1. Field of the Invention
The present invention broadly relates to a sun visor system (e.g., an automatic sun visor system) for a motor vehicle (e.g., an automobile).
2. Related Art
Because of the problems of glare from the sun impacting the driver (and/or passenger(s)), sun visor systems are often provided as standard equipment for motor vehicles such as automobiles, trucks, etc. Many of these sun visor systems are in the form of fold down visors, which may be articulated for pivotal movement downwardly into position, and may also be articulated for movement sideways so that the visor may be used to protect the driver (and passenger(s)) from the sun and/or resulting glare either through the front windshield or side windows.
Many of these sun visor systems require a user to manually engage and position the visor which may be difficult to achieve in certain instances depending on the height, reach, etc., of the user, as well as whether the user is, for example, occupied in driving the motor vehicle. In the case of users in the front seat, each manual visor may also only cover at any one time the front windshield, or a front side window, but not both. These manual sun visor systems may also obstruct a substantial portion of the viewing area of the user. Tinting of the front windshield may also be provided, but this is may be limited to the upper edges of the front windshield, thus providing no benefit against the sun and/or the resulting glare to the front or back side windows on the driver and/or passenger sides. Manual curtains may also be provided, but may not be practical for the front windshield or slanted sides of windows.
Automated or powered sun visor systems may be provided to achieve protection against the sun and the glare resulting therefrom. See, for example, U.S. Pat. No. 5,720,508 (Mohammed), issued Feb. 14, 1998; U.S. Pat. No. 6,279,984 (Reina, Jr.), issued Aug. 28, 2001. Many of these automated or powered sun visor systems are made to address protecting against sun and the resulting glare through the front windshield, but not the front or back side windows. Providing automated or powered sun visor systems for the front or back side windows may create challenges because of difficulties in locating the system so that it is convenient to use, hidden from view when not deployed, installable with many different types of motor vehicles (e.g., automobile, truck, etc.) designs, etc.
Accordingly, there still exists a need for an automated sun visor system which: (1) may be used with the front and/or side windows; (2) may be relatively easy for the user to control; (3) may be hidden from view when not deployed; and (4) may be installed with many different motor vehicle (e.g., automobile, truck, etc.) designs.
According to a first broad aspect of the present invention, there is provided a sun visor system comprising:
According to a second broad aspect of the present invention, there is provided an automatic sun visor system comprising:
The invention will be described in conjunction with the accompanying drawings, in which:
It is advantageous to define several terms before describing the invention. It should be appreciated that the following definitions are used throughout this application.
Where the definition of terms departs from the commonly used meaning of the term, Applicant intends to utilize the definitions provided below, unless specifically indicated.
For the purposes of the present invention, directional terms such as “top”, “bottom”, “above”, “below”, “left”, “right”, “up”, “down”, etc. are merely used for convenience in describing the various embodiments of the system of the present invention.
For the purposes of the present invention, the term “motor vehicle” may refer to an automobile, car, truck, van, bus, etc.
For the purposes of the present invention, the term “occupant” may refer to a driver, one or more passengers, or the driver and one or more passengers, of a motor vehicle.
For the purposes of the present invention, the term “user” refers to an occupant of a motor vehicle using an embodiment of the system of the present invention.
For the purposes of the present invention, the term “visor” refers to an element, component, etc., that may shade, screen, protect, etc., a user from the sun and/or the resulting or associated glare therefrom coming through or at the window.
For the purposes of the present invention, the term “side window sun protecting position” refers to a positioning of the sun visor relative to a side window of a motor vehicle such that the user is shaded, screened, protected, etc., against the sun and/or the resulting or associated glare therefrom coming through or at the window.
For the purposes of the present invention, the terms “operative position” or “operative configuration” refer interchangeably to an element, component, member, assembly, system, etc., that is in a usable, working functioning, etc., position or configuration.
For the purposes of the present invention, the terms “inoperative position” or “inoperative configuration” refer interchangeably to an element, component, member, assembly, system, etc., that is not in an operative position or configuration.
For the purposes of the present invention, the terms “extended position” or “extended configuration” refer interchangeably to an element, component, member, assembly, etc., that is in a stretched out, expanded, pulled out, lengthened, etc., position.
For the purposes of the present invention, the terms “retracted position” or “retracted configuration” refer interchangeably to an element, component, member, assembly, etc., that is in a contracted, withdrawn, drawn in, pulled in, etc., position.
For the purposes of the present invention, the term “arcuate slot” refers to a slot that follows a generally curved or arched shape.
For the purposes of the present invention, the term “positioned at” refers to the positioning of an element, component, member, assembly, etc., along, on, in, proximate, near, etc., another stated element, component, member, assembly, etc.
For the purposes of the present invention, the term “pivotally connected to” refers to a first element, component, member, assembly, etc., being coupled, connected, secured, attached, fixed, etc., to a second element, component, member, etc., so as to allow pivotal movement of the first element, component, member, assembly, etc., about an axis defined by the first element, component, member, etc.
The present invention is directed broadly at embodiments of a sun visor system (e.g., an automatic or powered sun visor system) for use with a motor vehicle, such as an automobile, truck, etc. Embodiments of the sun visor system may be used with front and/or back side windows of the motor vehicle, on the driver side, the passenger side(s) or the driver and passenger side(s) to provide protection to the user from the sun and glare resulting therefrom or associated therewith. Embodiments of the sun visor system may be easily controlled by the user for moving the sun visor between protecting position and retracted positions, such that the sun visor may be hidden from view when in the retracted position. Embodiments of the sun visor system may be installed with many different motor vehicle designs, types, etc.
An embodiment of the automatic sun visor system of the present invention is illustrated in
In the embodiment illustrated in
As shown in
Referring to
In an alternative embodiment of system 10, visor guide bar 100 may comprise a solely cylindrical portion 108 (i.e., L-shaped portion 132 is absent). In such an alternative embodiment, visor guide bar 100 may function similar to visor guide bar 100 shown in
In certain embodiments of the present invention, guide end 140 of cylindrical portion 108, and guide end 148 of L-shaped portion 132 may be received by arcuate slot 156, and may be frictionally engaged therewith. In alternative embodiments, guide end 140 of cylindrical portion 108, and guide end 148 of L-shaped portion 132 may be engaged by arcuate slot 156 such that guide ends 140 and 148 may be mechanically locked therein. For example, arcuate slot 156 may comprise a generally triangular cross-section, with a greater width at the portion of slot 156 opposite the opening, and a smaller cross-section at the opening of slot 156, i.e., slot 156 narrows in width from the opening to the portion of slot 156 opposite the opening. In order to provide the desired locking configuration, guide end 140 of cylindrical portion 108, and guide end 148 of L-shaped portion 132 may also have a generally triangular cross-section such that guide ends 140 and 148 have the greatest width at their respective ending points. In such embodiments, guide ends 140 and 148 may be firstly engaged by arcuate slot 156 by sliding the end portions of guide ends 140 and 148 into arcuate slot 156 from one end of slot 156 which mechanically prevents guide ends 140 and 148 from being disengaged from slot 156. It may also be appreciated that arcuate slot 156 and guide ends 140 and 148 may have cross-sections other than generally triangular, such as a generally T-shaped cross-sections, square cross-sections, etc., without departing from the spirit and scope of the present invention.
Returning again to the embodiment of visor system 10 illustrated in
Guide rod follower member 196 may be further provided with at least one guide receiving member (e.g., at least two guide receiving members), for example, in the form of a first pair of guide rod receiving members, indicated as 220 and 228, and a second pair of guide rod receiving members, indicated as 236 and 244. Guide rod receiving members 220 and 228 are provided with appropriately sized holes (not shown) for slidably receiving respective guide rod 252, while guide rod receiving members 236 and 244 may also be provided with appropriately sized holes (not shown) for slidably receiving respective guide rod 260 which is laterally spaced apart from guide rod 252. Alternatively, guide rod follower member 196 may be provided with or have formed therein, for example, arcuate or semicircular indentations or recesses in place of receiving members 220/236 and receiving members 228/244 for receiving respective guide rods 252 and 260 which may be laterally spaced apart such that assembly 196 may slidably move therebetween without falling off of guide rods 252 and 260. In one such alternative embodiment, guide rods 252 and 260 may be frictionally held by or in the arcuate or semicircular indentations. In still other alternative embodiments, guide rods 252 and 260 may be locked by or in such arcuate or semicircular indentations. In yet another alternative embodiment, one guide rod such as 252 (or 260) may be provided, where the one guide rod 252 (or 260) has a cross-section (e.g., square-shaped, rectangular-shaped, etc.) for receiving assembly 196 for slidable movement. As shown in
Referring again to
Assembly 272 may further include a switch (e.g., an up-down switch), indicated generally as 300, for controlling the action of motor 276. As shown in
As shown in
If a user desires to actuate or operate visor system 10 to change system 10 from the retracted or inoperative configuration of
In operation, when the user pushes or otherwise actuates or operates switch 300 while system 10 is in the inoperative position, motor 276 is engaged. The engagement of motor 276 causes link 284 to move guide rod follower member 196 away from motor 276 along guide rods 252 and 260. The movement of guide rod follower member 196 away from motor 276 causes visor extension arm 50 to move and extend away from main assembly 84. As visor extension arm 50 moves and extends from main assembly 84, visor guide bar 100 is engaged and guided by arcuate slot 156 in visor guide assembly 66 to move from a retracted to an extended positions, thus causing visor 42 to move from a retracted and inoperative position or configuration, to an extended protecting and operative position or configuration.
It should be appreciated that in alternative embodiments, assembly 272 may include additional switches to control other operations of visor system 10. In one such embodiment, assembly 272 may include a switch to control the extended (protecting) and/or retracted (hidden) position of visor 42. In such embodiments, if a user wishes to stop visor 42 before it reaches the fully extended (protecting) position, the user may engage the additional switch to automatically stop the extension of visor 42. Visor 42 would then stay in this desired position until the user actuates system 10 to retract visor 42 or chooses another position for visor 42.
In embodiments of visor system 10, once visor 42 has reached a desired position, visor 42 may be configured to pivot about the axis of cylindrical portion 108 of visor guide bar 100, thereby allowing the user to adjust the orientation of visor 42. In one such embodiment, the user may adjust the orientation of visor 42 manually. In other such embodiments, assembly 272 may further comprise additional switches that enable a use to change the orientation of visor 42 to a desired orientation automatically.
In other embodiments of the present invention, visor system 10 may be configured such that, when system 10 is actuated or operated so as to be converted or changed to its extended or operative configuration, system 10 may automatically place visor 42 in both a preselected or predetermined position and orientation in accordance with preselected or predetermined settings of the user. In such embodiments, assembly 272 may include programming, circuitry, etc., to which a user of system 10 may program preferred, favorite or desired positions and orientations for visor 42.
In still other embodiments of the present invention, visor system 10 may further include an apparatus or device for detecting the level of sunlight and/or glare incident on a window or windows of automobile 18. In such embodiments, if the level of sunlight and/or glare detected by the device exceeds a predetermined level, control hardware, software, etc., in or associated with system 10 may automatically deploy visor 42 into a sun protecting position. Similarly, once visor 42 is in a protecting position, if the level of sunlight and/or glare detected by the device falls below a certain predetermined level system, 10 may retract visor 42 in response thereto. In such situations, system 10 may retract visor 42 immediately, or system 10 may only retract visor 42 after the level of sunlight and/or glare remains below the predetermined level for a predetermined amount of time. As would be appreciated by those skilled in the art, in these alternative embodiments, system 10 may include mechanisms, devices, etc., such that the user may override or deactivate the automatic deployment or retraction of visor 42 in response to sunlight and/or glare levels.
In still another embodiment, system 10 may also include hardware, software, etc., to control the deployment or retraction of visor 42 in response to oral, body movement (e.g., hand signals), etc., commands given by the user in automobile 18.
In yet other embodiments of system 10, when the user desires to change visor system 10 from the extended (and protecting or operative) configuration shown in
It should be appreciated that the embodiment illustrated in
All documents, patents, journal articles and other materials cited in the present application are hereby incorporated by reference.
Although the present invention has been fully described in conjunction with several embodiments thereof with reference to the accompanying drawings, it is to be understood that various changes and modifications may be apparent to those skilled in the art. Such changes and modifications are to be understood as included within the scope of the present invention as defined by the appended claims, unless they depart therefrom.
Number | Name | Date | Kind |
---|---|---|---|
3226151 | Reuther | Dec 1965 | A |
4697843 | Tomforde | Oct 1987 | A |
4773698 | Svensson | Sep 1988 | A |
4824160 | Fleming | Apr 1989 | A |
4874195 | Lu et al. | Oct 1989 | A |
4902062 | Pusic et al. | Feb 1990 | A |
4919468 | Abu-Shumays et al. | Apr 1990 | A |
4971381 | Abu-Shumays et al. | Nov 1990 | A |
4987315 | Abu-Shumays et al. | Jan 1991 | A |
4988139 | Yamada | Jan 1991 | A |
5000506 | Abu-Shumays et al. | Mar 1991 | A |
5031952 | Miyamoto et al. | Jul 1991 | A |
5040839 | Moore | Aug 1991 | A |
5044687 | Abu-Shumays et al. | Sep 1991 | A |
5076633 | Hsu et al. | Dec 1991 | A |
5158334 | Felland | Oct 1992 | A |
5192110 | Mykytiuk et al. | Mar 1993 | A |
5201563 | Liao | Apr 1993 | A |
5344206 | Middleton | Sep 1994 | A |
5409284 | Mahler | Apr 1995 | A |
5443300 | Mohammed | Aug 1995 | A |
5551744 | Liao | Sep 1996 | A |
5720508 | Mohammed | Feb 1998 | A |
5873621 | Kulghadush et al. | Feb 1999 | A |
5902002 | Wilson | May 1999 | A |
5947544 | Hubeshi | Sep 1999 | A |
6086133 | Alonso | Jul 2000 | A |
6131987 | Rossiter | Oct 2000 | A |
6189948 | Lin | Feb 2001 | B1 |
6227601 | LaFrance | May 2001 | B1 |
6279984 | Reina, Jr. | Aug 2001 | B1 |
6318788 | Jaurigue | Nov 2001 | B1 |
6536829 | Schlecht et al. | Mar 2003 | B2 |
6666493 | Naik | Dec 2003 | B1 |
6811201 | Naik | Nov 2004 | B2 |
6857693 | Hattass et al. | Feb 2005 | B2 |
7014243 | Nakajo | Mar 2006 | B2 |
7059651 | Böhm et al. | Jun 2006 | B2 |
7108307 | Sahara et al. | Sep 2006 | B1 |
7347479 | Suzuki et al. | Mar 2008 | B2 |