The present invention pertains to thermostats and particularly to programmable thermostats.
The invention is a thermostat system that may have multiple schedules with each schedule having its own setpoints and times. The system may operate with one schedule at a time. There may be an option for combining the multiple schedules.
The present invention may be regarded as an automatic thermostat schedule/program selector. The selector may be at least a portion of thermostat control system used for controlling heating, ventilating and air conditioning (HVAC) equipment. Since some may regard the terms “schedule” and “program” as somewhat synonymous and interchangeable, the term “schedule” may be used in the present description. The thermostat described here is an illustrative example of the invention. The thermostat may provide a user with different schedules for heat and cool modes. An appropriate schedule may be automatically selected based on a system configuration (i.e., a manual changeover (MCO) or an automatic changeover (ACO)) and a system switch mode (i.e., heat or cool).
A default configuration may include the MCO and the heat mode. With this configuration, two or more schedules may be utilized. The latter may be seen by going into a “Set Schedule” menu and sequencing through the schedule. In this mode, the heat times and setpoints may be adjusted and/or viewed. To adjust and/or view the cool schedule, the user should first set the system to “Cool” (or “Off”), and then enter the “Set Schedule” menu. The schedule sequence may allow the user to adjust and/or view the cooling times and setpoints.
Thermostat 10 may have a screen 14 using LCD or other display technology, as in
To set the time and day for thermostat 10, the button 11 situated below area 21 which says “Set Clock/Day/Schedule” may be pressed. Then a “Set Clock” logo 35 may flash on and off near the center of screen 14 and next to the time and day display 22, as shown in
The fan setting may be selected. Button 12 under the “Fan” setting area 25 may be pressed to select “Auto” or “On” for fan operation, as shown in
A system setting may be selected menu 26. The button 13 may be pressed to select “Heat” and get the heating system, as shown in
The thermostat 10 may be programmed for maximum energy savings. Four time periods 28 for each day may be programmed, with different settings for weekdays and weekends. There may be more or less than four periods. The four periods may constitute an illustrative example. The four periods 28 may be referred to as “Wake”, “Leave”, “Return” and “Sleep.” The following example settings may be done for weekdays in the “Heat” System. For example, for the “Wake” period 28, the time 22 may be set to the time that an occupant awakens and the temperature 23 for this period 28 may be set until the occupant leaves for the day.
Programmed settings may also be done for weekends. Besides the Heat settings, Cool settings 23 may also be done for each of the four periods 28, as was done with Heat settings 23.
The thermostat 10 may be pre-set to use EnergyStar® program settings for keeping heating and cooling expenses down. The “Wake” period may begin at 6:00 A.M. for weekdays and weekends. The “Heat” may be set at 70 degrees and the “Cool” may be set at 75 degrees. The “Leave” period may begin at 8:00 A.M. for weekdays and weekends. The “Heat” may be set at 62 degrees and the “Cool” at 75 degrees. The “Return” period may begin at 6:00 P.M. for weekdays and weekends. The “Heat” may be set at 70 degrees and the “Cool” at 75 degrees. The “Sleep” period may begin at 10:00 P.M. for weekdays and weekends. The “Heat” may be set at 62 degrees and the “Cool” at 78 degrees. The above-mentioned settings may apply to both weekdays and the weekend. However, one or more settings and/or periods may be canceled for the weekend. The program schedules may be adjusted in a variety of ways as indicated in the present description.
For one reason or another, the user may wish to do a program schedule override in a temporary fashion. To enter the override status, the user may press button 15 or 16 and hold it down for a couple seconds. Then a label 33 showing “Temporary” on the display screen may appear, as shown in
The occupant may want to program a schedule override that is permanent. To do so, the occupant may press the “HOLD” button 17 and permanently adjust the temperature. This temperature adjustment may override the temperature settings for all time periods. To do this permanent override, the occupant would first assure that the thermostat 10 is set to the desired system (i.e., Heat, Cool, or Auto) to be controlled. The “HOLD” button 17 may turn off the program schedule and allow the occupant to adjust the thermostat manually, as desired. Whatever temperature is set will be maintained 24 hours a day, until it is manually changed. A “Hold” label 34, shown in
Instead of being in the “Heat” or “Cool” system, thermostat 10 may go from the MCO to the ACO (i.e., the Auto Changeover). The auto changeover may be used in climates where both air conditioning and heating are used on the same day. The system may be set to “Auto” by pressing the button 13 until “Auto” shows up in area 26 as shown in
Thermostat 10 may have a built-in compressor protection, which may help prevent damage to the compressor in the associated air conditioning or heat pump system. Damage may occur if the compressor is restarted too soon after shutdown. The compressor may be forced to wait several minutes before restarting. During this wait time, the display 14 may flash a message label 29 “Cool On” or “Heat On” if a heat pump is associated with the system as shown in
The thermostat 10 may have an Adaptive Intelligent Recovery™ (AIR) aspect that may permit the thermostat to “learn” how long the furnace or air conditioner takes to reach the temperature setting. For instance, the user may set the program schedule to the time that the house is to reach the desired temperature. Then the thermostat 10 may turn on the heating or cooling system at an appropriate time before the scheduled time to reach the set temperature at the scheduled time. For example, the user may set the “Wake” time to 6:00 A.M., so that the temperature is at 70 degrees by 6:00 A.M. When the Adaptive Intelligent Recovery™ is in effect, the display 14 of thermostat 10 will display an “In Recovery” label 32, as shown in
A system configuration may be selected for the thermostat 10. Buttons 12 and 16 may be pressed together for about 4 seconds to enter the configuration mode. Numeral placeholder 41 may show a number that represents a set up category for a system that the thermostat 10 may control. Numeral placeholder 42 may show a number that represents a category option. For instance, when entering the configuration mode, a number “1” may appear in the placeholder 41, which refers to a system type, as shown in
The set schedule menu 75 is shown in
The user may select the softkey next option to advance to the next menu item or select the softkey done option to exit the schedule menu. For the Auto changeover schedule option, upon completion of item 77, setting the period time, a user may select the done softkey option 76 or a next softkey option 79. The latter may be selected to continue the set schedule procedure. The next item 81 may be to set the period heat setpoint. Option 76 may be selected to be done or option 82 may be selected to go to the next item 83 to set the period cool setpoint. Option 76 may be selected to be done or the next item 85 may be selected to advance to item 84, period and day repeat software logic. For the manual changeover with system switch in heat schedule option, upon completion of setting the heat period time, item 95, a user may select the done softkey option 76 or a next softkey option 96. The next item 97 may be to set the period heat setpoint. Option 76 may be selected to be done or the next item 85 may be selected to advance to item 84, period and day repeat software logic. For the manual changeover with system switch in cool (or off) schedule option, upon completion of setting the cool period time, item 98, a user may select the done softkey option 76 or a next softkey option 111. The next item 112 may be to set the period cool setpoint. Option 76 may be selected to be done or the next item 85 may be selected to advance to item 84, the period and day repeat software logic. Upon completion of range 78, the done option 76 may be selected to exit the set schedule menu or a next option 85 may be selected which leads to the automatic new period and day software logic item 84. The period and day software logic 84 may automatically advance the user to repeat the range 78 via path 87 with a new period and/or day, or to advance to range 94. The period and day software logic 84 may repeat range 78 for each period and day of the schedule. Upon completion of the period and day software logic 84, hence having completed all periods and days, the next item 91 (same user action as item 85) may advance the user to item 93, the repeat or complete user option. Range 94 may indicate that the user has the option to review the schedule or exit. To review or repeat the schedule through range 78 and range 92, option 87 may be selected. If complete, then the done option 76 may be selected to return to the normal thermostat operation 65 of
After the clock is set, button 13 under menu 26 showing “Set Schedule” may be pressed to get illustration 103 of the screen 14. It shows flashing segments of clock 22 with a time for a start of the Wake period. Key 16 or 17 may be pressed to set the time. Softkey 13 under menu 26 that shows “Next” may be pressed to get a screen 14 as shown in illustration 104. That screen 14 may show flashing segments for a heat temperature setpoint 23. Temperature setpoint 23 may be adjusted or set by pressing key 16 or 17. After the heat temperature setpoint 23 is adjusted, softkey 13 under menu 26 indicating “Next” may be pressed to get illustration 105 of a screen 14 that shows flashing segments for a cool temperature setpoint 23. The cool temperature setpoint may be adjusted or set by pressing adjustment key 16 or 17.
After the cool temperature setpoint is adjusted, softkey 13 under menu 26 indicating “Next” may be pressed to get illustration 106 which shows the screen 14 with flashing segments of clock 22 with a start time for the Leave period. The time may be set with keys 16 and 17, as done for the Wake period. The temperature setpoints 23 may be similarly set. The user may sequence through the periods for weekdays and the weekend, as desired, until the complete schedule has been viewed or edited, as indicated in illustration 107. There may be four periods, Wake, Leave, Return and Sleep, as noted at other places of this description. At any point of the set schedule procedure, the user may press a softkey 11 under menu 24, which indicates “Done”, and return to the home screen 14 normal operation. However, if the user proceeds to complete the set schedule procedure, a screen 14 as shown in illustration 108 may appear. The screen of illustration 108 may show flashing segments of “Done” in menu 24 to indicate completion of the procedure. The user may then press softkey 11 to get the screen 14 of illustration 109 showing the home screen normal operation.
When going through the period and temperature settings, as in the storyboard illustrations 101-109, one may be permitted to make both heat and cool settings if the system 10 is set in menu 26 to “Heat”, “Cool”, “Auto” or “Off” for “auto changeover”, or to “Auto” for “auto changeover only”. “Auto” might be the only system selection available in menu 26 for “auto changeover only”. One might be permitted to make only heat settings for a system selection of “Heat”, only cool settings for a system selection of “Cool”, and only cool settings for a system selection of “Off” in menu 26 when system 10 in manual changeover. However, thermostat system 10 may be designed and/or programmed, as desired, to consist of variants of the noted configurations, modes and settings, in this paragraph, such as editing schedules from any mode or system selection, and in other places of the present description.
A system may be designed similar to system 10 but without being programmable. However, such non-programmable thermostat system may also have a selectable “auto only” configuration that does not have a system selection of “Off”. Both systems may benefit with the “auto only” aspect, in that a system cannot be switched off, for instance, accidentally by adults or by children playing with the system. This may prevent misery to a challenged person unable to switch on or control the system in exceptionally hot weather, or avoid damage to a water system of a house that is left unoccupied for a period of time in a cold climate. There are other mishaps which the “auto only” aspect of the thermostat system may avoid or prevent.
The programming, scheduling, settings, modes, configuration option selections, and the like, described herein may be performed by a user on a thermostat system 10 in an armchair.
In the present specification, some of the matter may be of a hypothetical or prophetic nature although stated in another manner or tense.
Although the invention has been described with respect to at least one illustrative example, many variations and modifications will become apparent to those skilled in the art upon reading the present specification. It is therefore the intention that the appended claims be interpreted as broadly as possible in view of the prior art to include all such variations and modifications.
Number | Name | Date | Kind |
---|---|---|---|
4079366 | Wong | Mar 1978 | A |
4174807 | Smith et al. | Nov 1979 | A |
4206872 | Levine | Jun 1980 | A |
4224615 | Penz | Sep 1980 | A |
4264034 | Hyltin et al. | Apr 1981 | A |
4296334 | Wong et al. | Oct 1981 | A |
4298946 | Hartsell et al. | Nov 1981 | A |
4308991 | Peinetti et al. | Jan 1982 | A |
4332352 | Jaeger | Jun 1982 | A |
4337822 | Hyltin et al. | Jul 1982 | A |
4337893 | Flanders et al. | Jul 1982 | A |
4373664 | Barker et al. | Feb 1983 | A |
4379483 | Farley | Apr 1983 | A |
4382544 | Stewart | May 1983 | A |
4386649 | Hines et al. | Jun 1983 | A |
4388692 | Jones et al. | Jun 1983 | A |
4431134 | Hendricks et al. | Feb 1984 | A |
4442972 | Sahay et al. | Apr 1984 | A |
4446913 | Krocker | May 1984 | A |
4479604 | Didner | Oct 1984 | A |
4506827 | Jamieson et al. | Mar 1985 | A |
4556169 | Zervos | Dec 1985 | A |
4606401 | Levine et al. | Aug 1986 | A |
4621336 | Brown | Nov 1986 | A |
4622544 | Bially et al. | Nov 1986 | A |
4628201 | Schmitt | Dec 1986 | A |
4646964 | Parker et al. | Mar 1987 | A |
4717333 | Carignan | Jan 1988 | A |
4725001 | Carney et al. | Feb 1988 | A |
4837731 | Levine et al. | Jun 1989 | A |
4881686 | Mehta | Nov 1989 | A |
4918439 | Wozniak et al. | Apr 1990 | A |
4948040 | Kobayashi et al. | Aug 1990 | A |
4992779 | Sugino et al. | Feb 1991 | A |
4997029 | Otsuka et al. | Mar 1991 | A |
5005365 | Lynch | Apr 1991 | A |
5012973 | Dick et al. | May 1991 | A |
5038851 | Mehta | Aug 1991 | A |
5053752 | Epstein et al. | Oct 1991 | A |
5065813 | Berkeley et al. | Nov 1991 | A |
5086385 | Launey et al. | Feb 1992 | A |
5088645 | Bell | Feb 1992 | A |
5140310 | DeLuca et al. | Aug 1992 | A |
5161606 | Berkeley et al. | Nov 1992 | A |
5170935 | Federspiel et al. | Dec 1992 | A |
5172565 | Wruck et al. | Dec 1992 | A |
5181653 | Foster et al. | Jan 1993 | A |
5230482 | Ratz et al. | Jul 1993 | A |
5238184 | Adams | Aug 1993 | A |
5251813 | Kniepkamp | Oct 1993 | A |
5259445 | Pratt et al. | Nov 1993 | A |
5329991 | Mehta et al. | Jul 1994 | A |
5348078 | Dushane et al. | Sep 1994 | A |
5386577 | Zenda | Jan 1995 | A |
5404934 | Carlson et al. | Apr 1995 | A |
5482209 | Cochran et al. | Jan 1996 | A |
5526422 | Keen | Jun 1996 | A |
5537106 | Mitcuhashi | Jul 1996 | A |
5566879 | Longtin | Oct 1996 | A |
5570837 | Brown et al. | Nov 1996 | A |
5673850 | Uptegraph | Oct 1997 | A |
5682206 | Wehmeyer et al. | Oct 1997 | A |
5732691 | Maiello et al. | Mar 1998 | A |
5782296 | Metha | Jul 1998 | A |
5818428 | Eisenbrandt et al. | Oct 1998 | A |
5873519 | Beilfuss | Feb 1999 | A |
5886697 | Naughton et al. | Mar 1999 | A |
5902183 | D'Souza | May 1999 | A |
5915473 | Ganesh et al. | Jun 1999 | A |
5937942 | Bias et al. | Aug 1999 | A |
5947372 | Tiernan | Sep 1999 | A |
5950709 | Krueger et al. | Sep 1999 | A |
6020881 | Naughton et al. | Feb 2000 | A |
6032867 | Dushane et al. | Mar 2000 | A |
6059195 | Adams et al. | May 2000 | A |
6081197 | Garrick et al. | Jun 2000 | A |
6101824 | Meyer et al. | Aug 2000 | A |
6104963 | Cebasek et al. | Aug 2000 | A |
6119125 | Gloudeman et al. | Sep 2000 | A |
6121875 | Hamm et al. | Sep 2000 | A |
6140987 | Stein et al. | Oct 2000 | A |
6141595 | Gloudeman et al. | Oct 2000 | A |
6149065 | White et al. | Nov 2000 | A |
6154681 | Drees et al. | Nov 2000 | A |
6167316 | Gloudeman et al. | Dec 2000 | A |
6192282 | Smith et al. | Feb 2001 | B1 |
6196467 | Dushane et al. | Mar 2001 | B1 |
6208331 | Singh et al. | Mar 2001 | B1 |
6216956 | Ehlers et al. | Apr 2001 | B1 |
6236326 | Murphy | May 2001 | B1 |
6285912 | Ellison et al. | Sep 2001 | B1 |
6290140 | Pesko et al. | Sep 2001 | B1 |
6315211 | Sartain et al. | Nov 2001 | B1 |
6318639 | Toth | Nov 2001 | B1 |
6330806 | Beaverson et al. | Dec 2001 | B1 |
6344861 | Naughton et al. | Feb 2002 | B1 |
6351693 | Monie et al. | Feb 2002 | B1 |
6398118 | Rosen et al. | Jun 2002 | B1 |
6453687 | Sharood et al. | Sep 2002 | B2 |
6466132 | Caronna et al. | Oct 2002 | B1 |
6478233 | Shah | Nov 2002 | B1 |
6502758 | Cottrell | Jan 2003 | B2 |
6518953 | Armstrong | Feb 2003 | B1 |
6518957 | Lehtinen et al. | Feb 2003 | B1 |
6546419 | Humpleman et al. | Apr 2003 | B1 |
6556899 | Harvey et al. | Apr 2003 | B1 |
6578770 | Rosen | Jun 2003 | B1 |
6580950 | Johnson et al. | Jun 2003 | B1 |
6581846 | Rosen | Jun 2003 | B1 |
6595430 | Shah | Jul 2003 | B1 |
6608560 | Abrams | Aug 2003 | B2 |
6619555 | Rosen | Sep 2003 | B2 |
6621507 | Shah | Sep 2003 | B1 |
6726112 | Ho | Apr 2004 | B1 |
6786421 | Rosen | Sep 2004 | B2 |
6789739 | Rosen | Sep 2004 | B2 |
6868293 | Schurr et al. | Mar 2005 | B1 |
20010029585 | Simon et al. | Oct 2001 | A1 |
20010042684 | Essalik et al. | Nov 2001 | A1 |
20010052459 | Essalik et al. | Dec 2001 | A1 |
20020005435 | Cottrell | Jan 2002 | A1 |
20020011923 | Cunningham et al. | Jan 2002 | A1 |
20020022991 | Sharood et al. | Feb 2002 | A1 |
20020060701 | Naughton et al. | May 2002 | A1 |
20020092779 | Essalik et al. | Jul 2002 | A1 |
20020096572 | Chene et al. | Jul 2002 | A1 |
20020138184 | Kipersztok et al. | Sep 2002 | A1 |
20020173929 | Seigel | Nov 2002 | A1 |
20030000692 | Okano et al. | Jan 2003 | A1 |
20030014179 | Szukala et al. | Jan 2003 | A1 |
20030033156 | McCall | Feb 2003 | A1 |
20030033230 | McCall | Feb 2003 | A1 |
20030034897 | Shamoon et al. | Feb 2003 | A1 |
20030034898 | Shamoon et al. | Feb 2003 | A1 |
20030074489 | Steger et al. | Apr 2003 | A1 |
20030121652 | Carey et al. | Jul 2003 | A1 |
20030123224 | LaCroix et al. | Jul 2003 | A1 |
20030136135 | Kim et al. | Jul 2003 | A1 |
20030142121 | Rosen | Jul 2003 | A1 |
20030150926 | Rosen | Aug 2003 | A1 |
20030150927 | Rosen | Aug 2003 | A1 |
20040074978 | Rosen | Apr 2004 | A1 |
20040245352 | Smith | Dec 2004 | A1 |
20040262410 | Hull | Dec 2004 | A1 |
Number | Date | Country |
---|---|---|
33341176 | Apr 1985 | DE |
0070414 | Jan 1983 | EP |
0678204 | Mar 2000 | EP |
0985994 | Mar 2000 | EP |
1033641 | Sep 2000 | EP |
1074009 | Feb 2001 | EP |
2711230 | Apr 1995 | FR |
WO 9711448 | Mar 1997 | WO |
WO 9739392 | Oct 1997 | WO |
WO 0043870 | Jul 2000 | WO |
WO 0152515 | Jul 2001 | WO |
WO 0179952 | Oct 2001 | WO |
Number | Date | Country | |
---|---|---|---|
20060192021 A1 | Aug 2006 | US |