This invention relates to cleaners of water-containing vessels such as swimming pools and spas and more particularly, although not necessarily exclusively, to automatic pool cleaners (APCs) optionally providing separate filtration of large and small debris within the vessels as well as capability of by-passing a filter of small debris.
Commonly-owned U.S. Patent Application Publication No. 2017/0096828 of Moore, et al., details filtration aspects of certain APCs. Cleaners described in the Moore application may be hydraulic, pressure-side APCs, in that they may communicate with outlets (“pressure sides”) of, typically, remotely located water-circulation pumps. These cleaners also may include canisters as debris filters, with the canisters being “designed so as not to be wholly internal to” bodies of the APCs “yet not materially increase hydraulic drag as” the APCs move autonomously within swimming pools. See Moore, p. 1, ¶ 0018.
U.S. Patent Application Publication No. 2015/0337555 of Hui, et al., discloses a manually-operated (and thus not automatic) pool cleaner having a handle to allow a person to move the cleaner within a pool. The manual cleaner may include both a “mesh filter” for removing larger pieces of debris and a “filter bag” for removing finer pieces of debris. As described in the Hui application, pool water flows through the mesh filter and then through the filter bag to remove, consecutively, larger and finer debris. See Hui, p. 7, ¶ 0101.
Neither the Moore application nor the Hui application addresses by-passing part of a dual-stage filtration system. Neither application discusses a possibility of having a permanent by-pass, in which a portion of the pool water entering the cleaner always by-passes the small-debris filter, and neither contemplates making a small-debris filtration stage optional while retaining a large-debris filtration stage. These and other issues remain to be resolved in connection with APCs.
The present invention resolves issues such as these. In some embodiments of the innovative APCs, one (inner) filter of a dual-filtration system may be positioned, or nested, at least partially within another (outer) filter. However, openings or a gap (or both) may be present such that some water by-passes the finer outer filter yet encounters the coarser inner filter. This by-pass may function to reduce the back-pressure created by the filtration system when the outer filter is heavily loaded.
Versions of the present invention also contemplate the outer filter being optional. Accordingly, it may be removable from the inner filter, with the inner filter then standing alone. In some embodiments the inner filter may snap into the outer filter when both are to be used together, although other attachment mechanisms may be employed instead.
Filtration systems of the invention preferably are of the canister type, including mesh supported by generally rigid frames. At least part of the canister may form a top, roof, or other part of the body of the cleaner; it further may, if desired, include a transparent section allowing viewing of debris therein. Some filters additionally may contain multiple pockets so as to increase the surface area of the mesh.
The canisters may be created in at least two parts, with at least one part being movable relative to the other(s) for dumping of collected debris and cleaning. They may incorporate part of an entrance tube for debris-laden water, with the tube also serving as a handle for grasping a canister. The canister may be fitted into a cavity within the body of the cleaner and snap, or otherwise latch, in place. In at least some embodiments of the invention, the canister may be lowered linearly into the cavity for latching but, after unlatching, may be rotated out of the cavity.
Cleaners embraced within the present invention may include inlet tubes having multiple sections. A first section, for example, may be generally vertically oriented (when the cleaner is upright) and open at the bottom of the cleaner. Communicating therewith may be a second section oriented substantially vertically but curved in nature toward the nominal rear of the cleaner. In this second section may be included Venturi jets for drawing debris-laden water into the tube.
A third section of the inlet tube may be formed in the upper part of the body not only to continue the fluid-flow path, but also to isolate the debris-laden water from filtered water used to drive the cleaner. A fourth section of the tube may be positioned in a lower part of the canister and serve as the handle noted above. Finally, a fifth section of the inlet tube may extend into an upper part of the canister and, if desired, be transparent to show debris-laden water through the transparent section of the canister. Variations of this tube structure may, of course, be utilized instead.
After passing through the mesh of the canister, cleaned water may be exhausted from the cleaner in any suitable manner. Presently preferred is that the water exit the canister into the cavity of the body. Thereafter, it may be exhausted from the rear of the cleaner—through a low-restriction region similar in concept to that of the Moore application or otherwise—into the swimming pool.
APCs of the present invention may include wheels or other motive elements driven hydraulically. Pressurized water entering a cleaner from an outlet of a water-circulation pump may be jetted through nozzles within the body of the cleaner onto rotatable vanes. This internal jetting causes the vanes to rotate, in turn rotating at least one drive shaft. Rotational motion of the drive shaft is converted to movement of the motive elements in any suitable way, with a preferred mechanism including miter gears integrally formed with the shaft and configured to engage teeth of the motive elements either directly or indirectly.
In some versions of the innovative drive system, multiple nozzles are arrayed about the circumference of the rotatable vanes. One presently-preferred version includes three nozzles spaced about the circumference of the vanes. This version also contains three water exits from the drive system, again spaced about the circumference of the vanes and arcuately offset from the nozzles. Water jetted by a first nozzle thus engages any particular vane through an arc and exits prior to that vane being engaged by water jetted by a second nozzle. Similarly, water jetted by the second nozzle engages the vane through an arc and exits prior to the vane being engaged by water jetted by a third nozzle.
Cleaners described herein also may include rollers, or brushes, extending from (nominally) forward sections of their bodies. Flexible blades may be spaced about the exterior of a generally cylindrical core to form the brushes, which may rotate to facilitate scrubbing of a to-be-cleaned surface. The brushes may connect directly or indirectly to the drive system of a cleaner; presently preferred is that they connect to motive elements driven by the drive system. Adjacent outer ends of the brushes may be rotating scrubbers which also function as cushioned bumpers to protect pool surfaces that otherwise might be damaged by rigid plastic portions of the cleaners.
The present innovations also contemplate use of downforce scrubbers or turbines with pressure-side cleaners. Such scrubbers are disclosed and illustrated in commonly-owned U.S. Pat. No. 9,611,668 to van der Meijden, et al. However, in embodiments of the present cleaners, the downforce turbines may be offset (and even potentially isolated) from a water inlet and no longer materially “push” debris toward the inlet.
Consistent with some other pressure-side hydraulic cleaners, versions of the present invention may include hydraulic accessories such as either or both of at least one thrust jet to cause a bias in movement or one or more tail sweeps—i.e. hoses attached at rear regions of the cleaners and receiving pressurized water so as to cause generally serpentine (or other similar) movement thereof. This movement of the sweep tail tends to draw debris into suspension in the pool water, ultimately facilitating its being captured by the cleaner. Embodiments of the present APCs may include a mechanism for adjusting flow through the hydraulic accessories, with some versions including a slot into which a tool may be inserted to rotate a valve communicating with the hydraulic accessory.
It thus is an optional, non-exclusive object of the present invention to provide novel cleaning equipment for water-containing vessels such as swimming pools and spas.
It is also an optional, non-exclusive object of the present invention to provide APCs supplying dual filtration when desired.
It is another optional, non-exclusive object of the present invention to provide APCs including a finer filter into which a coarser filter may be fitted, with openings or gaps allowing some water to by-pass the finer filter.
It is a further optional, non-exclusive object of the present invention to provide APCs in which the finer filter is removable from the coarser filter, allowing the cleaners to operate with only the coarser filtration when desired.
It is, moreover, an optional, non-exclusive object of the present invention to provide pressure-side APCs in which the filtration is in canister, rather than bag, form.
It is an additional optional, non-exclusive object of the present invention to provide APCs whose filter canisters have multiple parts and may incorporate part of an entrance tube for debris-laden water.
It is yet another optional, non-exclusive object of the present invention to provide APCs having entrance tubes with multiple sections, one including Venturi jets, one also functioning as a handle for a canister, and one being transparent to facilitate viewing of debris entering the canister.
It is too an optional, non-exclusive object of the present invention to provide pressure-side APCs with drive systems comprising multiple nozzles arrayed about the circumference of a set of rotatable vanes.
It is also an optional, non-exclusive object of the present invention to provide APCs whose drive systems include multiple water exits, one associated with each nozzle.
It is another optional, non-exclusive object of the present invention to provide APCs having rotating downforce turbines and brushes.
It is, furthermore, an optional, non-exclusive object of the present invention to provide APCs having hydraulic accessories and mechanisms for adjusting water flow through the accessories.
Other objects, features, and advantages of the present invention will be apparent to those skilled in the relevant art with reference to the remaining text and the drawings of this application.
Also illustrated in
Motive elements 18 preferably comprise wheels 18A-D, with two such wheels 18A-B positioned on left side 38 and two more wheels 18C-D positioned on right side 42. Wheels 18A and 18C preferably are driven, although in some embodiments wheels 18B and 18D may be driven as well. Alternatively, tracks (or combinations of tracks and wheels) may be employed as some or all motive elements 18.
Brushes 22 may extend nominally forward of body 14 in the region of front 30 and bottom 50. They hence may function as the leading edge of cleaner 10 when the cleaner 10 is travelling in direction A. Sweep tail 26, by contrast, may extend nominally rearward of body 14 in the region of rear 34, functioning as the trailing portion of cleaner 10.
Each of filters 62 and 66 beneficially may (but need not necessarily) be divided into at least two “pockets” 70 for receiving debris. Dividing filters 62 and 66 in this manner increases the amount of mesh used and thus the overall surface area available for filtering debris. First filter 62 additionally may include fourth section 74 of inlet tube 78 (see
As shown especially in
When present, therefore, first filter 62 and second filter 66 may provide dual-stage filtration of debris-laden water of a swimming pool or spa. The coarser first filter 62 will remove larger debris from the water, while the finer second filter 66 will remove smaller debris. As noted above, some debris-laden water preferably will enter first filter 62 but exit it in a manner by-passing mesh 67 of second filter 66 (hence being subject only to one-stage filtering). Conceivably, however, this by-pass could be omitted from some versions of canister 58.
Contemplated by many embodiments of the invention is that canister 58 always will include the “coarser” first filter 62 (in which fourth section 74 of inlet tube 78 is present). Second filter 66 need not necessarily be used as part of canister 58, however, when its “finer” filtration is unneeded or undesired. Thus, even after first filter 62 is fitted into second filter 66 (as shown in
Either first filter 62 (when used alone) or the combined first and second filters 62 and 66 (when used together) form lower part 82 of canister 58. The canister 58 also includes upper part 86 which may be connected to lower part 82. Upper part 86 may incorporate fifth section 90 of inlet tube 78, which section 90 is configured to align in fluid communication with fourth section 74 when canister 58 is closed as shown in
In use, canister 58 may be fitted into cavity 94 of body 14 (see
The sectional views of
First section 102 preferably is positioned closer to front 30 than to rear 34 and laterally in a central part of body 14. First section 102 also may be positioned nominally forward of downforce turbines 114 and connect to second section 106. It further may be molded as part of body 14 or a separate component connected thereto.
Water entering first section 102 travels nominally upward into second section 106. Like first section 102, second section 106 is generally vertically oriented. Second section 106, however, may be curved if desired so as to slant toward rear 34, where canister 58 is housed in cavity 94. Second section 106 also may include one or more Venturi nozzles or jets 118 (one of which is visible in
Third section 98 may be formed as part of body 14 if desired. As noted above, fourth section 74 may be part of first filter 62 and upper part 86 may include fifth section 90. Although sectioning inlet tube 78 in this manner has multiple benefits, inlet tube 78 need not necessarily be sectioned or, if sectioned, need not necessarily be sectioned in the manner described herein.
Arrow sequence B (
Some water exiting first filter 62 may by-pass second filter 66, however, and instead immediately enter cavity 94 for exhausting through region 122. Hence, this latter portion of water is only filtered once, by the coarser mesh of filter 62 before intermingling with the remaining twice-filtered water in cavity 94. Always maintaining this by-pass may reduce back-pressure created by the filtration system of canister 58 when second filter 66 is heavily loaded and thus enhance operation of cleaner 10 overall.
Conceivably, though, such a by-pass might be disadvantageous in certain circumstances, so the present invention may encompass apparatus in which no by-pass exists. Nevertheless, continuously diverting a portion of water around second filter 66 is preferred. Also preferred is that the by-pass be sufficiently large as to allow a significant flow of water through the cleaner 10 yet sufficiently small as to maintain a pressure differential across the mesh of second filter 66 to force through the finer mesh screen water that has entered the second filter 66, even in the presence of the by-pass and to maintain fine debris stuck to the fine mesh though water may be flowing past it.
As housed in housing 130B-C, turbine 134 may comprise a structure configured to rotate in response to water impinging on its vanes 150. Rotation of turbine 134 in turn produces rotation of drive shaft 138 (which typically is aligned with the axis about which turbine 134 rotates) and of miter gear 146 attached to, or integrally formed with, shaft 138. Directly or indirectly, this rotation is utilized to drive some or all of motive elements 18.
Unlike many hydraulic turbines, in which only a single fluid entrance path exists, turbine 134 of the present invention may include multiple such paths. For example,
Associated with each of nozzles 142A-C is an opening 144A-C. When considering the flow of water within housing 130B-C, the water may encounter each opening 144A-C prior to encountering water entering from the next adjacent nozzle 142A-C. Stated differently, water entering housing 130B-C via nozzle 142A encounters opening 144A prior to encountering nozzle 142B; water entering housing 130B-C via nozzle 142B encounters opening 144B prior to encountering nozzle 142C; and water entering housing 130B-C via nozzle 142C encounters opening 144C prior to encountering nozzle 142A. In this manner, most of the water entering housing 130B-C from a particular nozzle exits the housing 130B-C rather than collide with water entering housing 130B-C from the next circumferentially-adjacent nozzle. The result is an efficient use of the pressurized fluid received from inlet 54 to produce driving force.
Yet additionally, cleaner 10 may include features facilitating its assembly (and disassembly). In particular, each of top cover 174, front grille 178, and chassis 182 may comprise, among other things, parts of body 14 of cleaner 10. Consistent with
Illustrated in
During operation of cleaner 10, internal pressurization of connector 186 and inlet 54 move the connector 186 so that post 190 nestles into pocket 202 of track 194, as depicted in
As noted earlier, canister 58 may be lowered linearly into cavity 94 for latching but, after unlatching, may be rotated out of the cavity 94.
Text appearing in drawings of the Provisional Application includes:
1) Chassis vac tube communicates the vacuum to the pool surface and connects with the inlet geometry that helps encourage a very wide cleaning path.
2) Main vac tube houses the venture jets and diverts the water back toward the canister
3) Vac tube in Top Cover helps isolate the fine debris laden water exiting the canister from the drive system of Magnus
4) Lower canister vac tube doubles as a lower canister handle
5) Clear vac tube help show debris in canister
Debris laden water travels up 5-section vac tube and enters the canister
The water and fine debris is forced through the 1st stage filter of coarse mesh (˜600 micron). The larger debris is captured in the first stage of the filter
The water and fine debris continues to be forced out of the second stage fine filter (˜200 micron). The water and debris can exit the second stage through the fine filter mesh or through unobstructed bypass openings.
The bypass openings are sized optimally
1) Large enough to continue to allow a high flow of water through the cleaner from the venturi vacuum system
2) Small enough to keep a pressure differential across the fine mesh screen to force the water through the mesh even though a bypass is available and to keep fine debris stuck to the fine mesh though water may be flowing past it to the bypass.
Clean water is exhausted from the canister into a chamber in the cleaner. The clean water exits the cleaner into the pool through a low restriction opening in the canister chamber.
Threaded together drive shaft, left hand threads
Idler gears share the same mounting shaft and axis as the drive gear and miter gears that run the down force turbines.
Front Grille, Vac Tube, Tail Valve are trapped between the Chassis and Top Cover without any screws
Chassis makes up the lower portion of vac tube, top cover makes up the upper portion of the vac tube
The foregoing is provided for purposes of illustrating, explaining, and describing embodiments of the present invention. Modifications and adaptations to these embodiments will be apparent to those skilled in the art and may be made without departing from the scope or spirit of the invention. Additionally, the word “pool” and phrase “swimming pool” as used herein may include vessels such as spas and hot tubs within its definition, and “pressurized” water is water whose pressure is above that generally of the vessel in which the cleaner is positioned or operating. Finally, the entire contents of the Moore and Hui applications, the van der Meijden patent, and U.S. Patent Application Publication No. 2018/0066444 of van der Meij den, et al., are incorporated herein by this reference.
This application is a continuation of allowed U.S. patent application Ser. No. 16/225,203, filed Dec. 19, 2018 (the “Allowed Application”), which claims the benefit of and priority to U.S. Provisional Patent Application Ser. No. 62/613,536, filed Jan. 4, 2018, and having the same title as appears above (the “Provisional Application”), the entire contents of both of which Allowed Application and Provisional Application are hereby incorporated herein by this reference.
Number | Name | Date | Kind |
---|---|---|---|
3932281 | Pansini | Jan 1976 | A |
5269913 | Atkins | Dec 1993 | A |
6090219 | Henkin et al. | Jul 2000 | A |
6706175 | Rief et al. | Mar 2004 | B1 |
6942790 | Dolton | Sep 2005 | B1 |
10724265 | Borg et al. | Jul 2020 | B2 |
20100065482 | Sumonthee | Mar 2010 | A1 |
20130146106 | Erlich | Jun 2013 | A1 |
20140042063 | Rief | Feb 2014 | A1 |
20150191926 | Tavor et al. | Jul 2015 | A1 |
20150337555 | Hui et al. | Nov 2015 | A1 |
20170096828 | Moore et al. | Apr 2017 | A1 |
Number | Date | Country |
---|---|---|
2706170 | Mar 2014 | EP |
2007149411 | Dec 2007 | WO |
Entry |
---|
U.S. Appl. No. 16/225,203, Non-Final Office Action dated Nov. 27, 2019, 11 pages. |
U.S. Appl. No. 16/225,203, Notice of Allowance dated Apr. 6, 2020, 7 pages. |
International Application No. PCT/US2018/066396, International Preliminary Report on Patentability dated Jul. 16, 2020, 13 pages. |
International Application No. PCT/US2018/066396, International Search Report and Written Opinion dated May 7, 2019, 18 pages. |
International Application No. PCT/US2018/066396, Invitation to Pay Additional Fees and, Where Applicable, Protest Fee dated Mar. 6, 2019, 13 pages. |
Number | Date | Country | |
---|---|---|---|
20200318372 A1 | Oct 2020 | US |
Number | Date | Country | |
---|---|---|---|
62613536 | Jan 2018 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 16225203 | Dec 2018 | US |
Child | 16904826 | US |