The present invention relates to sliding door systems, apparatus and methods of using and making the same. Specifically, the present invention relates to systems for opening horizontally sliding doors on a structure, such as, for example, a barn, warehouse, hangar, or other building or structure. Moreover, the present invention relates to apparatuses for providing the automatic opening of sliding doors. In addition, methods of making and using the same are provided.
It is, of course, generally known to automate the opening of doors. The use of an automatic overhead door for a garage, for example, has been known for many years. Generally, a torsion spring is typically used to provide a counterbalance for a garage door, such that opening the garage door vertically is relatively easy, even for an individual to handle manually. One or more tracks are typically provided for moving the door vertically to open and close the same. A motor is utilized whereby the motor pushes and/or pulls the garage door open or closed. It is further known to utilize either a hard-wired control system, such as a simple button, or a wireless control system, for engaging the motor to open and close the garage door.
However, use of an overhead door has significant disadvantages. First, depending on the size of the door to be moved, an adequate torsion spring must be used to provide the counterbalance. If a door is very large, the torsion spring must also be very large. The torsion spring requires maintenance to allow continued use thereof, and eventually the tension in the torsion spring may cause the spring to be damaged after a certain period of time, requiring replacement thereof.
In addition, the track typically utilized in an overhead door typically sits directly beneath the ceiling of the internal space, and frequently reduces the useable vertical height of the internal space. Specifically, the track typically hangs a distance from the ceiling, and the garage door is maintained on the track. The track or tracks, in many cases, hang low, especially if there is very little vertical clearance above the clearance height of the doorway, thereby reducing the useable vertical height of the space. In other words, the lower the track hangs from a ceiling, the shorter the equipment must be that is stored within the space. This may cause a particular problem if a machine, such as a vehicle or a piece of farm equipment, for example, sits fairly high or is very tall; the track of the overhead garage door may be in the way of the machine.
To solve some of these problems, horizontal sliding doors are utilized. Typically, horizontal sliding doors either hang from one or more tracks, or sit upon one or more tracks, or both. In some cases, the horizontal sliding door may be bifurcated, such that the two sliding door panels slide horizontally away from the center of the doorway, thereby exposing the doorway. Alternatively, a single sliding door panel may cover the entirety of the doorway, in which case the single sliding door panel is slid horizontally across the entirety of the door opening to expose the door opening.
Typically, the sliding door is disposed on an outside of the structure, such that opening the sliding door causes the sliding door to be disposed on an outside wall of the structure. To ensure that the sliding door does not get pushed or pulled out of alignment, a track is typically used, either on a top of the sliding door or on the bottom of the sliding door, or both, to hold the door in place. A mullion is typically provided, typically in a center of the door opening, to engage the leading edges of the sliding door to hold the door in place when closed.
Moreover, to hold large sliding doors against door jambs, for example, to keep the sliding doors from being pushed or pulled out of alignment due to wind, for example, a plurality of cinches may be used, typically on both sides of the door opening to hold the sliding doors in place when the doors are closed. The cinches typically include hooks, either on the door or on the wall or jamb adjacent the door, and eyelets that engage the hooks. However, it is difficult to manually implement the plurality of cinches each time the door is required to be open or closed. A user must walk to each cinch and manually manipulate each to “unlock” the door for use thereof. In many cases, more than two or three cinches may be disposed on each side (especially for a relatively large door), requiring a user to walk from one side to the other so that the sliding door may be opened. Of course, once a user is done opening and closing the sliding doors, a user must then manually manipulate each cinch to “lock” the sliding doors against the jambs, thereby holding the door panel or panels in place.
However, to manually open and/or close large sliding doors, a user must attend to unlocking, uncinching and ultimately opening the doors. In many cases, this involves getting out of a vehicle, machine or equipment, walking to the door, unlocking the door, uncinching the door from the jambs, sliding open each door panel, climbing back inside the vehicle, machine or equipment, mobilizing the equipment through the doorway, parking the vehicle, machine or equipment, climbing down from the vehicle, machine or equipment, walking back to the doorway, and sliding closed each door panel. If a user attempts to manually open the door on a particularly windy day, the doors may be damaged due to the wind or other weather and/or a user may have difficulty holding the door in place as it opens and/or closes.
It is further known to automate the opening and closing of horizontally-sliding doors. Typically, a track is disposed on an outside of the structure, typically above the door opening and extending along the outside walls of the structure. The one or more door panels are typically interconnected with the track via at least one carriage attached to a looping chain. The chain is then moved linearly along the track via a motor that pulls the carriage and, ultimately, the one or more door panels either outward or inward, depending on the direction of the motor.
The motor typically sits on an outside of the structure and engages the doors externally to the structure. While this allows the equipment, including the tracks, the carriage, the chain and other like equipment, to stay clear of the door opening, the use of the motor and other equipment outside the structure has significant disadvantages.
Specifically, it may be difficult to keep the motor, track, chain, carriages, and other like equipment free of debris, and clear of weather. For example, dirt, leaves, water and other environmental factors may deleteriously impact the proper functioning of the equipment. Moreover, oftentimes automatic sliding doors are utilized in northern climes, especially when it may be difficult to exit vehicles to manually open a door due to extreme cold. However, the extreme cold may also have a deleterious effect on the proper functioning of the equipment.
A need, therefore, exists to provide systems, apparatus and methods for automating the opening of horizontally-sliding doors. Specifically, there is a need to provide systems, apparatus and methods for protecting equipment and for keeping the equipment free of weather, dirt or debris.
Further, a need exists for systems, apparatus and methods for automating sliding doors that helps to prevent doors from being pushed and/or pulled out of alignment, due to wind or other factors.
In addition, a need exists for systems, apparatus and methods for automating sliding doors that maintains clearance space. Specifically, a need exists for systems, apparatus and methods for automating sliding doors that maintains vertical space in a doorway, or minimizes impingements to vertical space in the doorway, thereby allowing relatively tall equipment to be transportable through the doorway opening. Moreover, a need exists for systems, apparatus and methods for automating sliding doors that maintains horizontal space in a doorway or minimizes impingements to horizontal space within the doorway.
Further, a need exists for systems, apparatus and methods for automating sliding doors that provides sealing of the door against one or more door jambs when the door is closed over the doorway. Still further, a need exists for systems, apparatus and methods for automating sliding doors allowing instant opening and/or closing of the same using one or more wired or wireless control systems.
The present invention relates to sliding door systems, apparatus and methods of using and making the same. Specifically, the present invention relates to systems for opening horizontally sliding doors on a structure, such as, for example, a barn, warehouse, hangar, or other building or structure. Moreover, the present invention relates to apparatuses for providing the automatic opening of sliding doors. In addition, methods of making and using the same are provided.
To this end, in an embodiment of the present invention, an automatic door moving system is provided, the automatic door moving system comprises: a building having a horizontally-moving door panel disposed over an entry opening, the entry opening bounded by a first side and a second side, a header on the top thereof, and a bottom, wherein the horizontally-moving door panel opens and closes over the entry opening; a track disposed horizontally; and a motor having an engagement mechanism, wherein the engagement mechanism is engaged to the track, wherein the motor drives the door panel horizontally over the entry opening.
In an embodiment, the track is disposed on the on the door panel, and further wherein the engagement mechanism engages the track on the door panel to move the door panel horizontally.
In an embodiment, the engagement mechanism is a sprocket attached to an axle, wherein the motor turns the axle and the sprocket for moving the door panel.
In an embodiment, the automatic door moving system further comprises: a door jamb at a first side of the entry opening, wherein the motor is mounted to the door jamb, and at least the axle and the sprocket extend through the entry opening to engage the track on the door panel.
In an embodiment, the door panel comprises a portion extending beyond the first side of the entry opening when the door panel is fully closed and further comprises: a wall of the building, wherein the wall extends from a first side of the entry opening; and an aperture within the wall, wherein the engagement mechanism of the motor extends through the aperture to engage the track on the portion of the door panel extending beyond the first side of the entry opening when the door panel is fully closed.
In an embodiment, the track comprises a chain forming a loop that extends from a first side of the entry opening to the second side of the entry opening, and further comprises: a carriage attached to the door panel, wherein the carriage engages the chain, and wherein the engagement mechanism engages the chain and drives the chain in a loop thereby driving the door horizontally across the entry opening.
In an embodiment, the chain is mounted above the entry opening and the carriage is disposed on a top of the door panel for engaging the chain.
In an embodiment, the automatic door opening system further comprises: a flat elongate portion disposed from a first side of the entry opening to the second side of the entry opening, and further wherein the carriage comprises a roller, the carriage supported by and rolling on the flat elongate portion via the roller.
In an embodiment, the motor is fixedly mounted to the door panel, and further wherein the door panel and the motor move together horizontally over the entry opening.
In an embodiment, the track is mounted from a first side of the entry opening to the second side of the entry opening, and wherein the motor moves along the track.
In an embodiment, the automatic door opening system further comprises: an elongated linkage linking the motor to the door panel.
In an alternate embodiment of the present invention, a horizontal door moving system for a building is provided, the horizontal door moving system comprises: a building having a horizontally-moving door panel disposed over an entry opening, the entry opening bounded by a first side and a second side, a header on the top thereof, and a bottom, wherein the horizontally-moving door panel opens and closes over the entry opening; a vertically extending flange on an inside surface of the door panel, wherein the vertically extending flange extends from a first point on the inside surface of the door panel to a second point on the inside surface of the door panel near an end of door panel; and a pin extending from a first side of the entry opening and engaging the vertically extending flange such that the pin, via engagement with the vertically extending flange, pulls the door panel closer to the first side of the entry opening as the door panel closes over the entry opening.
In an embodiment, the second point is closer to the inside surface of the door panel than the first point.
In an embodiment, the first point is at a first end of the door panel, and the second point is at a second end of the door panel.
In an embodiment, the vertically extending flange is an L-shaped bracket, the horizontally-extending portion thereof being connected to the door panel.
In an embodiment, the vertically extending flange is a U-shaped bracket, the horizontally extending portion thereof being connected to the door panel.
In an alternate embodiment of the present invention, a horizontal door moving system for a building is provided, the horizontal door moving system comprises: a building having a horizontally-moving door panel disposed over an entry opening, the entry opening bounded by a first side and a second side, a header on the top thereof, and a bottom, wherein the horizontally-moving door panel opens and closes over the entry opening; an elongate portion extending from a first side of the entry opening to the second side of the entry opening at the bottom of the entry opening; and an engagement mechanism extending from the bottom of the door panel and engaging the elongate portion for holding the door panel in alignment as it opens and closes over the entry opening.
In an embodiment, the elongate portion comprises an upwardly extending track and the engagement mechanism engages and traverses the upwardly extending track to keep the door panel in alignment as it opens and closes over the entry opening.
In an embodiment, the elongate portion comprises at least one cable and the engagement mechanism comprises at least one pin for engagement the at least one cable to keep the door panel in alignment as it opens and closes over the entry opening.
In an embodiment, the elongate portion comprises at least two cables and the engagement mechanism comprises an extended flange, the extended flange disposed between the at least two cables to keep the door panel in alignment as it opens and closes over the entry opening.
It is, therefore, an advantage of the present invention to provide systems, apparatus and methods for automating the opening of horizontal-sliding doors.
Specifically, it is an advantage of the present invention to provide systems, apparatus and methods for protecting equipment and for keeping the equipment free from weather, dirt or debris.
Further, it is an advantage of the present invention to provide systems, apparatus and methods for automating sliding doors that helps to prevent doors from being pushed and/or pulled out of alignment, due to wind and/or other factors.
In addition, it is an advantage of the present invention to provide systems, apparatus and methods for automating sliding doors that maintains clearance space.
Specifically, it is an advantage of the present invention to provide systems, apparatus and methods for automating sliding doors that maintains vertical space in a doorway, or minimizes impingements to vertical space in the doorway, thereby allowing relatively tall equipment to be transportable through the doorway opening.
Moreover, it is an advantage of the present invention to provide systems, apparatus and methods for automating sliding doors that maintains horizontal space in a doorway or minimizes impingements to horizontal space within the doorway.
Further, it is an advantage of the present invention to provide systems, apparatus and methods for automating sliding doors that provides sealing of the door panel or panels against one or more door jambs when the door panels are closed over the doorway.
Still further, it is an advantage of the present invention to provide systems, apparatus and methods for automating sliding doors allowing instant opening and/or closing of the same using one or more wired or wireless control systems.
Additional features and advantages of the present invention are described in, and will be apparent from, the detailed description of the presently preferred embodiments and from the drawings.
The drawing figures depict one or more implementations in accord with the present concepts, by way of example only, not by way of limitations. In the figures, like reference numerals refer to the same or similar elements.
The present invention relates to sliding door systems, apparatus and methods of using and making the same. Specifically, the present invention relates to systems for opening horizontally sliding doors on a structure, such as, for example, a barn, warehouse, hangar, or other building or structure. Moreover, the present invention relates to apparatuses for providing the automatic opening of sliding doors. In addition, methods of making and using the same are provided.
To this end,
Generally, the two panels 12, 14 of the bifurcated door 16 may be set upon upper tracks 20, 22 and/or lower tracks 24, 26, as apparent to one of ordinary skill in the art. By traversing tracks 20, 22 and 24, 26, the door may move laterally and outwardly over the entrance 18 to expose the entrance 18 when opened, and laterally and inwardly over the entrance 18 to cover the entrance 18 when closed. Typically, the two panels 12, 14 of the bifurcated door 16 move laterally on an outside of the building 10. Generally, the two panels 12, 14 have rollers at or near the tops of the panels 12, 14 for engaging the tracks 20, 22 for smooth lateral movement thereof.
Referring now to
The system 100 may include a drive system 102, a leading edge system 104 and a trailing edge system 106. The drive system 102, the leading edge system 104 and the trailing edge system 106 may act in concert to provide opening and closing of the bifurcated door 16. Specifically, the drive system 102 provides the power to mobilize the two panels 12, 14 of the bifurcated door 16 outwardly and inwardly for opening and/or closing the door 16, respectively. Moreover, the drive system 102 also maintains an alignment of the upper portions of the two panels 12, 14 of the bifurcated door 16 as the two panels 12, 14 open and/or close.
Moreover, the leading edge system 104 aligns the leading edges 110, 112 of the two panels 12, 14, respectively, of the bifurcated door 16 as the two panels 12, 14 laterally traverse the opening 18. Moreover, the leading edge system 104 maintains the alignment of the two panels 12, 14 of the door, especially when forces act to push, pull or otherwise move the two panels 12, 14 out of alignment. For example, a wind from the outside of the building 10 and the inside of the building 10 may push against the two panels 12, 14 causing misalignment of the two panels 12, 14, especially when the two panels 12, 14 are laterally traversing the entrance 18 during opening and/or closing the door 16. When closed, the two panels 12, 14 may secure together resisting the push or pull of wind. In addition, a mullion 114 is typically provided to ensure the security of the two panels 12, 14 when closed. The leading edge system 102 may hold the two panels 12, 14 in alignment at the bottoms of the two panels 12, 14 so that the two panels 12, 14 maintain their relative positions, and stay on the external tracks 20, 22 and 24, 26 that may be disposed on an outside of the building 10, as illustrated in
The trailing edge system 106 provides further security in maintaining the alignment of the two panels 12, 14 when laterally traversing the entrance 18 when opening and/or closing. The trailing edge system 106 provides alignment of the two panels 12, 14 at the edges 116, 118 of the entrance 18, such as at the jambs of the entrance 18. Moreover, the trailing edge system 106 may automatically cinch the two panels 12, 14 of the bifurcated door 16 against the building 10, such as at the door jambs at the edges 116, 118 of the entrance 18 when the bifurcated door 16 is closed.
Referring now to the drive system 102 of the present invention (as illustrated in
Referring now to
As noted, the tracks 158, 160 holding the carriages 154, 156 may be attached directly to a ceiling of the internal area of the building 10, or may be suspended therefrom via brackets. Alternatively, the tracks 158, 160 may be suspended using L-brackets, angle mounting brackets or similar brackets and connected to a wall disposed above the entrance 18.
The carriages 154, 156 may further have release pins 168, 170 disposed therebeneath, having chains 171, 173 for releasing the carriages 154, 156 from the tracks 158, 160, as necessary for safety and/or for manually moving the two panels 12, 14 of the bifurcated door 16. The carriages 154, 156 and the release pins 168, 170 may be connected to the two panels 12, 14 of the bifurcated door 16, respectively, with triangular-shaped brackets 172, 174. It is preferable that the release pins 168, 170, as well as the carriages 154, 156, be placed as close as possible to the edges of the two panels 12, 14 of the bifurcated door 16 to ensure as full opening of the two panels 12, 14 of the bifurcated door 16 when in a fully open position. It is preferred that the brackets 172, 174, as well as the carriages 154, 156, release pins 168, 170, and any other equipment disposed in the vicinity thereof, be relatively small in shape, and mounted on the brackets 172, 174 as closely to the leading edges 110, 112 of the two panels 12, 14 of the bifurcated door 16 as possible so that the two panels 12, 14 may open as fully as possible, since the carriages 154, 156, release pins 168, 170 and other like equipment may interfere with the full opening of the bifurcated door 16, especially as the carriages 154, 156 and other like equipment approach the edges 116, 118 of the entrance 18.
Referring now to
As illustrated in
Referring now to
Thus, the motor 430, via movement of the pinion gear 426 engages the track 420, which laterally moves the door panel 412 open or closed over a door opening in a building, allowing ingress or egress thereof. By eliminating the overhead chain and carriage, as described above with respect to previous embodiments, better clearance is provided, as space is not required for the overhead chain and carriages, thereby providing a larger vertical opening space on a horizontally sliding door. This may be useful for moving large equipment into and out of a building. In addition, the door sliding system 400 may provide a more consistent system for very large door openings, as the previous embodiments utilizing overhead chains and carriages may be limited to only a certain size door opening for proper utility.
The motor 430 may also include a release that allows the pinion gear to move freely so that the door panel 412 may be moved manually, if necessary, or for safety purposes. Moreover, the pinion gear may include a safety cover, such as a box, that may be attached to the motor 430 and may include a small opening in the vicinity of the track 420 to allow the track 420 to move freely through the safety cover when the door panel 412 is moved by the pinion gear 426. The safety cover may completely cover or at least partially cover, the pinion gear to prevent body parts, such as fingers, hair or other body parts, from entering or engaging the pinion gear and track interface.
In a preferred embodiment, the user of the system 400, as demonstrated herein, may utilize a large section of track 420 that is sized to fit the inside horizontal length of a door panel, as described herein. The track 420 may consist of a plurality of angle brackets that are separated from each other by one or more links of the chain, with the chain welded over the entirety of the track 420. The angle brackets may be any size useful for the present invention and disposed in end-to-end configuration with the chain welded thereover to form the continuous track 420. Thus, because of the spacing between angle iron, the track may be folded up for easy transport thereof. Moreover, when disposed on the door panel, as described herein, the track 420 may be shimmed up and/or down to maintain as level a track 420 as possible to maintain the interface between the track 420 and the pinion gear 426. Moreover, the track 420 may be disposed in and/or out relative to the surface of the door panel to maintain a straight path for the pinion gear to traverse thereover.
Alternatively, a motor (not shown) may be mounted on an opposite side of a door jamb, outside the door opening, and the motor, having an axle and sprocket, may extend through a wall of the building and engage a track disposed on an extended door panel. Specifically, the extended door panel may be larger than the door opening (or half of the door opening with a bifurcated door) and an extended portion thereof may extend past the door jamb providing a sufficient portion for the track on the extended door panel to engage the sprocket of the motor. Therefore, the motor may still reside within the confines of the building, with the axle thereof extending through the wall of the building to engage the door panel disposed on an outside track of the building. In this configuration, neither the motor nor any component thereof, such as brackets, axles, sprockets, or the like, impinges on the horizontal opening space of the door opening. Therefore, the door panel or panels may be opened as fully as possible, which may be beneficial for moving equipment in or out of the building.
The sliding door system 400, illustrated in
The sliding door system 400 may be relatively useful because a relatively small motor may be used to laterally open a door panel. Moreover, while the sliding door system 400 of the present invention described in
The motor 452 may generally sit within and may be rigidly held in an L-shaped bracket 470, described in further detail below with respect to
The motor 452 may be attached to sub-bracket 468 that may rigidly hold the motor 452 in place, when connected to L-shaped bracket 470, as illustrated in
The L-shaped bracket, rigidly holding the sub-bracket 468 and, ultimately, the motor 452 may slide into jamb bracket 466, when jamb bracket 466 is bolted to the door jamb 454. When the L-shaped bracket 470 is slid into jamb bracket 466, the pinion or sprocket may engage the track, transferring the rotational movement of the pinion or sprocket to the linear movement of the sliding door 456. The L-shaped bracket 470 may sit freely in the jamb bracket 466, and gravity may hold the motor 452 in place. Alternatively, L-shaped bracket 470 may be secured to the jamb bracket 466 with a downwardly biased spring, allowing some vertical movement of the motor 452 (such as if the pinion or sprocket encounters uneven portions of the track 462, but keeping downward pressure so that the pinion or sprocket does not lift off of the track 462.
In an alternate embodiment of the present invention, a system 700 is illustrated in
In a single door configuration, a single motor (702) may engage the single door (712), causing it to move when the motor moves along the track, opening and closing the door over the entirety of the entrance 718. In a bifurcated door configuration, each door panel (not shown) may have a motor connected thereto, running along a respective chain or track (including, for example, on the same track), thereby opening and closing the bifurcated door. A control (not shown) may be utilized for ensuring that two motors, in a bifurcated door configuration, open and close in synchronization.
The extended bar 713 may be any size necessary to adequately link the bracket 710 connected to and extending from the motor 702, especially considering that doors on barns, warehouses, and other like buildings are typically externally mounted, having a distance from the door to the track 704 mounted to the header 708. In addition, the S-shaped piece 718 may be any length and may be in any bent configuration necessary to span the height distance between the extended bar 712 and the motor 702 disposed thereabove. Preferably, the extended bar 712 and the bracket 710 are made of a rigid and strong material, such as metal, so as to rigidly hold and move the door 12 when the motor 702 moves along the track 704.
The motor 702 in the system 700, as described herein, that traverses the chain or track 704 may preferably be a motor manufactured by Summer Synoris although, of course, any other motor able to traverse the track 704 may be utilized as apparent to one of ordinary skill in the art.
In an alternate embodiment of the present invention, illustrated in
The bracket 850 may further have a rigid support flange 860 extending therefrom, disposed at roughly a right angle to the face of the bracket 850 for providing further support on the door 850. Specifically, the rigid support flange 860 is illustrated in
The bracket 850 may further have a bend or curved section 864 therein to minimize any deflection of the bracket 850 due to the heavy load of moving the door 850. The bend or curved section 864 preferably provides additional rigidity and to ensure that the connection point for the arm 856 is somewhat removed from the remainder of the bracket. Thus, for a bifurcating door system, two brackets as described herein may be utilized to move both door panels, and the bend or curved section 864 ensures that the bolts 858 do not contact each other on the two respective brackets when the door panels are in the closed configuration. It should be noted that for a bifurcated door system, two brackets utilized may be mirror images of each other, providing the ability to move the door panels open and closed as desired, and controlled by two motors (not shown).
The bracket 900 may be bolted or otherwise rigidly disposed on a leading edge of the door via bolts disposed through the bracket 900 and into the door. The bracket 900 may have a length that allows an arm to be attached thereto on an end of the bracket 900 via bolts to the bracket 900, but a distance from the door so that the motor on the track (not shown) may move the bracket 900 via the arm and, thus, move the door 900, substantially as described above with reference to
The bracket 900 may further have a rigid support flange 910 extending therefrom, disposed at roughly a right angle to the face of the bracket 900 for providing further support on the door. Specifically, the rigid support flange 910 is illustrated in
The bracket 900 may include a bar 904 extending from the support flange 910, allowing the arm (not shown) to be attached to an end 906 thereof. The bar 904 may extend from a location on the support flange 910 that may be inset a distance from the edge of the support flange 910 to ensure that the bar 904 does not contact another bracket in a bifurcated door system, or anything else. The bar 904 may preferably be made from rectangular tubing, although any material may be utilized as apparent to one of ordinary skill in the art.
The end 906 of the bracket 900 may attach to an arm extending to a motor, as described above with reference to
The bracket 900 may further have a bend or curved section 914 therein to minimize any deflection of the bracket 900 due to the heavy load of moving the door. The bend or curved section 914 preferably provides additional rigidity and to ensure that the connection point for the arm is somewhat removed from the remainder of the bracket. Thus, for a bifurcating door system, two brackets as described herein may be utilized to move both door panels, and the bend or curved section 914 ensures that the bolts do not contact each other on the two respective brackets when the door panels are in the closed configuration. It should be noted that for a bifurcated door system, two brackets utilized may be minor images of each other, providing the ability to move the door panels open and closed as desired, and controlled by two motors (not shown).
In an alternate embodiment of the present invention, bracket 950 is illustrated in
The rotatable bar 954 may have bends 956, 958 at a roughly ninety-degree angle on both a first side and a second side, respectively. The bend 956 may be rotatably attached to the triangular-shaped support flange 960, and the bend 958 may be rotatably attached to the arm and motor assembly (not shown). The bend 958 may include a bolt 964 for rotatably connecting to the arm/motor assembly, as illustrated in
Thus, the rotatable bar 954 may generally be disposed downwardly, as illustrated in
Alternatively, if the door closed over the opening, traversing from right to left across the door opening, the rotatable arm would rotate toward the right when engaging the door jamb on the left side of the door, causing the door to close completely, and furthermore overlap slightly over the door jamb, creating a better closure.
To aid the rotation of the rotatable arm on each of the door jambs may be a triangular ramp that may be placed on the door jamb, the triangular ramp mounted at a location to engage the rotatable bar 954. Preferably, the ramp may be several inches tall, such as about 6-8 inches, and may have a base that may be about 2-3 inches. The long edge of the triangular ramp may be attached to the wall, and when the rotatable bar 954 engages the ramp, the ramp may help aid the rotatable bar 954 in rotating, providing an easier movement of the rotatable bar 954 while in motion. Thus, the rotatable arm 954 may engage the ramp while the bar 954 is disposed downwardly, and as the bar moves from left to right, the ramp may aid the mar 954 to rotate upwardly ninety degrees (as shown in
Preferably, the brackets 850, 900 and 950 are made from suitable durable material that is relatively strong and provides minimal bending or deflection when in use. Preferably, the brackets 850, 900 and 950 are made of steel. In a preferred embodiment, the thicknesses of the brackets 850, 900 and 950 are about 1/4 inch steel plate. More preferably, the triangular support flanges 860, 910 and 960 may be 1/8 inch steel plate. Of course, it should be noted that the relative thicknesses of the brackets 850, 900 and 950 and the triangular support flanges 860, 910 and 960 may be any suitable thickness apparent to one of ordinary skill in the art.
A benefit of brackets 850, 900 and 950 is that they may preferably allow full or nearly full horizontal opening of the doors all the way to the door jamb, yet provides sufficient rigidity and strength to move the doors via the motor mounted thereabove. Many bifurcated doors may have an external flap, known as lap trim, that may cover the space between the door panels when in the closed configuration. The brackets 850 and 900 may be utilized without interfering with the external flap. An internal flap may be found on many doors as well, but in this situation, the internal flap may require cutting away so that the bracket is not in the way of the external flap.
It should also be noted that all holes for receiving bolts may preferably be recessed so that the bolts sit flush against the brackets 850, 900 and 950 and do not interfere with other components, such as another bracket on another door panel in a bifurcated door system.
Now turning to an alternate embodiment of the present invention, various embodiments of the leading edge system 104 (as shown in
The tension springs 220, 222 may allow the pins 212, 214 to move vertically as the truck 202 traverses with the door panel 14 when opening and/or closing the same. Therefore, if there are imperfections in the concrete slab 210, the pins may move downward and/or upward to follow the contour of the concrete slab 210, yet still provide engagement with the track 208 to ensure alignment of the door panel 14 when opening and/or closing.
Alternatively, the track 208 may be a depression, such as a groove, an extended valley or other like depression, instead of an upwardly disposed strip, as shown in
In an alternate embodiment of the present invention,
However, on windy days, the door panel 12 may have difficulty maintaining its alignment when opening and/or closing over a door opening. Therefore, the C-shaped element may restrict the movement of the door panel 12 and help keep the door panel 12 in alignment.
The track 560 may be bolted to the ground or cement that may be disposed thereunder. Moreover, the track 560 and its components may be made from any material apparent to one of ordinary skill in the art, such as metal, such as steel, plastic, or the like. Preferably, the top rail 562 is made of a metal, such as steel, or rigidity, durability and strength, while the base 564 may be made from a rigid thermoplastic that may be relatively lightweight, easily molded, yet strong enough to keep the track 560 fastened where desired.
The top rail 562 may have portions therein where the extending flanges 566, 568 are not present so that C-shaped element may be placed on the top track 562. Therefore, the C-shaped element may be placed thereon and/or removed as desired without full removal of the track 560.
In an alternate embodiment of the present invention, an alternate track system 600 is illustrated in
In a preferred embodiment, the cable 656 may reside within a trench 610 disposed across the entrance to the building such that the pins 652a, 652b and 652c may engage the cable 656 and traverse the trench 610 when the door panel 12 opens and/or closes. Thus, the door panel 12 may stay in position as it traverses across the opening in the building, and the engagement of the truck 650 and its pins 652a, 652b and 652c with the cable 656 allows the bottom portion of the door to remain aligned.
The trench 610 generally maintains the cable 656 below the surface of the surrounding ground so that the cable is not and does not become a hazard for people and/or equipment that may traverse the trench 610. The space within the trench 610 may be generally wide enough to allow the pins 652a, 652b, 652c to stay in constant contact with the cable 656 so that the door 12 maintains its position as it traverses upon opening and closing thereof. Because the pins 652a, 652b and 652c continually traverse the trench 656, the trench 656 stays relatively free of debris as the pins 652a, 652b and 652c move rocks and dirt that may fall within the trench 656. Alternatively, a shield or guide (not shown) may be attached on either side of the truck 650 to push or otherwise move dirt and/or debris away from the pins 652a, 652b and 652c as it traverses through the trench 656, interconnected to the cable 656.
In a single door configuration, the cable 656 merely resides within the trench 610 and the truck 650 and its pins 652a, 652b and 652c traverse from one end of the entrance to the other, keeping the door aligned. An opposite eyelet and tightening device, such as a turnbuckle, may also be disposed on the opposite doorjamb. Alternatively, a single turnbuckle on the doorjamb 602 is provided, and the cable is merely tied off or otherwise connected to the doorjamb on the opposite end.
In a bifurcated door configuration, an eyelet 612 may be disposed within a mullion or other support beam that is sunk into the ground at the entrance of the building to provide a guide for the truck 650, ensuring that the leading edge of the door 614 aligns with the leading edge of the other door in the bifurcated arrangement as the doors meet in the middle of the opening. Specifically, another truck arrangement (not shown) may therefore be provided on the other door panel to guide the other door panel in the bifurcated configuration so that the doors meet in the middle of the opening.
In an alternate embodiment,
Specifically, the trailing edge system 106 comprises a U-shaped track 300 disposed open end upwardly and attached to an inside surface of the two panels 12, 14 of the door 16. For example, the U-shaped track 300 is shown disposed on door panel 14 in
In another embodiment of the present invention, a plurality of floor guides 1000 is illustrated in
The floor guide 1002 may be made from any material to have the required strength to hold the door 1002 in alignment. As illustrates in
The floor guide 1000 allows the door 1002 to remain in alignment without fixing a deep and uninterrupted trench along the structure opening. A trench may not be suitable for horizontal-opening doors, as they may collect debris and may be difficult to clean, interrupting the normal operation of the door 1002. The floor guide 1000 allows the area around the door opening to be cleaned, remaining free of material that may impede the movement of the door 1002.
As illustrated in
The floor guide 1010 may further comprise kick-out portions 1024, 1026 disposed in recesses 1028, 1030 in the door contacting side 1022 to provide an extended contact surface from the floor guide 1010. The kick-out portions 1024, 1026 may be made from a resilient material that may be shaped or cut to a particular size to jut away from the floor guide 1010 a certain distance to optimize the alignment of the horizontally sliding door. In addition, kick-out portions 1024, 1026 may further be used to ensure that a first door portion of a bifurcated horizontally-sliding door clears any portion of a second door portion of a bifurcated horizontally-sliding door, such as laptrim that may be disposed on an leading edge of a first door portion of a bifurcated horizontally-sliding door.
A plurality of slots 1032 may be disposed within the body of the floor guide 1010 to stake, bolt or otherwise fix the floor guide 1010 to a floor, whether the floor is dirt, gravel, concrete, metal, or another material. The slots 1032 allow the positioning of the floor guide 1010 after bolts are disposed therein. Alternatively, the slots 1032 easily allow for the proper placement of the floor guide on a floor.
In a preferred embodiment, a floor guide may be aligned a distance from a lip, as illustrated in
Moreover, it should be noted that a spacer may be provided having the same general shape as the floor guides, as described herein, which may be disposed beneath a floor guide to add height to the floor guide in situations where the floor guide requires additional height to properly maintain the door in proper alignment.
The control of the motors of the various embodiments of the present invention may be accomplished using hardwired control buttons and/or remote control button, as is apparent to one having ordinary skill in the art. Of course, limit switches may further be provided to ensure that the two panels 12, 14 of the bifurcated door 16 open and close fully and stop where appropriate. Moreover, certain safety features, such as pressure sensitive regions and/or optical detectors, may be utilized to ensure that an individual is not hurt by the opening and/or closing of the door 16. For example, electronic eyes, lasers, or other detectors may be provided at various elevations of the door to effectively stop and/or open the door 16 during an emergency, such as if a vehicle or an individual is between the panels 12, 14 when the panels 12, 14 are closing. As noted above, the doors may further include release pins 168, 170 having chains for a user to pull for disengaging the carriages 154, 156 from the tracks 158, 160 for manual opening and/or closing of the door 16, such as, for example, during a power outage or the like.
It should be noted that various changes and modifications to the presently preferred embodiments described herein will be apparent to those skilled in the art. Such changes and modifications may be made without departing from the spirit and scope of the present invention and without diminishing its attendant advantages.
The present invention claims priority under 35 U.S.C. §119 to U.S. Provisional Patent Application No. 61/667,499, entitled “Automatic Sliding Door Systems, Apparatus and Methods”, filed Jul. 3, 2012 and to U.S. Provisional Patent Application No. 61/735,622, entitled “Automatic Sliding Door Systems, Apparatus and Methods”, filed Dec. 11, 2012, and as a Continuation-In-Part application of U.S. patent application Ser. No. 13/313,643, entitled, “Automatic Door Systems, Apparatus and Methods”, which claims priority under 35 U.S.C. §119 to U.S. Provisional Application No. 61/42,665, filed Dec. 7, 2010, 61/454,748, filed Mar. 21, 2011, and 61/509,498, filed Jul. 19, 2011, each of which is incorporated herein by reference in its entirety.
Number | Date | Country | |
---|---|---|---|
61667499 | Jul 2012 | US | |
61735622 | Dec 2012 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 13313643 | Dec 2011 | US |
Child | 13935122 | US |