The present disclosure relates to the field of remote monitoring and controlling, over a network, the status of a movable barrier, and more particularly to the field of remote monitoring and instructing changes to, over the Internet, the open or closed status of a movable garage door.
Movable barriers, such as upward acting sectional or single panel garage doors, residential and commercial rollup doors, and slidable and swingable gates, are used to alternatively allow and restrict entry to building structures and property. These barriers are driven between their respective open and closed positions by coupled barrier moving units, sometimes referred to as “barrier operators”, and in the specific case of a door, as “door operators,” and in the even more specific case of a garage door, as “garage door operators.”
For example, a typical garage door operator for driving an upward acting sectional garage door between its open and closed positions includes, as a central control unit, a microcontroller for (i) processing incoming user-actuated door instructions and (ii) generating output control signals corresponding to these instructions; a motor controller for receiving and transmitting these control signals to a motor; and a DC or AC motor drivingly coupled to the garage door. The user-actuated door instructions are in the form of wired or wireless signals transmitted to the microcontroller from interior or exterior wall consoles or from proximately located hand held or vehicle mounted RF transmitters.
With the near ubiquity of the Internet and the proliferation of electronic devices and equipment designed to access the Internet, such as personal computers, cellphones, and Smartphones, systems are currently being designed and implemented in the trade that enable non-proximate, or remote, monitoring and control, via the Internet, of a variety of home appliances, building doors, and the like. For example, if a homeowner is not in proximity to its residence, and needs to determine whether the garage door it had intended to close, did in fact close, or whether the garage door it needed to leave open for a workman to enter had, in fact, been left open, using one of these systems, he/she can, through access over the Internet, remotely monitor the status of the garage door (e.g., whether it is open or closed). Moreover, if the garage door is not in the desired position, these systems are designed to also enable the homeowner to transmit change of door status commands over the Internet to effect the desired position, all without having to be physically proximate the garage to do so.
For example, U.S. Pat. No. 6,998,977 (“the '977 patent”), issued to The Chamberlain Group, Inc., generally describes one type of such system. According to that description, the garage door status (open, closed, opening, closing, or at a mid-point location) is sent over a network interface to the network (i.e., the Internet) in response to request(s) for such status. While the disclosed system does provide for remote monitoring of the garage door status, it suffers from a variety of drawbacks. For example, because the status of the door is sent only in response to a request for such status, the system must necessarily account for two-way communication over the network interface and the network—first, the status request, and then, the status—which necessarily introduces an undesirable lag in time necessitated by this back and forth propagation. Moreover, this required two-way communication (and consequent display) will necessarily require increased bandwidth, and bandwidth (particularly cellular data bandwidth) can be expensive in today's world.
In addition, neither of the network interfaces described in the '977 patent is adequate for optimum performance nor do they effectively address the complexities involved with the monitoring and control of door status in multiple door arrangements. Thus, there is a need for a new and improved communication system that enables a user, by way of a network such as the Internet, to more effectively remotely monitor and control the status of movable barriers, specifically one that avoids the inefficiency of status requests, incorporates new and improved means for enabling independent change, from a single source, of the door status of any one of multiple doors, and otherwise incorporates features that meet the convenience, response time, and communication demands of today's fast paced society.
In accordance with the aforementioned and other objectives, disclosed herein is a new and improved Internet-based door monitoring and control communication system that enables the detection of door status by a position detector physically attached to each monitored door, which door status is thereafter transmitted to a multi-functional control module adapted to wirelessly transmit the door status information, via a designated building (“home”) router, to the Internet Cloud, for storage and final transmission to Internet access equipment, such as a mobile wireless communication device, like a “smart” cellphone (i.e., a “Smartphone”). The Smartphone then enables the user to access the Internet and view the transmitted door status information.
The multi-functional control module is also adapted to enable the actuation of one or more operatively connected door operator(s) respectively controlling the movement of the monitored door(s), in accordance with change of door status commands, these commands either user-initiated from the Smartphone and/or automatically generated from the Cloud, and wirelessly transmitted back through the Internet Cloud, and home router, to the multi-functional control module.
In accordance with an important aspect of this communication system, all door status information is “pushed” all the way from the position detector to the Smartphone, without any request for such door status, thus avoiding unnecessary communication lag and excessive use of bandwidth associated with status requests.
In accordance with a preferred embodiment of the system, the door is a residential garage door, each position detector sensing the fully closed or not fully closed (i.e. open) door status, this door status information then wirelessly transmitted to the control module, using Bluetooth, and the control module thereafter wirelessly transmitting, using Wi-Fi, the door status information to the Smartphone. Also transmitted is coding sufficient to enable the Smartphone to direct change of door status commands to the desired door operator associated with the monitored door for which change of status is desired.
In a preferred embodiment of the system, the door status information is automatically transmitted in response to a change of orientation of the garage door between fully closed or open (i.e., event driven) or, in the absence of such change, in accordance with a pre-established periodic pulse rate.
The herein described communication system is configured to monitor and control the door status of a single door or a plurality of doors. To effect change of door status, and in accordance with a preferred embodiment of the system, the door control module is adapted to pair selective monitored doors with selective normally-open relays adapted to be temporarily closed by the remotely generated change of door status commands. This coded pairing is wirelessly transmitted, via the Internet Cloud, to the Smartphone which, under the direction of its stored application, enables the user to transmit back to the door control module, via the Internet Cloud, these change of door status commands. This results in the relevant connected relay(s) momentarily closing, resulting in the corresponding door opener(s) directing the movement (e.g., the opening or closing) of its associated door(s) in accordance with the respective change of door status command(s).
These, and other, features of this new and improved communication system, as well as the advantages thereof, will become readily apparent from the following detailed description, read in conjunction with the accompanying drawings, in which:
One or more embodiments of communication systems in accordance with the principles of the present invention will be described below. These described embodiments are only examples of techniques to implement the invention, as defined solely by the attached claims. Additionally, in an effort to provide a focused description of the invention and the principles of the invention, irrelevant features of an actual implementation may not be described in the specification.
With initial reference to
In accordance with the embodiment of the system 1 depicted in
Accordingly, the garage door status monitored by position detector 10 is wirelessly transmitted, preferably using Bluetooth, to control module 20. Control module 20 then automatically wirelessly transmits this monitored door status information, preferably using Wi-Fi, to the Internet Cloud 70, via router 60, for initial storage in one of the designated servers of the Internet Cloud 70. This server then subsequently wirelessly transmits the door status information to the Smartphone 40 for viewing by the user.
The transmission of the door status information from the position detector 10 to the control module 20 occurs whenever there is a change of door status, as well as in accordance with a pre-established periodic pulse at a transmission pulse rate unique to the detector 10, typically every 30 seconds. Similarly, door status information received by the control module 20 (as well as codes defining the router I.D. and the paired relationship between the detector 10 and the control module 20) are transmitted from the control module 20 for storage in the designated server in the Internet Cloud 70 whenever the control module 20 detects a change of door status, as well as in accordance with a pre-established periodic pulse at a transmission pulse rate unique to the control module 20, typically every 20 minutes. The transmitted door status stored in the designated Internet Cloud server is then subsequently transmitted to the Smartphone 40. In no event is there ever a request for door status information made or received by any component of the system 1, the door status information instead always being “pushed” from component to component.
If the door status is desired to be changed, the Smartphone 40 wirelessly transmits the change of status command (e.g., close an open door, or open a closed door) in the reverse direction, to the router 60, via the Internet Cloud 70, and thereafter to the control module 20 which, in accordance with the subsequently described procedure, activates the door operator 50 to toggle its associated door in accordance with the transmitted change of status command.
To provide for carrying out of the change of door status instruction, a normally-open relay 128 is operatively associated with control module 20, door operator 50 being conductively connected with such relay. Thus, assuming the position detector 10 has been paired with the relay 128, any change of door status command (e.g., open a closed door, or close an open door) reaching the control module 20 results in the momentary closure of relay 128, thereby actuating the door operator 50 to carry out the command, for example by either opening the garage door, if closed, or closing the garage door, if open.
The Internet based system 1 may be used to remotely monitor and change the status of a single barrier or one or more barriers of a multiple barrier arrangement. Accordingly, and with reference now to
The control module 20 is in bidirectional wireless communication, via the router 60, with the Internet Cloud 70, typically comprising a plurality of interconnected servers, with Internet server 62 dedicated to the operation of system 1. Accordingly, coded information from control module 20 (comprising, at least (i) the identification of the paired relationship between the monitored doors (or their attached position detectors) and the respective door control relays, (ii) the door status of each monitored door, and (iii) the router I.D.) is wirelessly transmitted, via router 60, to Internet Cloud 70 and temporarily stored in server 62. Thereafter, such information is wirelessly routed, without request, by server 62 to Smartphone 40. If the status of one or more of the monitored doors is to be changed, the Smartphone wirelessly directs such change of status command, via the Internet Cloud, back to the control module 20 for actuation of the relay(s) that had been identified to the Smartphone as paired with the door(s) to which the door command pertains. For example, if the door to which position detector 10b shows to be open is desired to be closed, and such door has been paired with relay 128b, the instruction signal from Smartphone 40 to close that door will be routed to relay 128b, temporarily closing that relay, and resulting in the actuation of door operator 50b to close its associated door. Additional and more specific details of this overall operation will be subsequently described after now first describing the detailed design and operation of principal components of system 1 carrying out such operation.
Accordingly, with reference now to
While various types of tilt switch assemblies will be useful for the afore described purpose, a preferred form of such switches may be obtained from OncQue Corporation of Taichung, Taiwan and/or described in U.S. Pat. Nos. 6,518,523 and 7,256,360, the entire contents of which are hereby incorporated by reference to the maximum extent allowable under the law.
Each of the three position detectors 10 also preferably includes a crystal 306 controlled transceiver 302 for enabling bidirectional wireless communications with the control module 20, preferably using Bluetooth, for the initial door/relay pairing and door status transmission operations subsequently described. An antenna 308 is coupled to the transceiver 302 through filter 310 for transmission and reception of wireless signals to and from control module 20. An embedded microcontroller 300 monitors the sensor inputs from ball sensors 304 and 305 and effects control over the transceiver 302. Momentary button switch 316 sets up the position detector for initial pairing and activates the LEDs 318 and 320 in a pattern that indicates to the user the Bluetooth link, battery and setup status. The microcontroller is powered by battery 314.
Referring now to
A crystal 104 controlled WiFi transceiver 102 enables Wi-Fi wireless communications with the Internet Cloud 70 via router 60, and associated embedded microcontroller 100 effects control over the transceiver 102 as well as over door control relays 128a, 128b, and 128c for the pairing operations subsequently described. Antennas 108 and 109 are respectively coupled through filters 110 and 111 to transceiver 102 for transmission and receipt of the incoming and outgoing Wi-Fi signals, the details of which are subsequently described. Flash memory 106 is coupled to the microcontroller 100 for data storage purposes.
Normally-open door control relays 128a, 128b, and 128c are respectively connected to garage door operators 50a, 50b, and 50c by way of wire connectors 126a, 126b, and 126c, so that the closing of any of these relays results in the activation of its respectively coupled door operator to toggle its associated garage door from one status to the other (e.g., from the closed to the open position, from the open to the closed position, or to a mid-point position.) Operation of the particular door control relay(s) is under the control of embedded microcontroller 100, which in turn is dependent on the coding in the incoming Wi-Fi signal from the Internet Cloud 70. Depression of buttons 140, 144 and/or 148 enable an initial pairing of the three door control relays 128a-128c with the respective position detector 10a-10c, and therefore with the respective garage doors. LEDs 142, 146 and 150 provide user feedback regarding status.
Depression of a Wi-Fi button 154 establishes a WiFi connection between the control module 20 and the router 60, and Wi-Fi LED 152 confirms such connection. A hardwired power supply 130 provides mains power for the control module 20 received through the power connector 132 from the power adapter 134. A buzzer 122 and warning light 124 provide warning that the garage door will be imminently moved and/or is in motion.
The control module can be mounted on the inside wall of the garage at a level conveniently accessed by the homeowner. When so mounted, it can be placed in parallel with the conventional push button wall console or, if desired, the push button control can be added to the control module 20, thus enabling the assembly to serve both the function of a user-actuated attended door opener, as well as the herein described remote door monitoring and unattended door control.
Referring now to
An example of the display on the interface 204 showing the “closed” door status of one of the doors at home that was last received by the Smartphone 70, and presenting the user with the option to issue a command to “open” the door is depicted in
The overall operation of the Internet-based remote communication system 1 of
The “active” position detectors thereafter transmit their respective on/off door status to the control module 20, and the control module 20 thereafter wirelessly transmits to the Internet Cloud 70, using Wi-Fi, the coded (i) door status of each “active” door, (ii) the pairing of the relay(s) with the active door(s), and (iii) the router 60 I.D. This information is stored in Internet server 62. A signal containing (i) the door status of the active doors, (ii) the aforestated pairing arrangements, and (iii) a router I.D. is thereafter transmitted to the Smartphone 40.
If the status of one or more selective doors is to be changed, the Smartphone 40 thereafter transmits to the control module 20, via Internet Cloud 70 and router 60, coded (i) change of status commands for the selected door(s), (ii) the pairing arrangement of the so selected door(s) and their associated relay(s), and (iii) router 60 I.D., thereby enabling the microcontroller 100 to activating the relay(s) paired with the selected door(s), and causing the connected garage door operator(s) to be actuated to change the door status of the associated door(s).
This change of door status should be detected by the relevant position detector, transmitting the change of door status to the control module 20 and thereafter, the Smartphone 40, as previously described. However, if the control module 20 fails to receive this change of door status information within a predetermined time period, the microprocessor 100 of the control module 20 pushes an error signal to the Smartphone 40 over the Internet 70. For example, if the instruction received from the Smartphone 40 is to close the garage door, but because of an obstruction in the door path, the door does not close and instead returns to its open position, the microprocessor 100 of the control module 20 will transmit an error signal to the Smartphone 40, indicating such failure.
In some applications, the Smartphone may be used to transmit for storage in the barrier server 62, a specific time of day that the garage door is to always be closed, the maximum time a door is to remain open before closing, and/or the time that the door is to be opened and then closed to allow temporary access to the garage. Under such circumstances, when the designated time is reached, the change of door status will be automatically transmitted to the control module from the Internet Cloud 70 to carry out the particular instruction(s).
The microcontroller 300 of a position detector 10a, 10b, 10c may monitor the battery 314 of that position detector, and at regular intervals, transmit a low battery status signal to the control module 20. The control module 20, upon receipt, transmits the battery status to the Smartphone 40 over the Internet 70, ultimately with the aim of allowing the user to know when the battery 314 of that position detector 10a, 10b, 10c is in need of changing.
While the aforementioned design and operation have been described with respect to a limited number of embodiments, those skilled in the art, having benefit of this disclosure, will appreciate that other embodiments can be envisioned that do not depart from the scope of the disclosure as disclosed herein. Accordingly, the scope of the disclosure shall be limited only by the attached claims.
For example, while the above system 1 has been described as remotely monitoring and controlling the status of residential garage doors, it may similarly be used to monitor and control the status of any movable barrier, regardless of whether the barrier opens vertically or horizontally, or whether it be a sectional or one piece door. In addition, while the above system 1 has been described as monitoring and controlling the open and closed status of a door, it can also monitor and control the status of a door at any position. Furthermore, in addition to, or instead of, the network being the Internet, any network may apply, such as an intranet, wide area network, or local area network. Also, in some cases, the position detector 10 need not be of a tilt switch type physically attached to the door, but may be of any other type sufficiently proximate thereto to effectively monitor its orientation.
As shown at block 706, the control module 20 receives and wirelessly transmits, preferably via Wi-Fi, the change in status of the barrier detected by the position detector 10 to a router 60, which in turn transmits the status change through a network, such as the Internet Cloud 70. Like the position detector 10, the control module 20 pushes the status change of the barrier without being requested. The change in barrier status is communicated through the network and stored on one or more servers 62, as indicated at block 708. The servers 62 communicate the change in status of the barrier to the Smartphone 40, as indicated at block 710, and the Smartphone 40 displays the status of the barrier to a user.
Moreover, multiple position detectors 10a-c may be in wireless communication with a single control module 20, and each position detector 10a-c may push barrier-status information for their respective barriers to the control module 20. The control module 20 can wirelessly transmit the status of multiple barriers through the network to the server 62, which can provide the status information of the multiple barriers to the Smartphone 40 of the user. Thus, embodiments may monitor one or more barriers with a single control module 20.
In collective reference to
Number | Name | Date | Kind |
---|---|---|---|
3833895 | Fecteau | Sep 1974 | A |
4463292 | Engelmann | Jul 1984 | A |
4821024 | Bayha | Apr 1989 | A |
5148159 | Clark et al. | Sep 1992 | A |
5402105 | Doyle | Mar 1995 | A |
5798681 | Chang | Aug 1998 | A |
5872513 | Fitzgibbon et al. | Feb 1999 | A |
5903226 | Suman et al. | May 1999 | A |
6011468 | Lee | Jan 2000 | A |
6166634 | Dean | Dec 2000 | A |
6184787 | Morris | Feb 2001 | B1 |
6243000 | Tsui | Jun 2001 | B1 |
6310548 | Stephens, Jr. et al. | Oct 2001 | B1 |
6346889 | Moss | Feb 2002 | B1 |
6388559 | Cohen | May 2002 | B1 |
RE37784 | Fitzgibbon et al. | Jul 2002 | E |
6553238 | Ginzel et al. | Apr 2003 | B1 |
6597291 | Tsui | Jul 2003 | B2 |
6615132 | Nagasaka et al. | Sep 2003 | B1 |
6624605 | Powder et al. | Sep 2003 | B1 |
6724316 | Addy et al. | Apr 2004 | B2 |
6791467 | Ben-Ze'ev | Sep 2004 | B1 |
6975203 | Brookbank et al. | Dec 2005 | B2 |
6980117 | Kirkland et al. | Dec 2005 | B1 |
6989760 | Dierking et al. | Jan 2006 | B2 |
6998977 | Gregori et al. | Feb 2006 | B2 |
7034484 | Gioia et al. | Apr 2006 | B2 |
7071813 | Fitzgibbon | Jul 2006 | B2 |
7119681 | Eskildsen | Oct 2006 | B2 |
7158043 | Kirkland et al. | Jan 2007 | B2 |
7161319 | Ergun et al. | Jan 2007 | B2 |
7181174 | Fitzgibbon et al. | Feb 2007 | B2 |
7224275 | Fitzgibbon | May 2007 | B2 |
7266344 | Rodriguez | Sep 2007 | B2 |
7342368 | Roman | Mar 2008 | B2 |
7468676 | Styers et al. | Dec 2008 | B2 |
7482923 | Fitzgibbon | Jan 2009 | B2 |
7498936 | Maeng | Mar 2009 | B2 |
7515063 | Brundula | Apr 2009 | B2 |
7532709 | Styers et al. | May 2009 | B2 |
RE41452 | Wojciak, Jr. | Jul 2010 | E |
7750890 | Fitzgibbon et al. | Jul 2010 | B2 |
7778604 | Bauman et al. | Aug 2010 | B2 |
7852212 | Fitzgibbon | Dec 2010 | B2 |
7876218 | Fitzgibbon | Jan 2011 | B2 |
8144011 | Fitzgibbon | Mar 2012 | B2 |
8207818 | Keller, Jr. | Jun 2012 | B2 |
8279040 | Laird | Oct 2012 | B2 |
8345010 | Fitzgibbon et al. | Jan 2013 | B2 |
8421591 | Karasek | Apr 2013 | B2 |
8587404 | Laird | Nov 2013 | B2 |
8643465 | Fitzgibbon | Feb 2014 | B2 |
RE44816 | Gioia et al. | Mar 2014 | E |
8866583 | Ordaz | Oct 2014 | B2 |
20020180600 | Kirkland et al. | Dec 2002 | A1 |
20020183008 | Menard et al. | Dec 2002 | A1 |
20030076235 | Tsui | Apr 2003 | A1 |
20040212498 | Peterson et al. | Oct 2004 | A1 |
20100297941 | Doan et al. | Nov 2010 | A1 |
20110311052 | Myers et al. | Dec 2011 | A1 |
20150077219 | Keller, Jr. | Mar 2015 | A1 |
20150148983 | Fitzgibbon | May 2015 | A1 |
Number | Date | Country | |
---|---|---|---|
20160300415 A1 | Oct 2016 | US |