering it through a key pad.
When a user wants to change the trap machine configuration from having a “fully automatic” continuously changing trajectory to a fixed trajectory, the user flips the switches 902, 904 for the trajectory and main motors 320, 410, respectively, to the “off” positions, i.e., switched to the center positions in the control panel 900 shown in
The trap machine 100 can be controlled using conventional techniques, including, the user operating a handheld control as shown in
Magazine
The magazine 200 stores a single stack of the clays 10 and is mounted to a pair of thread plates 210 that form a part of the main motor assembly 400 as shown in
As shown in the embodiment of
Alternatively, the magazine tubes 202 can be provided in tiers, which are separated by a stack ring 204, so that each tier includes a set of four magazine tubes 202. The number of tiers of the magazine is variable since the lengths of the tubes 202 can be varied, thereby resulting in differences in heights of the individual tiers. By dividing the overall length of the magazine tubes into smaller tube sections that are securely attached to one another at joints, the robustness of each of the magazine tubes along its entire length is maintained.
At the top of the magazine 200, one stack ring 204 is fastened to the female threads at the top ends of the magazine tubes 202 using bolts or another type of threaded fasteners. For a multi-tiered structure, the male threads at the bottom ends of top tier magazine tubes can be inserted through a second stack ring 204 and fastened to the female threads at the top end of the bottom tier magazine tubes, which are aligned with the top tier magazine tubes. However, in the present embodiment, the male threads at the bottom ends of the magazine tubes 202 are inserted through the thread plates 210 and fastened to the thread plates 210 using a bolt. Each thread plate 210 supports two magazine tubes 202. As shown in
The main deck 420 serves as a support surface for the magazine 200 and includes an opening, e.g., clay release hole 422, formed therethrough to permit passage of the clay 10 from the magazine 200 to the throwing arm 700. The main deck 420 also includes another opening, e.g., slot 423, that permits passage and connection between parts/components that lie above and below the main deck 420 as described below.
A gate mate 230 rests on top of the clay stack 10 in the magazine 200 and serves as a follower to ensure that the clays 10 feed uniformly all the way down the stack and to stabilize the clay stack, thereby preventing clay breakage. The gate mate 230 includes a tubular (or cylindrical) member (body) made of a material such as plastic, PVC, or another relatively lightweight material. A counterweight 232, such as a bolt, is inserted into a rear-facing surface of the tubular member 230. The counterweight 232 slides within the gap formed between the pair of magazine tubes 202 at the rear of the magazine 200. The stack rings 204 are formed with a cutout at the rear portion of the ring to allow the counterweight of the gate mate 230 to pass therethrough. Thus, the rear pair of magazine tubes 202 and the cutouts in the stack rings 204 guide the counterweight 232 as the gate mate 230 follows the clays 10 downward. Furthermore, since the trap machine 100 is tilted upwards at the front, the magazine 200 tilts toward the rear of the trap machine 100. Thus, gravity also acts to position the counterweight 232 so that it points rearward.
Since the trap machine of the present invention is designed to prevent clay breakage, such as by providing a gate mate, the magazine 200 can store at least 80 clays 10, which is more than a conventional trap machine.
Clay Release Assembly
The machine 100 also includes the clay release assembly that is positioned below the magazine 200 and includes the main deck 420, the pair of thread plates 210, two sweep rails 430, a moving gate 440 disposed on an underside of the main deck 420, a cam cap 450, and a clay clamp mechanism 460.
The main deck 420 is mounted to the rear side of the housing 500 via a rear cap 426. The rear cap 426 positions the main deck 420 so that there is a gap between the main deck 420 and a top surface of the housing 500. The throwing arm assembly 700, the sweep rails 430, and the moving gate 440 are positioned in this gap between the main deck 420 and the housing 500.
The moving gate 440 is slidingly mounted to the underside of the main deck 420. A number of fasteners, such as four shoulder bolts, are slidingly mounted in a corresponding number (e.g., four) of slots 443 in the moving gate 440 and the threaded ends of the shoulder bolts are inserted through holes in the main deck 420 and screwed into the thread plates 210. Thus, the moving gate 440 is allowed to slide with respect to the shoulder bolts, which are stationary with respect to the main deck 420 and the thread plates 210.
The main deck 420 includes the opening 422 (clay release hole) through which the clays 10 drop. The clay release hole 422 in the main deck 420 is aligned with the stack of clays 10, and the bottommost clay 10 is positioned within the clay release hole 422. The thread plates 210 are positioned on the respective left and right sides of the clay release hole 422 in the main deck 420 and are also formed with cutouts or notches 212 that allow the clays 10 to fall freely therethrough.
The moving gate 440 also includes a clay release hole 442. As the moving gate 440 slides with respect to the main deck 420, a clay 10 drops by gravity onto the throwing arm 700 when the clay release holes 442, 422 in the moving gate 440 and the main deck 420, respectively, are aligned. When the clay release holes 442, 422 in the moving gate 440 and the main deck 420 are aligned, the clay 10 drops to a clay launching position on the throwing arm 700 and located below the clay release holes 442, 422 in the gap between the main deck 420 and the housing 500. The clays 10 are launched by the throwing arm 700 from the clay launching position located in the gap between the main deck 420 and the housing 500.
Two side sweep rails 430 are mounted to the lower surface of the main deck 420 at a distance from the respective left and right sides of the clay launching position on the throwing arm 700. The sweep rails 430 are fastened via fasteners, such as bolts, which are inserted through holes in the main deck 420 and screwed into the thread plates 210.
The sweep rails 430 include bristles or the like 432 that help to position the clay 10 within the clay launching position on the throwing arm 700 while allowing debris and other foreign particles to fall away from the clay launching position. The bristles 432 are made of a flexible material that can retain its strength, such as plastic or nylon. The bristles 432 extend outwardly from a base that is mounted/positioned against the underside of the main deck 420.
Another set of sweep rails 435 is mounted to the lower surface of the moving gate 440. This set of sweep rails 435 is positioned at the rear, left, and right sides of the clay launching position on the throwing arm 700 when the throwing arm is cocked. These sweep rails 435 are identical to the sweep rails 430 mounted to the lower surface of the main deck 420 except that these rails mounted to the lower surface of the moving gate 440 may have different lengths, e.g., shorter, as shown in
Thus, each of the thread plates 210 include three pairs of threaded holes 214 for mounting the magazine tubes 202, the shoulder bolts which guide the moving gate 440, and the side and rear sweep rails 430. The thread plates 210 are at least ⅜-inch thick and rest on the top surface of the main deck 420 of the housing 500. As described in relation to conventional trap machines, when the trap machine vibrates from the release and launch of the clays, the threaded connections tend to wear out first, thereby making the trap machine unstable. However, in the present invention, the threaded connections are provided by the thread plates 210. When the threads in the thread plates wear out, the user can simply replace the thread plates 210 and the corresponding fasteners instead of replacing the entire machine. The thread plates ensure the rigidity of the support for the magazine and moving gate. Thus, the present invention provides an easy to maintain, stable, and longer lasting trap machine as well as a much less costly machine to maintain and operate.
The machine 100 also includes the clay-clamp mechanism 460 for transferring the rotational motion of the main motor 410 to control the movement of the moving gate 440 and prevent the next clay 10 in the stack from being released with the bottommost clay 10. The clay clamp mechanism 460 includes a cam shroud 462, shroud mounting brackets 464, a pair of extension spring supporting rods 466, a pair of extension springs 468, a spring pin 470, a brake guide 472, a coupler 474, a compression spring 476, and a brake shoe 478.
The cam shroud 462 is disposed at the front of the main deck 420. The shroud mounting brackets 464 are right-angle brackets mounted to the inside vertical surface of the cam shroud 462 and the upper surface of the main deck 420. The pair of extension spring supporting rods 466 are inserted within slots in horizontal portions of the shroud mounting brackets 464.
One end of each of the extension springs 468 is connected to the respective extension spring supporting rods 466. The other ends of the extension springs 468 are connected to opposite ends of the spring pin 470, which is inserted into a hole extending laterally through the brake guide 472. The brake guide 472 is slidingly received in the slot 423 in the main deck 420 and is fixedly mounted to the front end of the moving gate 440. Thus, movement of the brake guide 472 is transferred to the moving gate 440.
The compression spring 476 is mounted to the rear surface of the brake guide 472, and the coupler 474 is connected to the back end of the compression spring 476. The brake shoe 478, such as a bicycle brake shoe, is mounted to the coupler 474. The brake shoe 478 is a rubber pad that holds the clay stack 10 in place as the bottommost clay is released onto the throwing arm 700. The extension springs 468 bias the brake guide 472, spring pin 470, compression spring 476, coupler 474, and brake shoe 478 toward the front of the trap machine 100 and toward the cam cap 450.
Main Motor Assembly
As shown in
An upper crank 416 is positioned above the motor crank 413 and includes a passive shaft 414 that is fixed to the upper crank 416 and extends downward from the lower surface of the upper crank 416. A bearing 415 and a collar 830 are rotatably mounted onto the passive shaft 414. A pin 414a is inserted onto the distal end of the passive shaft 414 to retain the bearing 415 and the collar 830 on the passive shaft 414.
The upper crank 416 is also fixed to a main shaft 417, which is colinear to the drive shaft 412 of the main motor 410. Thus, there is an offset distance between the passive shaft 414 and the line along which the drive shaft 412 and the main shaft 417 are aligned.
The motor crank 413 rotates via rotational motion from the drive shaft 412 and the main motor 412, and the motor crank 413 transfers the rotational motion to the bearing 415 on the passive shaft 414. Thus, the motor crank 413 applies a force on an outside surface of the bearing 415 to urge the passive shaft 414 to rotate around an axis that is colinear with the main shaft 417.
The main shaft 417 is positioned in the front of the housing 500 and inserted through a clutch assembly 419, which is located in the front of the housing 500 below the connection between the main shaft 417 and the cam cap 450. The main shaft 417 is inserted into the clutch assembly 419, extends upward through the top of the housing 500, and is inserted into a drive shaft insertion hole 425 in the main deck 420 so that the top end of the main shaft 417 extends upward through the main deck 420.
As shown in
A bearing 471 is mounted on top of the brake guide 472. As the main motor 410 rotates the cam cap 450, the location of the bearing 471 and the brake guide 472 is determined by position of the cam surface 452 relative to the bearing 471. When the cam cap 450 rotates to extend frontward, the cam surface 452 is located at a distance from the bearing 471 and the extension springs 468 bias the brake guide 472 and bearing 471 frontward.
When the cam cap 450 rotates to extend rearward, the bearing 471 contacts the cam surface 452 at a point close to the axis of rotation of the cam cap 450. As the cam surface 452 continues to rotate, the bearing 471 is forced farther away from the axis of rotation of the cam cap 450, thereby forcing the brake guide 472 farther away from the cam cap 450 rearward. The extension springs 468 provide some resistance to the movement of the guide block. The moving gate 440 moves rearward with the brake guide 472 since the moving gate 440 is fixed to the brake guide 472. The moving gate 440 is guided by the shoulder bolts disposed in the slots 443 in the moving gate 440. The brake guide 472 and the moving gate 440 move rearward until the brake shoe 478 contacts the second-to-bottom clay 10 in the clay stack. At this time, the clay releasing holes 442, 422 in the moving gate 440 and the main deck 420 align, and the bottommost clay 10 drops onto the cocked throwing arm positioned underneath the clay releasing holes 442, 422. As the bearing 471 proceeds along the cam surface 452 toward a tip of the cam cap 450, the brake shoe 478 presses into the second-to-bottom clay 10 in the clay stack, which has now become the bottommost clay 10 in the clay stack.
When the bearing 471 passes the tip of the cam cap 450, the cam cap 450 is no longer rearward by the bearing 471. Since there is no resistance to the bearing 471, the brake guide 472, the bearing 471, and the brake shoe 478 move frontward under the spring force of the extension springs 468 and the brake shoe 478 releases its hold on the new bottommost clay 10 in the clay stack. The main motor 410 then proceeds to rotate the cam cap 450 frontward so that it extends toward the front of the trap machine 100.
The cam cap 450 also controls the timing of the throwing arm 700, which launches the clays 10 from the trap machine 100. The embodiment of the present invention described herein incorporates a throwing arm 700 as the launching mechanism. However, it is to be understood that the throwing arm 700 can be replaced by another type of launching mechanism.
As described above, the clays 100 drop onto the throwing arm when the clay releasing holes 422, 442 in the main deck 420 and the moving gate 440 align. The throwing arm 700 is positioned in the gap between the main deck 420 and the housing 500. The throwing arm 700 includes a strip 702 that contacts a side or edge of the clay 10 to force it in the launching direction, i.e., toward the front of the trap machine 100.
An arm clevis 710 is mounted to the throwing arm 700, and the main shaft 417 that receives rotational motion from the main motor 410 is inserted into a hole in the arm clevis 710. A fastener rotatably fixes the main shaft 417 with respect to the arm clevis 710 so that the arm clevis 710 and the throwing arm 700 rotate with the main shaft 417.
The gap is unobstructed between the front ends of the housing 500 and main deck 420 to allow the throwing arm 700 to extend outward when it cycles through the cocking process. The profile of the cam surface 452 allows the brake guide 472 and its associated parts, such as the moving gate 440 and brake shoe 478, to move relatively slowly while the bearing 471 contacts the cam surface 452 and relatively quickly right after the bearing 471 passes the tip of the cam surface 452. Since the throwing arm 700 is connected to the cam cap 450 so that they rotate together, the throwing arm 700 also moves relatively slowly while the bearing 471 contacts the cam surface 452 and relatively quickly right after the bearing 471 passes the tip of the cam surface 452. When the throwing arm 700 is moving relatively slowly, the throwing arm 700 is positioned in the cocked position within the gap between the main deck 420 and the housing 500 before the bottommost clay 10 is released onto the throwing arm 700 in the clay launching position. When the throwing arm 700 is moving relatively quickly, it is in the process of being cocked.
A snap switch 480, shown in FIGS. 7 and 10-12, is positioned next to the cam cap 450 and is fastened to the front edge of the main deck 420. The cam cap 450 is located above the main deck, and the shaft portion 456 of the cam cap 450 is positioned in front of the snap switch 480. The snap switch 480 is normally in the open position as shown in
The shaft portion 456 of the cam cap 450 includes a timing flat 458 is positioned facing the snap switch 480 when the arm is in the cocked position. Since the snap switch 480 is normally in the open position, the snap switch 480 breaks the circuit shown in the schematic diagram of
When the user activates the remote activation device 102, the throwing arm 700 launches the clay 10 which has been loaded onto the arm 700, and the arm becomes uncocked. At an uncocked position, the timing flat 458 is positioned away from the snap switch 480, and the rounded shaft portion 456 of the cam cap 450 provides constant contact with the snap switch 480, thereby closing the circuit. When the switch 480 is in this closed position, power is supplied to the main motor 410 and the main motor assembly 400 moves the throwing arm 700 toward the cocked position.
When the arm 700 has reached the cocked position, the timing flat 458 on the shaft portion 456 of the cam cap 450 no longer contacts the snap switch 480, and the snap switch 480 is again in the open position, and power is cut off to the main motor 410. As before, the motor 410 remains in the cocked position until the user hits the remote activation device 102 to power the main motor 410, which reactivates the throwing arm 700 to launch the clay 10 that has been loaded onto the throwing arm 700. This cycle repeats if the user continues pressing the remote activation device 102 and until power runs out of the battery 910.
Housing
As shown in
Thus, unlike the box-shaped housings of the prior art where clay debris gathers in this central area, the present invention can prevent potential jamming by allowing the debris to fall away from this central area on top of the housing 500.
Speed Ball Handle
A speed ball handle 800 is provided at the rear of the trap machine 100 for allowing the user to modify the speed of the throwing arm 700 and is inserted through a hole in the rear cap 426 of the housing 500. The speed ball handle 800 is operatively connected to a threaded end of an eye bolt 810, and a spring 820 is connected to the other end of the eye bolt 810. The other end of the spring 820 is attached to the collar 830, which is rotatable around the passive shaft 414 of the main motor assembly 400, as shown in
The main shaft 417 transfers rotational motion to the clay clamp mechanism 460 and is rotated by the drive shaft 412 of the main motor 410 via the main motor assembly 400. The main motor assembly 400 also includes the passive shaft 414, which is mounted to the motor crank 413 such that the passive shaft 414 is offset from the drive shaft 412 of the main motor 410. However, the passive shaft 414 rotates around an axis that is colinear with the drive shaft 412.
The collar 830 is supported by the passive shaft 414 of the main motor assembly 400 so that it is free to rotate around the passive shaft 414. Thus, when the speed ball handle 800 increases the tension in the spring 820 by extending the spring 820, the spring 820 resists the rotational motion of the passive shaft 414 and the main motor 410. Hence, the speed of the throwing arm 700 increases when the user turns the speed ball handle 800 to extend the spring 820.
When the user decreases the tension in the spring 820 by releasing the spring 820, the spring 820 provides less resistance to the rotation of the passive shaft 414 and the main motor 410. Hence, the speed of the throwing arm 700 decreases when the user turns the speed ball handle 800 to release the spring 820.
Conventional trap machines provide a speed adjustor for the throwing arm that requires a wrench. However, the present invention provides a more user friendly design for speed control of the throwing arm.
Low Clay Alarm
In yet another feature, the present invention can include a low clay alarm 850 that notifies the user using a siren, a beeper, or another type of signal when the height of the clay stack 10 in the magazine 200 has fallen below a predetermined level. Typically, the low clay alarm 850 is configured to sound off when only 3-4 clays 10 are available in the magazine 200.
A low clay snap switch 854 is fastened to the vertical portion of the right-angle bracket 852, facing the clay stack 10. Slots in the horizontal and vertical portions of the right-angle bracket 852 allow the low clay snap switch 854 to be fastened to the vertical portion and allow the horizontal portion to be fastened to the cam shroud. The low clay snap switch 854 is electrically connected to a mini siren or buzzer that provides the audible signal for the low clay alarm 850.
The slots in the horizontal and vertical portions of the right-angle bracket 852 also allow the user to adjust the positioning of the right-angle bracket 852 horizontally with respect to the cam shroud and to adjust the low clay snap switch 854 vertically with respect to the right-angle bracket 852.
The low clay snap switch 854 is positioned close enough to contact the clay stack at the lowest level that the clay stack 10 can reach before the alarm sounds. As shown in
As shown in
The low clay alarm 850 is particular advantageous when using the trap machine 100 at a distance from the user, such as when the trap machine 100 is concealed or far away and the user is activating the trap machine 100 by the remote activation device 102.
Having described embodiments of the invention with reference to the accompanying drawings, it is to be understood that the invention is not limited to those precise embodiments, and that various changes and modifications may be effected therein by one skilled in the art without departing from the scope or spirit of the invention as defined in the appended claims.
This application claims the benefit of U.S. Provisional Patent Application No. 60/613,893, filed Sep. 27, 2004.
Number | Name | Date | Kind |
---|---|---|---|
663090 | Pike | Dec 1900 | A |
2124738 | Johnsen | Jul 1938 | A |
2978700 | Stevens et al. | Apr 1961 | A |
3070082 | Foster | Dec 1962 | A |
3225754 | Foster | Dec 1965 | A |
3677257 | Segerkvist | Jul 1972 | A |
3690662 | Pasqualini | Sep 1972 | A |
3722495 | Hansen | Mar 1973 | A |
3821945 | Foster | Jul 1974 | A |
4076004 | Huelskamp | Feb 1978 | A |
4677961 | Allison | Jul 1987 | A |
Number | Date | Country | |
---|---|---|---|
20060065258 A1 | Mar 2006 | US |
Number | Date | Country | |
---|---|---|---|
60613893 | Sep 2004 | US |