The present disclosure relates to an automatic splicing device for automatically connecting at a splicing position using splicing tape a first tape and a second tape each provided with indexing holes and component-storage cavities at a fixed interval.
For example, a splicing device disclosed in PTL 1 is provided with a connecting section that connects two carrier tapes, a reel holding stand that holds reels provided on both sides of the connecting section, and a barcode reader that reads a barcode affixed to the reels. An operator removes a feeder supplying carrier tape that is about to run out at a component mounter from a slot of the component mounter. Then, the operator uses the barcode reader to read the barcode of the reel wound with carrier tape that was removed from the feeder, and uses the barcode reader to read the barcode of a reel wound with new carrier tape. Then, after confirming that both reels are of the same component type, the operator attaches each of the reels to the reel holding stand, pulls the carrier tapes from the reels and connects each of the carrier tapes at the connecting section.
PTL 1: JP-A-H6-179412
For example, in a case in which an operator misrecognizes a slot of a component mounter and removes a feeder loaded in that slot from that slot, with the above splicing device, because it cannot be recognized that the reel loaded on that feeder is incorrect, new carrier tape is connected to carrier tape wound on an incorrect reel. In this case, components will run out at the component mounter, causing worse production efficiency.
The present disclosure takes account of such problems, and an object thereof is to provide an automatic splicing device capable of reliably connecting a first tape and a new second tape of a component mounter.
To solve the above problems, the present disclosure of an automatic splicing device includes: a tape connecting mechanism configured to automatically connect at a splicing position using splicing tape a first tape provided with indexing holes and component storage cavities at a fixed interval and a second tape provided with indexing holes and component storage cavities at a fixed interval; a reading device configured to read identification information affixed to each of a first reel around which the first tape is wound and a second reel around which the second tape is wound, the identification information recording information of each of the components stored in cavities in each of the first tape and the second tape; a communication device configured to communicate with the reading device and component mounter or a host computer connected to the component mounter such that communication is possible; and a control device configured to control the tape connecting mechanism and the communication device.
Because the automatic splicing device connects tape wound on a given reel to new tape based on information of reels sent from the component mounter or the like, it is possible to prevent misrecognition of the reel wound with tape that should be connected. Therefore, it is possible to prevent a worsening of the production efficiency of the component mounter due to misrecognition of reels.
An overview of the configuration of an automatic splicing device of an embodiment is described below with reference to the figures. As shown in
Automatic splicing device 20 indicates to an operator that components e stored in carrier tape Tc shown in
Here, component mounter M is a conventional mounter that feeds carrier tape Tc wound on reel 11 that is attached to tape feeder 10 (which corresponds to the “component supply device” of the present disclosure) shown in
Also, as shown in
For carrier tape Tc, pitch Pt and the size of cavities Ct varies with the size of components e, but the size and pitch of Pc of indexing holes Hc is the same. Cavities Ct and indexing holes Hc are arranged with a fixed positional relationship, and carrier tape Tc is formed such that one cavity Ct each exists at a position the same as indexing hole Hc and at an intermediate point between adjacent indexing holes Hc, with a specified pitch Pt (=Pc/2).
As shown in
Reading device 30 is, for example, a barcode reader that optically reads tape identification information of identifier 15 affixed to reel 11, and sends the information by a wire to communication device 40. Communication device 40 is connected by wire to reading device 30, and, for example, is a bridge-type device that communicates wirelessly with host computer HC that manages mounting control device mc of multiple component mounters M.
Display device 90 is, for example, a panel controller that displays various information such as tape identification information of identifier 15 and information related to mounting components e at component mounter M. Control device 100 controls reading device 30, communication device 40, display device 90, and tape connecting mechanism W, and is provided with communication control section 101, display control section 102, and connection performing section 103 (which corresponds to the “connecting control device” of the present disclosure).
Communication control section 101 controls communication of data between reading device 30 and host computer HC that is performed via communication device 40. Display control section 102 displays information such as tape identification information of identifier 15 received from reading device 30 via communication device 40, and information of component mounting at component mounter M received from host computer HC via communication device 40, which is data sent from communication control section 101, on display device 90 lined up in order of highest priority, for example, in order of which component is due to run out first.
Connection performing section 103 controls driving of tape connecting mechanism W based on a verification result of carrier tape Tc for which components are going to run out and identification information of new carrier tape Tc, received from host computer HC via communication device 40, which is data sent from communication control section 101. Also, connection performing section 103 detects the quantity of empty cavities Ct that exist at the connection position of carrier tape Tc that is going to run out and new carrier tape Tc, and sends the quantity to communication control section 101. Communication control section 101 sends the quantity of empty cavities detected by connection performing section 103 to host computer HC via communication device 40.
Described next is the configuration of tape connecting mechanism W of automatic splicing device 20. As shown in
First and second tape indexing devices 50 and 51 are each arranged at both sides inside housing 21 and inside lid 22 (see
First and second cutting devices 54 and 55 are respectively arranged at first and second cutting positions Lf1 and Lf2 between first and second indexing devices 50 and 51; first and second takeup devices 56 and 57 are respectively arranged between first and second cutting positions Lf1 and Lf2 between first and second cutting devices 54 and 55 and splicing position LS; connecting device 58 is arranged between first and second takeup devices 56 and 57.
First and second tape indexing devices 50 and 51 are provided with first and second conveyance paths 60a and 60b provided extending in a horizontal direction towards the center from both ends of housing 21, first and second sprockets 60a and 60b arranged below first and second conveyance paths 60a and 60b, first and second gear motors 62a and 62b connected to first and second sprockets 61a and 61b, first and second tape detection devices 64a and 64b arranged above first and second conveyance paths 60a and 60b, and so on.
First and second cutting devices 54 and 55 are provided with first and second cutters 68a and 68b at first and second cutting positions Lf1 and Lf2, a vertical driving mechanism, not shown, that moves first and second cutters 68a and 68b up and down, and so on. First and second cutting devices 54 and 55 are configured to cut unneeded carrier tape at a cutting location.
First and second takeup devices 56 and 57 are provided with first and second takeup members 75a and 75b provided between first and second cutting positions Lf1 and Lf2 and splicing position LS, a driving mechanism, not shown, that drives first and second takeup members 75a and 75b, and so on. First and second takeup devices 56 and 57 are configured to each be capable of taking up unneeded cut carrier tape Tc.
Connecting device 58 is provided between first cutting device 54 and second cutting device 55 and formed therein is conveyance path 60 which is a portion of first and second conveyance paths 60a and 60b. Connecting device 58 is configured to be capable of conveying carrier tapes Tc along conveyance path 60 and connecting the carrier tapes Tc for which the cut locations are aligned at splicing position LS which is at a central point of conveyance path 60.
In automatic splicing device 20, at the left and right sides of
Then, leaving a specified quantity of empty cavities Ct among the consecutive empty cavities Ct at the leading end of the carrier tape, the leading portions of the carrier tapes are respectively cut by first and second cutters 68a and 68b of first and second cutting devices 54 and 55, and the cut portions are respectively taken up by first and second takeup members of first and second takeup devices 56 and 57. And, protective tape affixed to splicing tape, not shown, that connects the two carrier tapes Tc is indexed in a direction perpendicular to the indexing direction of the carrier tapes Tc, and the cut ends of the two carrier tapes Tc are connected to each other in connecting device 58 using the splicing tape.
Next, operation of control device 100 of automatic splicing device 20 is described with reference to the flowchart of
Control device 100 displays the mounter identification information of the component mounter M and the component identification information of the component that is going to run out received from host computer HC on display device 90 (steps S1 and S2 of
An operator looks at display device 90 and checks the mounter identification information and component identification information of components that are going to run out and moves a reel 11 wound with carrier tape Tc that stores the appropriate component e and automatic splicing device 20 to the appropriate component mounter M using the cart. Then, the operator removes reel 11 from the tape feeder 10 on which is loaded the reel 11 for which components are going to run out. Then, the operator uses reading device 30 to read the tape identification information such as the part number and name of component e of each identifier of reel 11 removed from tape feeder 10 and moved reel 11.
Control device 100 displays the tape identification information of each reel 11 read using reading device 30 on display device 90 (step S3 of
Control device 100 causes display device 90 to display the verification result of the tape identification information received from host computer HC (steps S5 and S6 of
An operator, after looking at display device 90 to confirm that the carrier tapes match, inserts the trailing end of carrier tape Tc of the reel 11 removed from tape feeder 10 and the leading end of carrier tape Tc of moved reel 11 into both sides of housing 21 of automatic splicing device 20.
Control device 100 determines whether the verification result indicates a match (step S7 of
An operator, after completing connection of carrier tapes Tc, removes the connected carrier tape Tc from automatic splicing device 20, and loads reel 11 on tape feeder 10.
Host computer EC, after receiving the quantity of empty cavities Ct from communication device 40, sends the quantity of empty cavities Ct to mounting control device mc of the appropriate component mounter M. Mounting control device mc of component mounter M, after the connection position of carrier tapes Tc indexed from tape feeder 10 has reached the component pickup position, performs control such that high speed tape indexing is performed at tape feeder 10 for a portion corresponding to the quantity of empty cavities Ct received from host computer HC. Then, when the empty cavities Ct have passed the component pickup position, the indexing speed of tape feeder 10 is returned to the original indexing speed and component mounting continues.
On the other hand, in step S7, in a case in which control device 100 determines that the verification result indicates no match, without driving tape connecting mechanism W (step S10 in
An operator, after looking at display device 90 to confirm the warning to stop connection due to the verification result indicating no match, checks reels 11 and so on, and after performing countermeasures such as reel exchange, re-reads the tape identification information using reading device 30 and repeats the above processing.
Next, detection of empty cavities at automatic splicing device 20 is described with reference to
First and second tape detecting devices 64a and 64b detect that carrier tapes Tc have been inserted. First and second origin position detection devices 63a and 63b detect one of first and second teeth 67a and 67b from the multiple first teeth 67a and 67b of first and second sprockets 61a and 61b. In the present embodiment, the positions of the multiple first and second teeth 67a and 67b of first and second sprockets 61a and 61b are defined as the origin positions of first and second tape indexing devices 50 and 51 respectively. Therefore, first and second origin position detection devices 63a and 63b are sensors that detect multiple origin positions of first and second tape indexing devices 50 and 51 respectively.
Then, first and second origin position detection devices 63a and 63b are arranged such that when the first and second teeth 67ad and 67bd (origin positions) rotated to the lowermost of the first and second teeth 67a and 67b are detected, first and second teeth 67au and 67bu rotated to be the uppermost of the first and second teeth 67a and 67b and indexing holes Hcd of carrier tapes Tc inserted along first and second conveyance paths 60a and 60b are engaged.
First and second light amount detection devices 52 and 53 detect the amount of light that passes through cavity Ct of carrier tape Tc indexed by first and second sprockets 61a and 61b. The light amount detected by first and second light amount detection devices 52 and 53, when not passing through carrier tape Tc, that is, in a saturated state, indicates maximum value Lmax, and for an empty cavity Ct indicates a value smaller than specified value La. Also, value Lb smaller than the above specified value La is set as a threshold and, when the detected amount is smaller than La (<La), thus determines the tape portion between adjacent cavities Ct and component-storing cavities Ct.
Here, the detection positions (positions of sensor light axis S) of first and second light amount detection devices 52 and 53 are arranged such that when first and second teeth 67ad and 67bd (origin positions) of first and second sprockets 61a and 61b are detected at first and second origin position detection devices 63a and 63b indexing holes Hcb of carrier tape Tc and cavities Ctb formed at the same position are aligned at the same position, that is, are arranged such that the amount of light passing through cavity Ctb can be detected.
In the present embodiment, because the position at which cavity Ctb and indexing hole Hcb at the same position are detected by first and second light amount detection devices 52 and 53 is defined as the tape reference position (position of indexing hole Hcb) of carrier tape Tc, the origin position of first and second tape indexing devices 50 and 51 (position of first and second teeth 67ad and 67bd) has a fixed positional relationship with the reference position (position of indexing hole Hcb) of carrier tape Tc. Thus, a tape reference position with a fixed positional relationship to a first origin position is decided based on a first origin position of first and second tape indexing devices directly before detection of the leading end and first position of first and second tape indexing devices 50 and 51 when the detection signal of the leading end of carrier tape Tc is received.
Operation for deciding the tape reference position based on the first position and first origin position is described next with reference to
The reference position is decided by calculating the indexing amount of carrier tape Tc from the first origin position to the first position, that is, distance Pc/4, from the first origin position, that is, the position at which first tooth 67adl is detected by first origin position detection device 63a, and the first position, that is, the position rotated distance Pc/4 from the position at which first tooth 67adl is detected by first origin position detection device 63a. And, the gap between adjacent origin positions, that is, the difference between distance Pc and indexing amount of carrier tape Tc from the first origin position to the first position, that is, distance Pc/4 is calculated; that is, distance 3Pc/4, is calculated. Further, the position of cavity Ct of carrier tape Tc positioned at the detection position (position of sensor light axis S) of first light amount detection device 52 and indexing hole Hc at the same position when carrier tape Tc has been indexed by calculated distance 3Pc/4 from the state shown in
Then, empty cavity Ct of carrier tape Tc is detected based on the specified threshold value of the light amount used for determining predetermined empty cavities Ct, and tape portions (portions between adjacent cavities Ct) and component-storing cavities Ct, and the pitch Pc of cavities Ct is calculated based on the detection frequency of the above. Also, in a case in which a light amount smaller than the threshold value for the light amount is detected consecutively, it is determined that the cavity Ct detected first is a component-storing cavity Ct. Accordingly, it is possible to detect the quantity of empty cavities.
Note that, in an embodiment described above, automatic splicing device 20 is configured to be capable of communication with host computer HC via communication device 40, but automatic splicing device 20 may be configured to be capable of communication individually with multiple component mounters M. Also, in an embodiment described above, automatic splicing device 20 is configured to communicate with reading device 30 via communication device 40 using wired communication, but reading device 30 may be portable, and communication may be performed via communication device 40 wirelessly. In this case, display device 40 may be configured to be provided on portable reading device 30.
Automatic splicing device 20 of the present disclosure includes: tape connecting mechanism W configured to automatically connect at a splicing position using splicing tape a first tape (carrier tape) Tc provided with indexing holes Hc and component storage cavities Ct at a fixed interval Pc and a second tape (carrier tape) Tc provided with indexing holes Hc and component storage cavities Ct at a fixed interval Pc; reading device 30 configured to read identification information affixed to each of a first reel 11 around which the first tape Tc is wound and a second reel 11 around which the second tape Tc is wound, the identification information recording information of each of components e stored in cavities Ct in each of the first tape Tc and the second tape Tc; communication device 40 configured to communicate with reading device 30 and component mounter M or host computer HC connected to the component mounter M such that communication is possible; and control device 100 configured to control tape connecting mechanism W and communication device 40.
Because automatic splicing device 20 connects carrier tape Tc wound on a given reel 11 to new carrier tape Tc based on information of reels 11 sent from the component mounter M or the like, it is possible to prevent misrecognition of the reel 11 wound with carrier tape Tc that should be connected. Therefore, it is possible to prevent a worsening of the production efficiency of component mounter M due to misrecognition of reels 11.
Also, control device 100 controls driving of tape connecting mechanism W based on a verification result of the identification information of first tape Tc and second tape Tc read by reading device 30, and the identification information of first tape Tc and second tape Tc received via communication device 40 from component mounter M or host computer HC connected to the component mounter M such that communication is possible. By this, it is possible to prevent connecting of carrier tapes Tc storing different types of components e.
Also, communication device 40 performs wireless communication with component mounter M or host computer HC connected to the component mounter M such that communication is possible. By this, automatic splicing device 20 allows an operator to check a component mounter M for which a component has run out even from a location separated from the component mounter M. Also, reading device 30 may be portable and perform wireless communication with communication device 40. By this, an operator can check and handle a component that runs out even from a location separated from automatic splicing device 20.
10: tape feeder; 11: reel; 12: component pickup position; 15: identifier; 20: automatic splicing device; 30: reading device; 40: communication device; 90: display device; 100: control device; 101: communication control section; 102: display control section; 103: connection performing section; W: tape connecting mechanism; M: component mounter; HC: host computer; mc: mounting control device; Tc: carrier tape; Ct: cavity
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/JP2015/060216 | 3/31/2015 | WO | 00 |