Automatic transmissions and methods therefor

Information

  • Patent Grant
  • 10704687
  • Patent Number
    10,704,687
  • Date Filed
    Friday, August 18, 2017
    7 years ago
  • Date Issued
    Tuesday, July 7, 2020
    4 years ago
Abstract
Systems and methods for controlling transmissions and associated vehicles, machines, equipment, etc., are disclosed. In one case, a transmission control system includes a control unit configured to use a sensed vehicle speed and a commanded, target constant input speed to maintain an input speed substantially constant. The system includes one or more maps that associate a speed ratio of a transmission with a vehicle speed. In one embodiment, one such map associates an encoder position with a vehicle speed. Regarding a specific application, an automatic bicycle transmission shifting system is contemplated. An exemplary automatic bicycle includes a control unit, a shift actuator, various sensors, and a user interface. The control unit is configured to cooperate with a logic module and an actuator controller to control the cadence of a rider. In one embodiment, a memory of, or in communication with, the control unit includes one or more constant cadence maps that associate transmission speed ratios with bicycle speeds.
Description
BACKGROUND OF THE INVENTION
Field of the Invention

The present invention relates generally to mechanical transmissions, and more specifically to automatic transmissions and methods of controlling said transmissions.


Related Technology

Automatic transmissions are found in a variety of machines. However, in certain fields manual operation of the transmission is still prevalent. For example, in the bicycle industry, most bicycles are configured for manual operation of the transmission, which generally involves manually actuating levers, cables, and linkages to cause a chain to move from one rear sprocket to another. However, an ongoing need has been manifested for systems and corresponding methods to facilitate the automatic control of the transmission of a bicycle.


Inventive embodiments disclosed here address this need, among others, by providing systems for, and methods of, automatically controlling transmissions, which systems and methods in some cases are particularly suitable for human powered vehicles such as bicycles.


SUMMARY OF THE INVENTION

The systems and methods described herein have several features, no single one of which is solely responsible for the overall desirable attributes. Without limiting the scope as expressed by the claims that follow, the more prominent features of certain embodiments of the invention will now be discussed briefly. After considering this discussion, and particularly after reading the section entitled “Detailed Description of the Preferred Embodiments,” one will understand how the features of the systems and methods provide several advantages over related traditional systems and methods.


In one aspect the invention addresses a method of automatically controlling a ball-planetary transmission of a bicycle. The method involves receiving an input associated with a target user pedaling speed, determining a speed of the bicycle, and determining a target transmission ratio based at least in part on the target user pedaling speed and the determined speed of the bicycle. The method can also include adjusting a transmission ratio of the transmission to be substantially equal to the target transmission ratio.


In another aspect, the invention is directed to a method of automatically controlling a ball-planetary transmission of a bicycle. The method includes receiving an input associated with a target user pedaling speed, determining a speed of the bicycle, and based upon the target user pedaling speed and the determined speed of the bicycle, adjusting a speed ratio of the bicycle to maintain a user pedaling speed within a band of the target user pedaling speed.


Yet another aspect of the invention relates to a method of automatically controlling a ball-planetary transmission of a bicycle. The method involves providing an input associated with a target user pedaling speed, determining a speed of the bicycle, and identifying a target encoder position associated with the speed of the bicycle. The method can further include actuating a servo to achieve the target encoder position.


In one instance, the invention is concerned with a system for automatically shifting a ball-planetary bicycle transmission. The system includes a speed sensor configured to detect a speed of the bicycle, a processor configured to receive input from the speed sensor, and a data input interface configured to provide cadence data to the processor, said cadence data indicative of a desired, constant input pedaling speed. The system can additionally have a memory in communication with the processor, the memory having stored therein one or more maps correlating bicycle speeds with speed ratios. In one embodiment, the system includes a logic module in communication with the processor, the logic module configured to cooperate with the processor to determine from said maps a target speed ratio based on a bicycle speed and a desired, constant input pedaling speed. In some embodiments, the system has an actuator, in communication with the processor, the actuator configured to adjust a speed ratio of the transmission to be substantially equal to the determined target speed ratio.


Another aspect of the invention addresses a bicycle having a ball-planetary transmission and a system for automatically shifting the ball-planetary transmission. In one embodiment, the system has a speed sensor configured to detect a speed of the bicycle. The system has a processor configured to receive input from the speed sensor. In some embodiments, the system includes a data input interface configured to provide cadence data to the processor. The cadence data is indicative of a desired, constant input pedaling speed. The system can include a memory in communication with the processor. In one embodiment, the memory has stored therein one or more maps correlating bicycle speeds with speed ratios. The system includes a logic module in communication with the processor. The logic module is configured to cooperate with the processor to determine from the maps a target speed ratio based on a bicycle speed and a desired, constant input pedaling speed. The system can also include an actuator in communication with the processor. The actuator is configured to adjust a speed ratio of the transmission to be substantially equal to the determined target speed ratio.


Yet another aspect of the invention concerns an automatic shifting bicycle system having a ball-planetary transmission having a shift rod. In one embodiment, the system has an actuator operably coupled to the shift rod. The system includes a processor in communication with the actuator. The system also includes a memory in communication with the processor. In some embodiments, the memory has at least one table correlating a position of the actuator to the transmission ratio.


These and other improvements will become apparent to those skilled in the art as they read the following detailed description and view the enclosed figures.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 is a block diagram of a transmission control system that employs inventive embodiments described herein.



FIG. 2 is a block diagram of a yet another transmission control system incorporating inventive embodiments described herein.



FIG. 3 is a block diagram of an automatic bicycle transmission shifting system in accordance with inventive embodiments described herein.



FIG. 4 is a process flow chart of a method that can be used to generate data structures that can be used with inventive embodiments of transmission control methods and systems described herein.



FIG. 5A is an exemplary data structure that can be used with inventive embodiments of transmission control methods and systems described herein.



FIG. 5B is yet another exemplary data structure that can be used with the inventive embodiments of transmission control methods and systems described herein.



FIG. 6 is a process flow chart of an automatic transmission control method in accordance with the inventive embodiments described herein.





DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS

Preferred embodiments of the present invention will now be described with reference to the accompanying figures, wherein like numerals refer to like elements throughout. The inventive systems and methods described here can be generally used with transmissions and variators disclosed in U.S. Pat. Nos. 6,241,636; 6,419,608; 6,689,012; and 7,011,600. Likewise, the inventive systems and methods disclosed here are related to transmissions, controllers, user interfaces, and vehicles or technology applications described in U.S. patent application Ser. Nos. 11/243,484; 11/543,311; 60/887,767; 60/895,713; and 60/914,633. The entire disclosure of each of these patents and patent applications is hereby incorporated herein by reference.


With reference to FIG. 1, a transmission control system 100 for maintaining a speed input constant is described now. In one embodiment, the system 100 includes an input shaft 102 and an output shaft 104 coupled to a transmission 106, which is coupled to a transmission controller 108. The input shaft 102 has an input speed wi, and the output shaft 106 has an output speed wo. A transmission speed ratio (SR) is defined as the output speed wo divided by the input speed wi (or equivalently, wi=wo/SR). During operation of the control system 100, in certain embodiments, as the output speed wo changes, the transmission controller 108 adjusts the SR to keep the input speed wi at a substantially constant value, or within a predetermined band of the input speed wi. Thus, in one embodiment, given a desired, constant input speed wi, and a detected output speed wo during operation, the controller 108 adjusts the transmission 104 to operate at a predetermined SR associated with the detected output speed wo.


The transmission 106 can be a conventional range box, gear box, planetary-gear-based transmission, traction-based transmission (such as a toroidal transmission, a ball planetary transmission, or any other continuously variable or infinitely variable transmission), or any combination thereof. The transmission controller 108 can include various integrated circuits, computer processors, logic modules, input and output interfaces, data structures, digital memory, power sources, actuators, sensors, encoders, servo mechanisms, etc. Preferably, in one embodiment, the transmission controller 108 includes a data structure that correlates vehicle output speed wo to data associated with SR of the transmission 106.


Passing to FIG. 2 now, an automatic transmission control system 200 includes a speed sensor 202 coupled to a digital processor 204. A digital memory 206 is placed in communication with the digital processor 204. The digital memory 206 has stored therein one or more matrices, or tables, or maps (hereinafter “tables 208”) of output speed wo correlated with SR. In some instances, a logic module 209 is placed in communication with the digital process 204; the logic module 209 is provided with suitable programming and/or algorithms to cooperate with the digital processor 204 in processing inputs and providing outputs, such as determining a SR based on a sensed output speed wo and a data input associated with a desired constant input speed wi. In one embodiment, the system 200 includes an input device 210 coupled to the digital processor 204 to provide to the digital processor 204 a data input associated with a desired constant input speed target wc. In some embodiments of the system 200, an actuator 212 (or ratio adjuster mechanism) is coupled to the digital processor 204, whereby the digital processor 204 can control the actuator 212 to adjust the SR of a transmission 107, which in one instance can be a continuously variable transmission (CVT).


During operation, the speed sensor 202 provides to the digital processor 204 an indication of the output speed wo. The input device 210 provides to the digital processor 204 a target input speed wc. The digital processor 204, in cooperation with the logic module 209 and/or the tables 208, determines a SR associated with the indicated output speed wo and the target input speed wc. The digital processor 204 then commands the actuator 212 to adjust the operating speed ratio of the transmission 107 to the determined SR. In some embodiments, the target input speed wc can be substantially constant over a range of output speeds wo, resulting in the rider pedaling at a substantially constant cadence. In one embodiment, the input device 210 provides a map, or a selection indicative of such a map, of predetermined input speed wc values associated with output speed wo values.


Referencing FIG. 3 now, an automatic shifting bicycle system 300 is configured to keep a rider cadence within a narrow band of a rider selected cadence level. As used here, the term “cadence” refers to the pedaling speed of the rider (which is equivalent to the rotational speed of the bicycle cranks). In one embodiment, the bicycle system 300 includes a control unit 302 in communication with a speed sensor 304, an encoder position sensor 306, a user interface 308, a power source 310, and a reversible motor 312. In some instances, a gear reduction set 314 is coupled between the reversible motor 312 and a transmission 316. A bicycle wheel 318 and an input driver 320 are operationally coupled to the transmission 316. In some embodiments, the encoder position sensor 306 is coupled to the gear reduction set 314, and the speed sensor 304 operationally couples to the bicycle wheel 318 or to any rotating component associated therewith. The input driver 320 can be, or is operationally coupled to, a rear wheel sprocket, a chain, a front sprocket, a one-way clutch, a freewheel, etc. The power source 310 can be coupled to, or integrated with, anyone of the control unit 302, user interface 308, and motor 312. The power source 310 can be, for example, a battery, a dynamo, or any other suitable power generating or energy storing device.


In some embodiments, the control unit 302 includes a digital processor 322 that is in communication with a memory 324 and a logic module 326. The control unit 302 can additionally include a motor controller 328 that is in communication with the digital processor 322. It should be noted that the digital processor 322, memory 324, logic module 326, and the motor controller 328 need not be all integrated into one device or housed in a common housing. That is, in some embodiments, any one of the digital processor 322, memory 324, logic module 326, and motor controller 328 can be remotely located from any of the others; communication between or among them can be wired or wireless. The memory 324 is preferably provided with one more tables 330 having data that correlates values of output speed wo to values of SR. In one embodiment, as illustrated in FIG. 3, values of SR are represented by values associated with encoder positions; that is, an encoder position is representative of at least one SR state of the transmission 316. As used here, the term “encoder position” refers to a state of a detector and/or a sensor that is representative of a position of a component of the transmission 316, or of an internal or external component coupled to such a component of the transmission 316. For example, in one case, the encoder position is indicative of an angular position of a gear coupled to a shift rod of the transmission 316 such that the encoder position is indicative of an angular or axial position of the shift rod.


In one embodiment, the user interface 308 includes a display 332 and one or more operation button switches 334. The display 332 can be any suitable screen, or the like, for presenting a variety of graphical and/or alphanumerical information. The operation switches 334 can include one or more buttons or manipulators configured to allow an operator to enter data, make selections, or change values, for example. In some embodiments, the operation switches 334 allow the rider to select among modes of operation (for example, automatic continuous ratio adjustment, automatic stepped ratio adjustment, manual, etc.). The operation switches 334 can be configured to allow the rider to command different cadence levels while in automatic mode, or to request a SR adjustment while in manual mode.


Still referring to FIG. 3, during operation of the automatic shifting bicycle system 300, the user can use the user interface 308 to adjust the desired cadence level while operating the bicycle on a routine ride. The control unit 302 receives the cadence input, queries the memory 324, and in cooperation with the logic module 326 selects a corresponding table 330 associated with the cadence input. Hence, during normal operation of the bicycle, the user can select from among predetermined cadence level maps (that is, tables 330) by indicating a desired cadence value. The speed sensor 304 detects the speed of the bicycle wheel 318, which in some instances involves detecting a rotational speed of some other rotating component (such as the spokes of the bicycle wheel 318) that rotates at a speed indicative of the rotational speed of the bicycle wheel 318. Based upon the indicated cadence value and the detected speed of the bicycle wheel 318, the control unit 302 identifies from the tables 330 a SR, or encoder position, associated with the sensed speed of the bicycle wheel 318. The control unit 302, in cooperation with the motor controller 328, actuates the reversible motor 312 to adjust the transmission 316 to attain a speed ratio that substantially matches the SR identified from the table 330. As the control unit 302 adjusts the SR in response to changes to the speed of the bicycle wheel 318, the cadence of the rider is controlled to stay within a band of the rider's desired cadence level. For example, in some instances, the actual cadence level of the rider during steady state operation can be maintained at the desired cadence level plus or minus 10 revolutions-per-minute (rpm), or +/−5-rpm, or less than +/−2-rpm. In some embodiments, the automatic shifting bicycle system 300 can be configured with multiple automatic modes. The modes can be predetermined to control a rider's cadence in any desired manner over a range of output speeds. For example, in one such mode, a table 330 can be provided with cadence values, output speed values, and SR values associated such that over a first range of output speeds the cadence is controlled to a certain cadence value or a specific range of cadence values, while in a second range of output speeds the cadence is controlled to yet another cadence value or yet another specific range of cadence values.


Referring to FIG. 4 now, a process 400 for generating data structures that can be used with a table 330 is described. In one embodiment, an exemplary transmission 316 is a compound variable planetary (CVP) of the ball-planetary, traction CVT type. An example of such devices is a NuVinci™ transmission. In such a transmission 316, the speed ratio between the speed of an input traction ring and the speed of an output traction ring is determined, at least in part, by a position of a shift rod. Hence, a position of an encoder of a servo mechanism can be correlated with a position of the shift rod, which effectively means that a position of the encoder is correlated with a speed ratio of the transmission 316. The process 400 starts at a state 402 after a servo mechanism having an encoder has been coupled to a transmission 316. At a state 404, an encoder position is recorded (and preferably stored in a data structure will be part of the table 330, for example). Moving to a state 406, an input speed of the transmission 316 is recorded, and at a state 408 an output speed of the transmission 316 is recorded. Passing to a state 410, a SR is calculated by dividing the output speed wo by the input speed wi. At a state 412, the SR is recorded (and preferably stored in a data structure that will be part of the table 330).


The process 400 then moves to a decision state 414 wherein it is determined whether the end of the range of the transmission 316 has been reached. For the current purposes, it is assumed that the range of encoder positions can be coextensive with the range of speed ratios of the transmission 316. When the transmission 316 is a continuously variable transmission there is an infinite number of transmission speed ratios within a given range; however, as a practical matter, both the encoder positions and the speed ratios of the transmission 316 will be each a finite set. If the end of the range of the transmission 316 has been reached, the process 400 continues to a state 416 at which the encoder is moved to the next encoder position. The process 400 then returns to the state 404 and records the new encoder position. The process 400 then repeats until at the decision state 414 it is determined that the end of the range of the transmission 316 has been reached, in which case the process 400 ends at a state 418.


Thus, a result of the process 400 is data structures correlating encoder positions with empirically determined speed ratios of the transmission 316. For a certain class of continuously variable transmissions, the speed ratio and encoder position data can be fit to a curve generally described by SR=A*exp(B*p), wherein A and B are constants or parameters characteristic of individual devices, and p is the encoder position. For example, for an exemplary CVP, A=0.4844 and B=0.0026. The data tables 330 can incorporate the encoder position and speed ratio data generated by the process 400.


Passing to FIG. 5A, an exemplary table 330 is shown and will now be discussed. The table 330 can include a vehicle speed data structure 502 with data associated with a vehicle speed. The table 330 can additionally include an encoder position data structure 504 with data associated with an encoder position. The vehicle speed data structure 502 and the encoder position data structure 504 correspond to one another as forming columns and rows of the table 330. Given a target constant input speed, a corresponding SR can be determined and tabulated as a requested SR data structure 506. In some cases, however, a requested SR is not available because, for example, such a SR is lower than the lowest SR the transmission 316 can provide. In such cases, the requested SR data structure 506 is used to produce a possible SR data structure 508. In the example illustrated in FIG. 5, the lowest possible SR available from the transmission 316 is 0.5; consequently, all the values of the requested SR data structure 506 below 0.5 are represented in the possible SR data structure 508 as 0.5. It follows that the corresponding lowest encoder position is then associated with the lowest possible SR ratio value in the table 330. Similarly, in some cases, the requested SR is higher than the highest possible SR of the transmission 316; hence, the entries in the requested SR data structure 506 that are higher than the highest possible SR of the transmission 316 are represented by the highest SR of the transmission 316 (which in the illustrative example is 1.615).


Of course, those values in the requested SR data structure 506 that fall within the possible range of speed ratios of the transmission 316 correspond to identical entries in the possible SR data structure 508. It should be noted that, other than for values falling below and above the possible range of the transmission 316, in the table 330 there is a unique encoder position value in the encoder position data structure 505 that corresponds to a unique SR value in the possible SR data structure 508. However, a speed range (rather than a unique speed) corresponds to a given encoder position. Hence, for a wheel speed of 58-rpm and less than 60-rpm in the vehicle speed data structure 502, there corresponds only one value of encoder position (that is, 24) and one value of possible speed ratio (that is, 0.52). The illustrative table 330 includes a cadence data structure 510 having data associated with a calculated cadence (using the expression wi=wo/SR). The cadence structure 510 need not be part of the table 330; however, the inclusion of the cadence structure 510 in the illustrative table 330 facilitates a demonstration of how the cadence can be maintained constant (as shown by the constant value of 50 in the cadence data structure 510) over the possible range of speed ratios of the transmission 316.



FIG. 5B illustrates yet another example of a map or table 331 of output speeds to SR that yield a predetermined rider cadence. In one embodiment, the table 331 includes a vehicle speed data structure 503 having data associated with an output, or vehicle, speed. The table 331 additionally includes an encoder position data structure 505 with data associated with an encoder position. The vehicle speed data structure 503 and the encoder position data structure 505 correspond to one another as forming columns and rows of the table 331. Given a desired, predetermined map of target input speeds, a possible SR data structure 509 is produced. A cadence data structure 511, which need not be part of the table 331, illustrates how the cadence is controlled over the range of vehicle speeds associated with the vehicle speed data structure 503. As can be seen in FIG. 5B, the cadence is allowed to rise to a first level (that is, 74.7-rpm), the SR is adjusted to 0.9 from 0.6, as the output speed changes from 0 to 100-rpm. The cadence drops to 51.1-rpm and is allowed to rise to 74.7-rpm again before at an output speed of 153-rpm the SR is adjusted from 0.9 to 1.4, at which the cadence drops to 48.8. As the output speed increases to 200-rpm, the cadence rises to 64-rpm, and the SR remains constant at 1.4. This is an example of automatically controlling a transmission such that the cadence is controlled relative to a three-speed ratio shifting scheme. Of course, similar maps can be provided for other automatic modes, such as 4-, 5-, 6-, 8-, or 9-speed, for example. In addition, the cadence ranges can be adjusted by moving shift events via the mapping, such as a range of 65-rpm to 90-rpm instead of 50-rpm to 75-rpm, for a given vehicle speed or range of vehicle speeds, for example. In some embodiments, the maps can have any desired relationship (for example, linear, exponential, inverse, etc.) between output speed and cadence.


Turning to FIG. 6, it will be described now a process 600 for controlling a transmission 316 so that a rider cadence is controlled to be within a band of a rider selected cadence level. The process 600 starts at a state 602 after a bicycle automatic shifting system 300, for example, has been turned on and initialized. The process 600 continues to a state 604 and receives an indication of a target constant cadence level. In one embodiment, the rider uses the user interface 308 to provide the target constant cadence level. The process 600 moves next to a state 606 where a speed of the bicycle is determined. In one embodiment, the speed sensor 304 detects the speed of the bicycle wheel 318. However, in other embodiments, the speed of the bicycle can be determined by measuring and/or sensing other characteristics or components of the bicycle, such as detecting a voltage, resistance, or current level on a dynamo (not shown) coupled to the bicycle wheel 318. The process 600 then continues to a state 608 wherein an encoder position associated with a bicycle speed and a target cadence is determined or identified. In one embodiment, the digital processor 322 cooperates with the memory 324 and the logic module 326 to query a table 330 and thereby select an encoder position that is correlated with a bicycle speed and a target cadence. At a state 610 of the process 600, an actuator is commanded to move to a position associated with the selected encoder position of state 608. In some embodiments, at a decision state 612 of the process 600, it is determined whether the process 600 should exit and end at a state 614 or loop back to the state 604 to receive a target cadence input. At the state 604, the process 600 can query whether the rider has commanded a new cadence level; if not, the process 600 continues using the cadence level initially entered. In one embodiment, the rider does not set the cadence level initially, but rather the control unit 302 is configured to use a default cadence level, such as 70-rpm for example. In yet other embodiments, a cadence-versus-output speed map (rather than a specific cadence value) can be provided to the process at the state 604. As previously discussed, such a map can include any kind of mapping associating cadence, output speed, and corresponding SR. At the state 614 of the process 600, the decision to exit can be based on a power off condition, a mode change command, or the like. For example, if the rider changes the mode from automatic mode to manual mode, the process 600 detects the new condition and exits at the state 614.


Those of skill will recognize that the various illustrative logical blocks, modules, circuits, and algorithm steps described in connection with the embodiments disclosed herein, including with reference to the automatic shifting bicycle system 300 may be implemented as electronic hardware, software stored on a computer readable medium and executable by a processor, or combinations of both. To clearly illustrate this interchangeability of hardware and software, various illustrative components, blocks, modules, circuits, and steps have been described above generally in terms of their functionality. Whether such functionality is implemented as hardware or software depends upon the particular application and design constraints imposed on the overall system. Skilled artisans may implement the described functionality in varying ways for each particular application, but such implementation decisions should not be interpreted as causing a departure from the scope of the present invention. For example, various illustrative logical blocks, modules, and circuits described in connection with the embodiments disclosed herein may be implemented or performed with a general purpose processor, a digital signal processor (DSP), an application specific integrated circuit (ASIC), a field programmable gate array (FPGA) or other programmable logic device, discrete gate or transistor logic, discrete hardware components, or any combination thereof designed to perform the functions described herein. A general purpose processor may be a microprocessor, but in the alternative, the processor may be any conventional processor, controller, microcontroller, or state machine. A processor may also be implemented as a combination of computing devices, e.g., a combination of a DSP and a microprocessor, a plurality of microprocessors, one or more microprocessors in conjunction with a DSP core, or any other such configuration. Software associated with such modules may reside in RAM memory, flash memory, ROM memory, EPROM memory, EEPROM memory, registers, a hard disk, a removable disk, a CD-ROM, or any other suitable form of storage medium known in the art. An exemplary storage medium is coupled to the processor such the processor can read information from, and write information to, the storage medium. In the alternative, the storage medium may be integral to the processor. The processor and the storage medium may reside in an ASIC. For example, in one embodiment, the control unit 302 comprises a processor (not shown). The processor of the control unit 302 may also be configured to perform the functions described herein with reference to one or both of the motor controller 328 and the user interface 308.


The foregoing description details certain preferred embodiments of the present invention and describes the best mode contemplated. It will be appreciated, however, that no matter how detailed the foregoing appears in text, the invention can be practiced in many ways. The scope of the present invention should therefore be construed only in accordance with the appended claims and any equivalents thereof.

Claims
  • 1. A method of automatically controlling a continuously variable transmission (CVT) of a bicycle comprising an electronic controller in communication with a data input interface, a speed sensor for determining a speed of the bicycle, a sensor for determining user pedaling speed, and an actuator, the electronic controller configured to receive a first input associated with a target user pedaling speed from the data input interface and a second input associated with a speed of the bicycle from the speed sensor, the method comprising the steps of: receiving a third input associated with a present user pedaling speed; anddetermining one of a first map that identifies a target CVT ratio based on bicycle speed and the target user pedaling speed when a user cadence is non-zero and a second map that identifies a target CVT ratio based on bicycle speed when a target user pedaling speed is zero.
  • 2. The method of claim 1, further comprising identifying a target CVT ratio for one of the first map and the second map, wherein identifying the target CVT ratio comprises determining an actuator position based on the speed of the bicycle or the target user pedaling speed and the speed of the bicycle.
  • 3. The method of claim 2, wherein determining the actuator position comprises determining an encoder position value from an encoder position data structure.
  • 4. The method of claim 3, wherein identifying the target CVT ratio comprises determining a unique speed ratio (SR).
  • 5. The method of claim 1, wherein power is supplied to the electronic controller via a dynamo.
  • 6. The method of claim 1, wherein the speed of the bicycle is determined from a wheel speed.
  • 7. The method of claim 1, wherein the data input interface is mounted on the bicycle.
  • 8. A computer program product for automatically controlling a continuously variable transmission (CVT) of a bicycle having an electronic controller in communication with a data input interface, a speed sensor for determining a speed of the bicycle, a sensor for determining user pedaling speed, and an actuator, the computer program product comprising a set of instructions executable by the electronic controller to perform: storing a set of maps correlating speed ratios with bicycle speeds and user pedaling speeds determined by the sensor, wherein at least one map in the set of maps correlates speed ratios with bicycle speeds when the user pedaling speed is zero;receiving a first input associated with a target user pedaling speed from the data input interface;receiving a second input associated with the speed of the bicycle from the speed sensor; andreceiving a third input associated with a present user pedaling speed; anddetermining a map in the set of maps based on the present user pedaling speed and the speed of the bicycle.
  • 9. The computer program product of claim 8, wherein the set of maps correlates speed ratios with actuator positions, each actuator position corresponding to one of a speed ratio and a range of speed ratios.
  • 10. The computer program product of claim 9, wherein the computer program product comprises a set of instructions executable by the electronic controller to perform adjusting a speed ratio of the CVT, and wherein adjusting the speed ratio of the CVT comprises commanding the actuator to move to an encoder position.
  • 11. A bicycle having a continuously variable transmission (CVT) controllable by an electronic controller in communication with a data input interface, a speed sensor for determining a speed of the bicycle, a sensor for determining user pedaling speed, and an actuator, wherein the electronic controller is configured to: store a set of maps correlating speed ratios with bicycle speeds and user pedaling speeds, wherein at least one map in the set of maps correlates speed ratios with bicycle speeds when the user pedaling speed is zero;receive a first input associated with a target user pedaling speed from the data input interface;receive a second input associated with a speed of the bicycle from the speed sensor;receive a third input associated with a present user pedaling speed; anddetermine a map in the set of maps based on the present user pedaling speed and the speed of the bicycle; andadjust the CVT to a target transmission ratio based on the determined map.
  • 12. The bicycle of claim 11, wherein determining the map comprises identifying a target transmission ratio, and wherein identifying the target transmission ratio comprises determining an actuator position based on the speed of the bicycle or the target user pedaling speed and the speed of the bicycle.
  • 13. The bicycle of claim 12, wherein the set of maps includes a first set of maps correlating speed ratios with bicycle speeds and user pedaling speeds and a second set of maps correlating actuator positions and speed ratios.
  • 14. The bicycle of claim 12, wherein the set of maps includes a first set of maps correlating speed ratios with bicycle speeds and user pedaling speeds and a second set of maps correlating encoder positions and speed ratios.
  • 15. The bicycle of claim 12, wherein the set of maps includes a first set of maps correlating speed ratios with bicycle speeds and user pedaling speeds and a second set of maps correlating encoder positions and actuator positions.
  • 16. The bicycle of claim 11, wherein determining the map comprises determining a target transmission ratio, and wherein determining the target transmission ratio comprises determining a unique speed ratio (SR).
  • 17. The bicycle of claim 11, wherein power is supplied to the electronic controller via a dynamo.
  • 18. The bicycle of claim 11, wherein the speed of the bicycle is determined from a wheel speed.
  • 19. The bicycle of claim 11, wherein the data input interface is mounted on the bicycle.
CROSS REFERENCE TO RELATED APPLICATIONS

This application is a continuation of U.S. patent application Ser. No. 15/012,420, filed Feb. 1, 2016 and scheduled to issue as U.S. Pat. No. 9,739,375 on Aug. 22, 2017, which is a continuation of U.S. patent application Ser. No. 14/147,026, filed Jan. 3, 2014 and issued Feb. 2, 2016 as U.S. Pat. No. 9,249,880, which is a continuation of U.S. patent application Ser. No. 13/681,792, filed Nov. 20, 2012 and issued on Jan. 7, 2014 as U.S. Pat. No. 8,626,409, which is a continuation of U.S. patent application Ser. No. 12/335,810, filed Dec. 16, 2008 and issued on Nov. 27, 2012 as U.S. Pat. No. 8,321,097, which claims the benefit of U.S. Provisional Patent Application No. 61/016,305, filed on Dec. 21, 2007. Each of the above-identified applications is hereby incorporated by reference in its entirety.

US Referenced Citations (746)
Number Name Date Kind
4963 Armstrong et al. Feb 1847 A
719595 Huss Feb 1903 A
1121210 Techel Dec 1914 A
1175677 Barnes Mar 1916 A
1207985 Null et al. Dec 1916 A
1380006 Nielsen May 1921 A
1390971 Samain Sep 1921 A
1558222 Beetow Oct 1925 A
1629902 Arter et al. May 1927 A
1631069 Smith May 1927 A
1686446 Gilman Oct 1928 A
1774254 Daukus Aug 1930 A
1793571 Vaughn Feb 1931 A
1847027 Thomsen et al. Feb 1932 A
1850189 Weiss Mar 1932 A
1858696 Weiss May 1932 A
1865102 Hayes Jun 1932 A
1978439 Sharpe Oct 1934 A
2030203 Gove et al. Feb 1936 A
2060884 Madle Nov 1936 A
2086491 Dodge Jul 1937 A
2100629 Chilton Nov 1937 A
2109845 Madle Mar 1938 A
2112763 Cloudsley Mar 1938 A
2131158 Almen et al. Sep 1938 A
2134225 Christiansen Oct 1938 A
2152796 Erban Apr 1939 A
2196064 Erban Apr 1940 A
2209254 Ahnger Jul 1940 A
2230398 Benjafield Feb 1941 A
2259933 Holloway Oct 1941 A
2269434 Brooks Jan 1942 A
2325502 Auguste Jul 1943 A
RE22761 Wemp May 1946 E
2461258 Brooks Feb 1949 A
2469653 Kopp May 1949 A
2480968 Ronai Sep 1949 A
2553465 Monge May 1951 A
2586725 Henry Feb 1952 A
2595367 Picanol May 1952 A
2596538 Dicke May 1952 A
2597849 Alfredeen May 1952 A
2675713 Acker Apr 1954 A
2696888 Chillson et al. Dec 1954 A
2868038 Billeter May 1955 A
2716357 Rennerfelt Aug 1955 A
2730904 Rennerfelt Jan 1956 A
2748614 Weisel Jun 1956 A
2959070 Flinn Jan 1959 A
2873911 Perrine Feb 1959 A
2874592 Oehrli Feb 1959 A
2883883 Chillson Apr 1959 A
2891213 Kern Jun 1959 A
2901924 Banker Sep 1959 A
2913932 Oehrli Nov 1959 A
2931234 Hayward Apr 1960 A
2931235 Hayward Apr 1960 A
2949800 Neuschotz Aug 1960 A
2959063 Perry Nov 1960 A
2959972 Madson Nov 1960 A
2964959 Beck Dec 1960 A
3008061 Mims et al. Nov 1961 A
3028778 Hayward Apr 1962 A
3035460 Guichard May 1962 A
3048056 Wolfram Aug 1962 A
3051020 Hartupee Aug 1962 A
3071194 Geske Jan 1963 A
3086704 Hurtt Apr 1963 A
3087348 Kraus Apr 1963 A
3154957 Kashihara Nov 1964 A
3163050 Kraus Dec 1964 A
3176542 Monch Apr 1965 A
3184983 Kraus May 1965 A
3204476 Rouverol Sep 1965 A
3209606 Yamamoto Oct 1965 A
3211364 Wentling et al. Oct 1965 A
3216283 General Nov 1965 A
3229538 Schlottler Jan 1966 A
3237468 Schlottler Mar 1966 A
3246531 Kashihara Apr 1966 A
3248960 Schottler May 1966 A
3273468 Allen Sep 1966 A
3280646 Lemieux Oct 1966 A
3283614 Hewko Nov 1966 A
3292443 Felix Dec 1966 A
3340895 Osgood, Jr. et al. Sep 1967 A
3374009 Jeunet Mar 1968 A
3407687 Hayashi Oct 1968 A
3430504 Dickenbrock Mar 1969 A
3439563 Petty Apr 1969 A
3440895 Fellows Apr 1969 A
3464281 Hiroshi et al. Sep 1969 A
3477315 Macks Nov 1969 A
3487726 Burnett Jan 1970 A
3487727 Gustafsson Jan 1970 A
3574289 Scheiter et al. Apr 1971 A
3581587 Dickenbrock Jun 1971 A
3661404 Bossaer May 1972 A
3695120 Titt Oct 1972 A
3707888 Schottler Jan 1973 A
3727473 Bayer Apr 1973 A
3727474 Fullerton Apr 1973 A
3736803 Horowitz et al. Jun 1973 A
3768715 Tout Oct 1973 A
3769849 Hagen Nov 1973 A
3800607 Zurcher Apr 1974 A
3802284 Sharpe et al. Apr 1974 A
3810398 Kraus May 1974 A
3820416 Kraus Jun 1974 A
3866985 Whitehurst Feb 1975 A
3891235 Shelly Jun 1975 A
3934493 Hillyer Jan 1976 A
3954282 Hege May 1976 A
3984129 Hege Oct 1976 A
3987681 Keithley et al. Oct 1976 A
3996807 Adams Dec 1976 A
4023442 Woods et al. May 1977 A
4053173 Chase, Sr. Oct 1977 A
4086026 Tamanini Apr 1978 A
4098146 McLarty Jul 1978 A
4103514 Grosse-Entrup Aug 1978 A
4159653 Koivunen Jul 1979 A
4169609 Zampedro Oct 1979 A
4177683 Moses Dec 1979 A
4227712 Dick Oct 1980 A
4314485 Adams Feb 1982 A
4345486 Olesen Aug 1982 A
4369667 Kemper Jan 1983 A
4391156 Tibbals Jul 1983 A
4459873 Black Jul 1984 A
4464952 Stubbs Aug 1984 A
4468984 Castelli et al. Sep 1984 A
4493677 Ikenoya Jan 1985 A
4494524 Wagner Jan 1985 A
4496051 Ortner Jan 1985 A
4501172 Kraus Feb 1985 A
4515040 Takeuchi et al. May 1985 A
4526255 Hennessey et al. Jul 1985 A
4546673 Shigematsu et al. Oct 1985 A
4549874 Wen Oct 1985 A
4560369 Hattori Dec 1985 A
4567781 Russ Feb 1986 A
4569670 McIntosh Feb 1986 A
4574649 Seol Mar 1986 A
4585429 Marier Apr 1986 A
4617838 Anderson Oct 1986 A
4628766 De Brie Perry Dec 1986 A
4630839 Seol Dec 1986 A
4631469 Tsuboi et al. Dec 1986 A
4647060 Tomkinson Mar 1987 A
4651082 Kaneyuki Mar 1987 A
4663990 Itoh et al. May 1987 A
4700581 Tibbals, Jr. Oct 1987 A
4713976 Wilkes Dec 1987 A
4717368 Yamaguchi et al. Jan 1988 A
4725258 Joanis, Jr. Feb 1988 A
4735430 Tomkinson Apr 1988 A
4738164 Kaneyuki Apr 1988 A
4744261 Jacobson May 1988 A
4756211 Fellows Jul 1988 A
4781663 Reswick Nov 1988 A
4806066 Rhodes et al. Feb 1989 A
4838122 Takamiya et al. Jun 1989 A
4856374 Kreuzer Aug 1989 A
4857035 Anderson Aug 1989 A
4869130 Wiecko Sep 1989 A
4881925 Hattori Nov 1989 A
4900046 Aranceta-Angoitia Feb 1990 A
4909101 Terry Mar 1990 A
4918344 Chikamori et al. Apr 1990 A
4961477 Sweeney Oct 1990 A
4964312 Kraus Oct 1990 A
4976170 Hayashi et al. Dec 1990 A
5006093 Itoh et al. Apr 1991 A
5020384 Kraus Jun 1991 A
5025685 Kobayashi et al. Jun 1991 A
5033322 Nakano Jul 1991 A
5033571 Morimoto Jul 1991 A
5037361 Takahashi Aug 1991 A
5044214 Barber Sep 1991 A
5059158 Bellio et al. Oct 1991 A
5069655 Schivelbusch Dec 1991 A
5083982 Sato Jan 1992 A
5099710 Nakano Mar 1992 A
5121654 Fasce Jun 1992 A
5125677 Ogilvie et al. Jun 1992 A
5138894 Kraus Aug 1992 A
5156412 Meguerditchian Oct 1992 A
5194052 Ueda et al. Mar 1993 A
5230258 Nakano Jul 1993 A
5236211 Meguerditchian Aug 1993 A
5236403 Schievelbusch Aug 1993 A
5254044 Anderson Oct 1993 A
5261858 Browning Nov 1993 A
5267920 Hibi Dec 1993 A
5273501 Schievelbusch Dec 1993 A
5318486 Lutz Jun 1994 A
5319486 Vogel et al. Jun 1994 A
5323570 Kuhlman et al. Jun 1994 A
5330396 Lohr et al. Jul 1994 A
5355749 Obara et al. Oct 1994 A
5356348 Bellio et al. Oct 1994 A
5375865 Terry, Sr. Dec 1994 A
5379661 Nakano Jan 1995 A
5383677 Thomas Jan 1995 A
5387000 Sato Feb 1995 A
5401221 Fellows et al. Mar 1995 A
5413540 Streib et al. May 1995 A
5451070 Lindsay et al. Sep 1995 A
5489003 Ohyama et al. Feb 1996 A
5508574 Vlock Apr 1996 A
5562564 Folino Oct 1996 A
5564998 Fellows Oct 1996 A
5601301 Liu Feb 1997 A
5607373 Ochiai et al. Mar 1997 A
5645507 Hathaway Jul 1997 A
5651750 Imanishi et al. Jul 1997 A
5664636 Ikuma et al. Sep 1997 A
5669758 Williamson Sep 1997 A
5669845 Muramoto et al. Sep 1997 A
5683322 Meyerle Nov 1997 A
5690346 Keskitalo Nov 1997 A
5701786 Kawakami Dec 1997 A
5722502 Kubo Mar 1998 A
5746676 Kawase et al. May 1998 A
5755303 Yamamoto et al. May 1998 A
5799541 Arbeiter Sep 1998 A
5819864 Koike et al. Oct 1998 A
5823052 Nobumoto Oct 1998 A
5846155 Taniguchi et al. Dec 1998 A
5888160 Miyata et al. Mar 1999 A
5895337 Fellows et al. Apr 1999 A
5899827 Nakano et al. May 1999 A
5902207 Sugihara May 1999 A
5967933 Valdenaire Oct 1999 A
5976054 Yasuoka Nov 1999 A
5984826 Nakano Nov 1999 A
5995895 Watt et al. Nov 1999 A
6000707 Miller Dec 1999 A
6003649 Fischer Dec 1999 A
6004239 Makino Dec 1999 A
6006151 Graf Dec 1999 A
6012538 Sonobe et al. Jan 2000 A
6015359 Kunii Jan 2000 A
6019701 Mori et al. Feb 2000 A
6029990 Busby Feb 2000 A
6042132 Suenaga et al. Mar 2000 A
6045477 Schmidt Apr 2000 A
6045481 Kumagai Apr 2000 A
6050854 Fang et al. Apr 2000 A
6053833 Masaki Apr 2000 A
6053841 Kolde et al. Apr 2000 A
6054844 Frank Apr 2000 A
6066067 Greenwood May 2000 A
6071210 Kato Jun 2000 A
6074320 Miyata et al. Jun 2000 A
6076846 Clardy Jun 2000 A
6079726 Busby Jun 2000 A
6083139 Deguchi Jul 2000 A
6086506 Petersmann et al. Jul 2000 A
6095940 Ai et al. Aug 2000 A
6099431 Hoge et al. Aug 2000 A
6101895 Yamane Aug 2000 A
6113513 Itoh et al. Sep 2000 A
6119539 Papanicolaou Sep 2000 A
6119800 McComber Sep 2000 A
6155132 Yamane Dec 2000 A
6159126 Oshidari Dec 2000 A
6171210 Miyata et al. Jan 2001 B1
6174260 Tsukada et al. Jan 2001 B1
6186922 Bursal et al. Feb 2001 B1
6201315 Larsson Mar 2001 B1
6210297 Knight Apr 2001 B1
6217473 Ueda et al. Apr 2001 B1
6217478 Vohmann et al. Apr 2001 B1
6241636 Miller Jun 2001 B1
6243638 Abo et al. Jun 2001 B1
6251038 Ishikawa et al. Jun 2001 B1
6258003 Hirano et al. Jul 2001 B1
6261200 Miyata et al. Jul 2001 B1
6293575 Burrows et al. Sep 2001 B1
6296593 Gotou Oct 2001 B1
6311113 Danz et al. Oct 2001 B1
6312358 Goi et al. Nov 2001 B1
6322475 Miller Nov 2001 B2
6325386 Shoge Dec 2001 B1
6340067 Fujiwara Jan 2002 B1
6358174 Folsom et al. Mar 2002 B1
6358178 Wittkopp Mar 2002 B1
6367833 Horiuchi Apr 2002 B1
6371878 Bowen Apr 2002 B1
6375412 Dial Apr 2002 B1
6390945 Young May 2002 B1
6390946 Hibi et al. May 2002 B1
6406399 Ai Jun 2002 B1
6414401 Kuroda et al. Jul 2002 B1
6419608 Miller Jul 2002 B1
6425838 Matsubara et al. Jul 2002 B1
6434960 Rousseau Aug 2002 B1
6440035 Tsukada et al. Aug 2002 B2
6440037 Takagi et al. Aug 2002 B2
6459978 Tamiguchi et al. Oct 2002 B2
6461268 Milner Oct 2002 B1
6482094 Kefes Nov 2002 B2
6492785 Kasten et al. Dec 2002 B1
6494805 Ooyama et al. Dec 2002 B2
6499373 Van Cor Dec 2002 B2
6514175 Taniguchi et al. Feb 2003 B2
6523223 Wang Feb 2003 B2
6532890 Chen Mar 2003 B2
6551210 Miller Apr 2003 B2
6558285 Sieber May 2003 B1
6561941 Nakano et al. May 2003 B2
6571726 Tsai et al. Jun 2003 B2
6575047 Reik et al. Jun 2003 B2
6658338 Joe et al. Dec 2003 B2
6659901 Sakai et al. Dec 2003 B2
6672418 Makino Jan 2004 B1
6676559 Miller Jan 2004 B2
6679109 Gierling et al. Jan 2004 B2
6682432 Shinozuka Jan 2004 B1
6689012 Miller Feb 2004 B2
6721637 Abe et al. Apr 2004 B2
6723014 Shinso et al. Apr 2004 B2
6723016 Sumi Apr 2004 B2
6805654 Nishii Oct 2004 B2
6808053 Kirkwood et al. Oct 2004 B2
6839617 Mensler et al. Jan 2005 B2
6849020 Sumi Feb 2005 B2
6859709 Joe et al. Feb 2005 B2
6868949 Braford Mar 2005 B2
6931316 Joe et al. Aug 2005 B2
6932739 Miyata et al. Aug 2005 B2
6942593 Nishii et al. Sep 2005 B2
6945903 Miller Sep 2005 B2
6949049 Miller Sep 2005 B2
6958029 Inoue Oct 2005 B2
6991575 Inoue Jan 2006 B2
6991579 Kobayashi et al. Jan 2006 B2
7000496 Wessel et al. Feb 2006 B2
7011600 Miller et al. Mar 2006 B2
7011601 Miller Mar 2006 B2
7014591 Miller Mar 2006 B2
7029418 Taketsuna et al. Apr 2006 B2
7032914 Miller Apr 2006 B2
7036620 Miller et al. May 2006 B2
7044884 Miller May 2006 B2
7063195 Berhan Jun 2006 B2
7063640 Miller Jun 2006 B2
7074007 Miller Jul 2006 B2
7074154 Miller Jul 2006 B2
7074155 Miller Jul 2006 B2
7077777 Miyata et al. Jul 2006 B2
7086979 Frenken Aug 2006 B2
7086981 Ali et al. Aug 2006 B2
7094171 Inoue Aug 2006 B2
7111860 Grimaldos Sep 2006 B1
7112158 Miller Sep 2006 B2
7112159 Miller et al. Sep 2006 B2
7125297 Miller et al. Oct 2006 B2
7131930 Miller et al. Nov 2006 B2
7140999 Miller Nov 2006 B2
7147586 Miller et al. Dec 2006 B2
7153233 Miller et al. Dec 2006 B2
7156770 Miller Jan 2007 B2
7160220 Shinojima et al. Jan 2007 B2
7160222 Miller Jan 2007 B2
7163485 Miller Jan 2007 B2
7163486 Miller et al. Jan 2007 B2
7166052 Miller et al. Jan 2007 B2
7166056 Miller et al. Jan 2007 B2
7166057 Miller et al. Jan 2007 B2
7166058 Miller et al. Jan 2007 B2
7169076 Miller et al. Jan 2007 B2
7172529 Miller et al. Feb 2007 B2
7175564 Miller Feb 2007 B2
7175565 Miller et al. Feb 2007 B2
7175566 Miller et al. Feb 2007 B2
7192381 Miller et al. Mar 2007 B2
7197915 Luh et al. Apr 2007 B2
7198582 Miller et al. Apr 2007 B2
7198583 Miller et al. Apr 2007 B2
7198584 Miller et al. Apr 2007 B2
7198585 Miller et al. Apr 2007 B2
7201693 Miller et al. Apr 2007 B2
7201694 Miller et al. Apr 2007 B2
7201695 Miller et al. Apr 2007 B2
7204777 Miller et al. Apr 2007 B2
7207918 Shimazu Apr 2007 B2
7214159 Miller et al. May 2007 B2
7217215 Miller et al. May 2007 B2
7217216 Inoue May 2007 B2
7217219 Miller May 2007 B2
7217220 Careau et al. May 2007 B2
7232395 Miller et al. Jun 2007 B2
7234873 Kato et al. Jun 2007 B2
7235031 Miller et al. Jun 2007 B2
D546741 Iteya et al. Jul 2007 S
7238136 Miller et al. Jul 2007 B2
7238137 Miller et al. Jul 2007 B2
7238138 Miller et al. Jul 2007 B2
7238139 Roethler et al. Jul 2007 B2
7246672 Shirai et al. Jul 2007 B2
7250018 Miller et al. Jul 2007 B2
D548655 Barrow et al. Aug 2007 S
7261663 Miller et al. Aug 2007 B2
7275610 Kuang et al. Oct 2007 B2
7285068 Hosoi Oct 2007 B2
7288042 Miller et al. Oct 2007 B2
7288043 Shioiri et al. Oct 2007 B2
7320660 Miller Jan 2008 B2
7322901 Miller et al. Jan 2008 B2
7343236 Wilson Mar 2008 B2
7347801 Guenter et al. Mar 2008 B2
7383748 Rankin Jun 2008 B2
7384370 Miller Jun 2008 B2
7393300 Miller et al. Jul 2008 B2
7393302 Miller Jul 2008 B2
7393303 Miller Jul 2008 B2
7395731 Miller et al. Jul 2008 B2
7396209 Miller et al. Jul 2008 B2
7402122 Miller Jul 2008 B2
7410443 Miller Aug 2008 B2
7419451 Miller Sep 2008 B2
7422541 Miller Sep 2008 B2
7422546 Miller et al. Sep 2008 B2
7427253 Miller Sep 2008 B2
7431677 Miller et al. Oct 2008 B2
D579833 Acenbrak Nov 2008 S
7452297 Miller et al. Nov 2008 B2
7455611 Miller et al. Nov 2008 B2
7455617 Miller et al. Nov 2008 B2
7462123 Miller et al. Dec 2008 B2
7462127 Miller et al. Dec 2008 B2
7470210 Miller et al. Dec 2008 B2
7478885 Urabe Jan 2009 B2
7481736 Miller et al. Jan 2009 B2
7510499 Miller et al. Mar 2009 B2
7540818 Miller et al. Jun 2009 B2
7547264 Usoro Jun 2009 B2
7574935 Rohs et al. Aug 2009 B2
7591755 Petrzik et al. Sep 2009 B2
7600771 Miller et al. Oct 2009 B2
7632203 Miller Dec 2009 B2
7651437 Miller et al. Jan 2010 B2
7654928 Miller et al. Feb 2010 B2
7670243 Miller Mar 2010 B2
7686729 Miller et al. Mar 2010 B2
7727101 Miller Jun 2010 B2
7727106 Maheu et al. Jun 2010 B2
7727107 Miller Jun 2010 B2
7727108 Miller et al. Jun 2010 B2
7727110 Miller et al. Jun 2010 B2
7727115 Serkh Jun 2010 B2
7731615 Miller et al. Jun 2010 B2
7762919 Smithson et al. Jul 2010 B2
7762920 Smithson et al. Jul 2010 B2
7785228 Smithson et al. Aug 2010 B2
7828685 Miller Nov 2010 B2
7837592 Miller Nov 2010 B2
7871353 Nichols et al. Jan 2011 B2
7882762 Armstrong et al. Feb 2011 B2
7883442 Miller et al. Feb 2011 B2
7885747 Miller et al. Feb 2011 B2
7887032 Malone Feb 2011 B2
7909723 Triller et al. Mar 2011 B2
7909727 Smithson et al. Mar 2011 B2
7914029 Miller et al. Mar 2011 B2
7959533 Nichols et al. Jun 2011 B2
7963880 Smithson et al. Jun 2011 B2
7967719 Smithson et al. Jun 2011 B2
7976426 Smithson et al. Jul 2011 B2
8066613 Smithson et al. Nov 2011 B2
8066614 Miller et al. Nov 2011 B2
8070635 Miller Dec 2011 B2
8087482 Miles et al. Jan 2012 B2
8123653 Smithson et al. Feb 2012 B2
8133149 Smithson et al. Mar 2012 B2
8142323 Tsuchiya et al. Mar 2012 B2
8167759 Pohl et al. May 2012 B2
8171636 Smithson et al. May 2012 B2
8230961 Schneidewind Jul 2012 B2
8262536 Nichols et al. Sep 2012 B2
8267829 Miller et al. Sep 2012 B2
8313404 Carter et al. Nov 2012 B2
8313405 Bazyn et al. Nov 2012 B2
8317650 Nichols et al. Nov 2012 B2
8317651 Lohr Nov 2012 B2
8319385 Breucker et al. Nov 2012 B2
8321097 Vasiliotis et al. Nov 2012 B2
8342999 Miller Jan 2013 B2
8360917 Nichols et al. Jan 2013 B2
8376889 Hoffman et al. Feb 2013 B2
8376903 Pohl et al. Feb 2013 B2
8382631 Hoffman et al. Feb 2013 B2
8382637 Tange Feb 2013 B2
8393989 Pohl Mar 2013 B2
8398518 Nichols et al. Mar 2013 B2
8469853 Miller et al. Jun 2013 B2
8469856 Thomassy Jun 2013 B2
8480529 Pohl et al. Jul 2013 B2
8496554 Pohl et al. Jul 2013 B2
8506452 Pohl et al. Aug 2013 B2
8512195 Lohr et al. Aug 2013 B2
8517888 Brookins Aug 2013 B1
8535199 Lohr et al. Sep 2013 B2
8550949 Miller Oct 2013 B2
8585528 Carter et al. Nov 2013 B2
8608609 Sherrill Dec 2013 B2
8622866 Bazyn et al. Jan 2014 B2
8626409 Vasiliotis et al. Jan 2014 B2
8628443 Miller et al. Jan 2014 B2
8641572 Nichols et al. Feb 2014 B2
8641577 Nichols et al. Feb 2014 B2
8663050 Nichols et al. Mar 2014 B2
8678974 Lohr Mar 2014 B2
8708360 Miller et al. Apr 2014 B2
8721485 Lohr et al. May 2014 B2
8738255 Carter et al. May 2014 B2
8776633 Armstrong et al. Jul 2014 B2
8784248 Murakami et al. Jul 2014 B2
8790214 Lohr et al. Jul 2014 B2
8814739 Hamrin et al. Aug 2014 B1
8818661 Keilers et al. Aug 2014 B2
8827856 Younggren et al. Sep 2014 B1
8827864 Durack Sep 2014 B2
8845485 Smithson et al. Sep 2014 B2
8852050 Thomassy Oct 2014 B2
8870711 Pohl et al. Oct 2014 B2
8888643 Lohr et al. Nov 2014 B2
8900085 Pohl et al. Dec 2014 B2
8920285 Smithson et al. Dec 2014 B2
8924111 Fuller Dec 2014 B2
8956262 Tomomatsu et al. Feb 2015 B2
8961363 Shiina et al. Feb 2015 B2
8992376 Ogawa et al. Mar 2015 B2
8996263 Quinn et al. Mar 2015 B2
9017207 Pohl et al. Apr 2015 B2
9022889 Miller May 2015 B2
9046158 Miller et al. Jun 2015 B2
9052000 Cooper Jun 2015 B2
9074674 Nichols et al. Jul 2015 B2
9086145 Pohl et al. Jul 2015 B2
9121464 Nichols et al. Sep 2015 B2
9182018 Bazyn et al. Nov 2015 B2
9239099 Carter et al. Jan 2016 B2
9249880 Vasiliotis et al. Feb 2016 B2
9273760 Pohl et al. Mar 2016 B2
9279482 Nichols et al. Mar 2016 B2
9291251 Lohr et al. Mar 2016 B2
9328807 Carter et al. May 2016 B2
9341246 Miller et al. May 2016 B2
9360089 Lohr et al. Jun 2016 B2
9365203 Keilers et al. Jun 2016 B2
9371894 Carter et al. Jun 2016 B2
9388896 Hibino et al. Jul 2016 B2
9506562 Miller et al. Nov 2016 B2
9528561 Nichols et al. Dec 2016 B2
9574642 Pohl et al. Feb 2017 B2
9574643 Pohl Feb 2017 B2
9611921 Thomassy et al. Apr 2017 B2
9618100 Lohr Apr 2017 B2
9656672 Schieffelin May 2017 B2
9676391 Carter et al. Jun 2017 B2
9677650 Nichols et al. Jun 2017 B2
9683638 Kostrup Jun 2017 B2
9683640 Lohr et al. Jun 2017 B2
9709138 Miller et al. Jul 2017 B2
9726282 Pohl et al. Aug 2017 B2
9732848 Miller et al. Aug 2017 B2
9739375 Vasiliotis et al. Aug 2017 B2
9878719 Carter et al. Jan 2018 B2
9963199 Hancock et al. May 2018 B2
10023266 Contello et al. Jul 2018 B2
20010008192 Morisawa Jul 2001 A1
20010023217 Miyagawa et al. Sep 2001 A1
20010041644 Yasuoka et al. Nov 2001 A1
20010044358 Taniguchi Nov 2001 A1
20010044361 Taniguchi et al. Nov 2001 A1
20020019285 Henzler Feb 2002 A1
20020028722 Sakai et al. Mar 2002 A1
20020037786 Hirano et al. Mar 2002 A1
20020045511 Geiberger et al. Apr 2002 A1
20020049113 Watanabe et al. Apr 2002 A1
20020117860 Man et al. Aug 2002 A1
20020128107 Wakayama Sep 2002 A1
20020153695 Wang Oct 2002 A1
20020161503 Joe et al. Oct 2002 A1
20020169051 Oshidari Nov 2002 A1
20020179348 Tamai et al. Dec 2002 A1
20020189524 Chen Dec 2002 A1
20030015358 Abe et al. Jan 2003 A1
20030015874 Abe et al. Jan 2003 A1
20030022753 Mizuno et al. Jan 2003 A1
20030036456 Skrabs Feb 2003 A1
20030096674 Uno May 2003 A1
20030132051 Nishii et al. Jul 2003 A1
20030135316 Kawamura et al. Jul 2003 A1
20030144105 O'Hora Jul 2003 A1
20030160420 Fukuda Aug 2003 A1
20030176247 Gottschalk Sep 2003 A1
20030216216 Inoue et al. Nov 2003 A1
20030221892 Matsumoto et al. Dec 2003 A1
20040038772 McIndoe et al. Feb 2004 A1
20040051375 Uno Mar 2004 A1
20040058772 Inoue et al. Mar 2004 A1
20040067816 Taketsuna et al. Apr 2004 A1
20040082421 Wafzig Apr 2004 A1
20040092359 Imanishi et al. May 2004 A1
20040119345 Takano Jun 2004 A1
20040171457 Fuller Sep 2004 A1
20040204283 Inoue Oct 2004 A1
20040231331 Iwanami et al. Nov 2004 A1
20040237698 Hilsky et al. Dec 2004 A1
20040254047 Frank et al. Dec 2004 A1
20050037876 Unno et al. Feb 2005 A1
20050037886 Lemansky Feb 2005 A1
20050064986 Ginglas Mar 2005 A1
20050085979 Carlson et al. Apr 2005 A1
20050172752 Florczyk et al. Aug 2005 A1
20050181905 Ali et al. Aug 2005 A1
20050184580 Kuan et al. Aug 2005 A1
20050227809 Bitzer et al. Oct 2005 A1
20050229731 Parks Oct 2005 A1
20050233846 Green et al. Oct 2005 A1
20060000684 Agner Jan 2006 A1
20060006008 Brunemann et al. Jan 2006 A1
20060052204 Eckert et al. Mar 2006 A1
20060054422 Dimsey et al. Mar 2006 A1
20060108956 Clark May 2006 A1
20060111212 Ai et al. May 2006 A9
20060154775 Ali et al. Jul 2006 A1
20060172829 Ishio Aug 2006 A1
20060180363 Uchisasai Aug 2006 A1
20060223667 Nakazeki Oct 2006 A1
20060234822 Morscheck et al. Oct 2006 A1
20060234826 Moehlmann et al. Oct 2006 A1
20060276299 Imanishi Dec 2006 A1
20070004552 Matsudaira et al. Jan 2007 A1
20070004556 Rohs et al. Jan 2007 A1
20070041823 Miller Feb 2007 A1
20070099753 Matsui et al. May 2007 A1
20070149342 Guenter et al. Jun 2007 A1
20070155552 De Cloe Jul 2007 A1
20070155567 Miller et al. Jul 2007 A1
20070193391 Armstrong et al. Aug 2007 A1
20070228687 Parker Oct 2007 A1
20070232423 Katou et al. Oct 2007 A1
20080009389 Jacobs Jan 2008 A1
20080032852 Smithson et al. Feb 2008 A1
20080032854 Smithson et al. Feb 2008 A1
20080039269 Smithson et al. Feb 2008 A1
20080039273 Smithson et al. Feb 2008 A1
20080039276 Smithson et al. Feb 2008 A1
20080070729 Miller et al. Mar 2008 A1
20080073137 Miller et al. Mar 2008 A1
20080073467 Miller et al. Mar 2008 A1
20080079236 Miller et al. Apr 2008 A1
20080081715 Miller et al. Apr 2008 A1
20080081728 Faulring et al. Apr 2008 A1
20080085795 Miller et al. Apr 2008 A1
20080085796 Miller et al. Apr 2008 A1
20080085797 Miller et al. Apr 2008 A1
20080085798 Miller et al. Apr 2008 A1
20080139363 Williams Jun 2008 A1
20080149407 Shibata et al. Jun 2008 A1
20080183358 Thomson et al. Jul 2008 A1
20080200300 Smithson et al. Aug 2008 A1
20080228362 Muller et al. Sep 2008 A1
20080284170 Cory Nov 2008 A1
20080305920 Nishii et al. Dec 2008 A1
20090023545 Beaudoin Jan 2009 A1
20090062062 Choi Mar 2009 A1
20090082169 Kolstrup Mar 2009 A1
20090107454 Hiyoshi et al. Apr 2009 A1
20090251013 Vollmer et al. Oct 2009 A1
20100093479 Carter et al. Apr 2010 A1
20100145573 Vasilescu Jun 2010 A1
20100181130 Chou Jul 2010 A1
20110127096 Schneidewind Jun 2011 A1
20110190093 Bishop Aug 2011 A1
20110230297 Shiina et al. Sep 2011 A1
20110237385 Andre Parise Sep 2011 A1
20110291507 Post Dec 2011 A1
20110319222 Ogawa et al. Dec 2011 A1
20120035011 Menachem et al. Feb 2012 A1
20120035015 Ogawa et al. Feb 2012 A1
20120130603 Simpson May 2012 A1
20120258839 Smithson et al. Oct 2012 A1
20130035200 Noji et al. Feb 2013 A1
20130053211 Fukuda et al. Feb 2013 A1
20140094339 Ogawa et al. Apr 2014 A1
20140148303 Nichols et al. May 2014 A1
20140155220 Messier et al. Jun 2014 A1
20140274536 Versteyhe Sep 2014 A1
20150018154 Thomassy Jan 2015 A1
20150038285 Aratsu et al. Feb 2015 A1
20150051801 Quinn et al. Feb 2015 A1
20150080165 Pohl et al. Mar 2015 A1
20150219194 Winter et al. Aug 2015 A1
20150337928 Smithson Nov 2015 A1
20150345599 Ogawa Dec 2015 A1
20150369348 Nichols et al. Dec 2015 A1
20160003349 Kimura et al. Jan 2016 A1
20160031526 Watarai Feb 2016 A1
20160061301 Bazyn et al. Mar 2016 A1
20160131231 Carter et al. May 2016 A1
20160186847 Nichols et al. Jun 2016 A1
20160201772 Lohr et al. Jul 2016 A1
20160281825 Lohr et al. Sep 2016 A1
20160290451 Lohr Oct 2016 A1
20160298740 Carter et al. Oct 2016 A1
20160347411 Yamamoto et al. Dec 2016 A1
20160362108 Keilers et al. Dec 2016 A1
20160377153 Ajumobi Dec 2016 A1
20170072782 Miller et al. Mar 2017 A1
20170082049 David et al. Mar 2017 A1
20170103053 Nichols et al. Apr 2017 A1
20170159812 Pohl et al. Jun 2017 A1
20170163138 Pohl Jun 2017 A1
20170204948 Thomassy et al. Jul 2017 A1
20170204969 Thomassy et al. Jul 2017 A1
20170211698 Lohr Jul 2017 A1
20170225742 Hancock et al. Aug 2017 A1
20170268638 Nichols et al. Sep 2017 A1
20170276217 Nichols et al. Sep 2017 A1
20170284519 Kolstrup Oct 2017 A1
20170284520 Lohr et al. Oct 2017 A1
20170314655 Miller et al. Nov 2017 A1
20170328470 Pohl Nov 2017 A1
20170335961 Hamrin Nov 2017 A1
20180066754 Miller et al. Mar 2018 A1
20180106359 Bazyn et al. Apr 2018 A1
20180134750 Pohl et al. May 2018 A1
20180148055 Carter et al. May 2018 A1
20180148056 Keilers et al. May 2018 A1
20180195586 Thomassy et al. Jul 2018 A1
20180202527 Nichols et al. Jul 2018 A1
20180236867 Miller et al. Aug 2018 A1
20180251190 Hancock et al. Sep 2018 A1
20180306283 Engesather et al. Oct 2018 A1
20180327060 Contello et al. Nov 2018 A1
20180347693 Thomassy et al. Dec 2018 A1
20180372192 Lohr Dec 2018 A1
20190049004 Quinn et al. Feb 2019 A1
20190195321 Smithson Jun 2019 A1
Foreign Referenced Citations (245)
Number Date Country
118064 Dec 1926 CH
1054340 Sep 1991 CN
2245830 Jan 1997 CN
1157379 Aug 1997 CN
1167221 Dec 1997 CN
1178573 Apr 1998 CN
1178751 Apr 1998 CN
1204991 Jan 1999 CN
2320843 May 1999 CN
1283258 Feb 2001 CN
1300355 Jun 2001 CN
1412033 Apr 2003 CN
1434229 Aug 2003 CN
1474917 Feb 2004 CN
1483235 Mar 2004 CN
1568407 Jan 2005 CN
1654858 Aug 2005 CN
2714896 Aug 2005 CN
1736791 Feb 2006 CN
1847702 Oct 2006 CN
1860315 Nov 2006 CN
1940348 Apr 2007 CN
2916275 Jun 2007 CN
101016076 Aug 2007 CN
101312867 Nov 2008 CN
498 701 May 1930 DE
1171692 Jun 1964 DE
2021027 Dec 1970 DE
2 310880 Sep 1974 DE
2 136 243 Jan 1975 DE
2436496 Feb 1975 DE
263566 Jan 1989 DE
4120540 Nov 1992 DE
19851738 May 2000 DE
10155372 May 2003 DE
10261372 Jul 2003 DE
102011016672 Oct 2012 DE
102012023551 Jun 2014 DE
102014007271 Dec 2014 DE
0 432 742 Dec 1990 EP
0 528 381 Feb 1993 EP
0 528 382 Feb 1993 EP
0 635 639 Jan 1995 EP
0 638 741 Feb 1995 EP
0 831 249 Mar 1998 EP
0 832 816 Apr 1998 EP
0 976 956 Feb 2000 EP
1 010 612 Jun 2000 EP
1 136 724 Sep 2001 EP
1 251 294 Oct 2002 EP
1 366 978 Mar 2003 EP
1 362 783 Nov 2003 EP
1 433 641 Jun 2004 EP
1 452 441 Sep 2004 EP
1 518 785 Mar 2005 EP
1 624 230 Feb 2006 EP
2 893 219 Jul 2015 EP
620375 Apr 1927 FR
2460427 Jan 1981 FR
2590638 May 1987 FR
14132 May 1910 GB
391448 Apr 1933 GB
592320 Sep 1947 GB
858710 Jan 1961 GB
906002 Sep 1962 GB
919430 Feb 1963 GB
1132473 Nov 1968 GB
1165545 Oct 1969 GB
1376057 Dec 1974 GB
2031822 Apr 1980 GB
2035481 Jun 1980 GB
2035482 Jun 1980 GB
2080452 Aug 1982 GB
38-025315 Nov 1963 JP
41-3126 Feb 1966 JP
42-2843 Feb 1967 JP
42-2844 Feb 1967 JP
44-1098 Jan 1969 JP
46-029087 Aug 1971 JP
47-000448 Jan 1972 JP
47-207 Jun 1972 JP
47-20535 Jun 1972 JP
47-00962 Nov 1972 JP
47-29762 Nov 1972 JP
48-54371 Jul 1973 JP
49-012742 Mar 1974 JP
49-013823 Apr 1974 JP
49-041536 Nov 1974 JP
50-114581 Sep 1975 JP
51-25903 Aug 1976 JP
51-150380 Dec 1976 JP
52-35481 Mar 1977 JP
53-048166 Jan 1978 JP
53-50395 Apr 1978 JP
55-135259 Oct 1980 JP
56-24251 Mar 1981 JP
56-047231 Apr 1981 JP
56-101448 Aug 1981 JP
56-127852 Oct 1981 JP
58-065361 Apr 1983 JP
59-096086 Feb 1984 JP
59-069565 Apr 1984 JP
59-144826 Aug 1984 JP
59-190557 Oct 1984 JP
60-247011 Dec 1985 JP
61-031754 Feb 1986 JP
61-053423 Mar 1986 JP
61-144466 Jul 1986 JP
61-173722 Oct 1986 JP
61-270552 Nov 1986 JP
62-075170 Apr 1987 JP
63-125854 May 1988 JP
63-219953 Sep 1988 JP
63-160465 Oct 1988 JP
01-039865 Nov 1989 JP
01-286750 Nov 1989 JP
01-308142 Dec 1989 JP
02-130224 May 1990 JP
02-157483 Jun 1990 JP
02-271142 Jun 1990 JP
02-182593 Jul 1990 JP
03-149442 Jun 1991 JP
03-223555 Oct 1991 JP
04-166619 Jun 1992 JP
04-272553 Sep 1992 JP
04-327055 Nov 1992 JP
04-351361 Dec 1992 JP
05-087154 Apr 1993 JP
06-050169 Feb 1994 JP
06-050358 Feb 1994 JP
07-42799 Feb 1995 JP
07-133857 May 1995 JP
07-139600 May 1995 JP
07-205872 Aug 1995 JP
07-259950 Oct 1995 JP
08-135748 May 1996 JP
08-170706 Jul 1996 JP
08-247245 Sep 1996 JP
08-270772 Oct 1996 JP
09-024743 Jan 1997 JP
09-089064 Mar 1997 JP
10-061739 Mar 1998 JP
10-078094 Mar 1998 JP
10-089435 Apr 1998 JP
10-115355 May 1998 JP
10-115356 May 1998 JP
10-194186 Jul 1998 JP
10-225053 Aug 1998 JP
10-511621 Nov 1998 JP
11-063130 Mar 1999 JP
11-091411 Apr 1999 JP
11-210850 Aug 1999 JP
11-240481 Sep 1999 JP
11-257479 Sep 1999 JP
2000-6877 Jan 2000 JP
2000-46135 Feb 2000 JP
2000-177673 Jun 2000 JP
2001-027298 Jan 2001 JP
2001-071986 Mar 2001 JP
2001-107827 Apr 2001 JP
2001-165296 Jun 2001 JP
2001-328466 Nov 2001 JP
2002-147558 May 2002 JP
2002-250421 Jun 2002 JP
2002-291272 Oct 2002 JP
2002-307956 Oct 2002 JP
2002-533626 Oct 2002 JP
2002-372114 Dec 2002 JP
2003-028257 Jan 2003 JP
2003-56662 Feb 2003 JP
2003-161357 Jun 2003 JP
2003-194206 Jul 2003 JP
2003-194207 Jul 2003 JP
2003-320987 Nov 2003 JP
2003-336732 Nov 2003 JP
2004-011834 Jan 2004 JP
2004-38722 Feb 2004 JP
2004-162652 Jun 2004 JP
2004-189222 Jul 2004 JP
2004-232776 Aug 2004 JP
2004-255953 Sep 2004 JP
2004-526917 Sep 2004 JP
2004-301251 Oct 2004 JP
2005-003063 Jan 2005 JP
2005-096537 Apr 2005 JP
2005-188694 Jul 2005 JP
2005-240928 Sep 2005 JP
2005-312121 Nov 2005 JP
2006-015025 Jan 2006 JP
2006-283900 Oct 2006 JP
2006-300241 Nov 2006 JP
2007-085404 Apr 2007 JP
2007-321931 Dec 2007 JP
2008-002687 Jan 2008 JP
2008-14412 Jan 2008 JP
2008-133896 Jun 2008 JP
2010-069005 Apr 2010 JP
2012-107725 Jun 2012 JP
2012-122568 Jun 2012 JP
2012-211610 Nov 2012 JP
2012-225390 Nov 2012 JP
2015-227690 Dec 2015 JP
2015-227691 Dec 2015 JP
2002 0054126 Jul 2002 KR
10-2002-0071699 Sep 2002 KR
98467 Jul 1961 NE
74007 Jan 1984 TW
175100 Dec 1991 TW
218909 Jan 1994 TW
227206 Jul 1994 TW
275872 May 1996 TW
360184 Jun 1999 TW
366396 Aug 1999 TW
401496 Aug 2000 TW
510867 Nov 2002 TW
512211 Dec 2002 TW
582363 Apr 2004 TW
590955 Jun 2004 TW
I225129 Dec 2004 TW
I225912 Jan 2005 TW
I235214 Jan 2005 TW
M294598 Jul 2006 TW
200637745 Nov 2006 TW
200821218 May 2008 TW
WO 9908024 Feb 1999 WO
WO 9920918 Apr 1999 WO
WO 0173319 Oct 2001 WO
WO 03086849 Oct 2003 WO
WO 03100294 Dec 2003 WO
WO 05083305 Sep 2005 WO
WO 05108825 Nov 2005 WO
WO 05111472 Nov 2005 WO
WO 06091503 Aug 2006 WO
WO 07044128 Apr 2007 WO
WO 07133538 Nov 2007 WO
WO 08078047 Jul 2008 WO
WO 10073036 Jul 2010 WO
WO 10135407 Nov 2010 WO
WO 11064572 Jun 2011 WO
WO 11101991 Aug 2011 WO
WO 11121743 Oct 2011 WO
WO 12030213 Mar 2012 WO
WO 13042226 Mar 2013 WO
WO 14186732 Nov 2014 WO
WO 16062461 Apr 2016 WO
Non-Patent Literature Citations (32)
Entry
Third Office Action dated Aug. 3, 2018 in Chinese Patent Application No. 201510697301.9.
Office Action dated Feb. 24, 2010 from Japanese Patent Application No. 2006-508892.
Office Action dated Feb. 17, 2010 from Japanese Patent Application No. 2009-294086.
Office Action dated Jan. 9, 2012 for U.S. Appl. No. 12/335,810.
Office Action dated Mar. 13, 3015 in U.S. Appl. No. 14/147,026.
Chinese Office Action dated Mar. 5, 2013 for Chinese Patent Application No. 200880125031.2.
Office Action dated Mar. 13, 2015 in Canadian Patent Application No. 2708634.
Office Action dated Sep. 28, 2016 in Canadian Patent Application No. 2708634.
Second Office Action dated Oct. 12, 2013 for Chinese Patent Application No. 200880125031.2.
Third Office Action dated Mar. 6, 2014 in Chinese Patent Application No. 200880125031.2.
Fourth Office Action dated Nov. 24, 2014 in Chinese Patent Application No. 200880125031.2.
Japanese Office Action dated Feb. 19, 2013 for Japanese Patent Application No. 2010-539711.
Decision of Final Rejection dated Nov. 19, 2013 for Japanese Patent Application No. 2010539711.
Office Action dated Nov. 25, 2014 for Japanese Patent Application No. 2010-539711.
Appeal Decision dated Jun. 30, 2015 for Japanese Patent Application No. 2010-539711.
Office Action dated Feb. 24, 2015 in Japanese Patent Application No. 2014-056980.
Decision to Grant a Patent dated Nov. 17, 2015 in Japanese Patent Application No. 2014056980.
Office Action dated Jan. 4, 2017 in Japanese Patent Application No. 2015-243148.
Abridged translation of the Preliminary Notice of First Office Action dated Oct. 23, 2013 in Taiwan Patent Application No. 07149527.
Office Action dated Dec. 25, 2015 in Taiwan Patent Application No. 103123085.
International Search Report and Written Opinion dated Apr. 7, 2009 for PCT Application No. PCT/US2008/087034.
Goi et al., Development of Traction Drive IDG (T-IDG), Proceedings of International Congress on Continuously Variable and Hybrid Transmissions, Sep. 2007, 6 pages.
Pohl, Brad, CVT Split Power Transmissions, A Configuration versus Performance Study with an Emphasis on the Hydromechanical Type, Society of Automotive Engineers, Mar. 4, 2002, 11 pages.
Pohl, et al., Configuration Analysis of a Spherical Traction Drive CVT/IVT, SAE International, 2004 International Continuously Variable and Hybrid Transmission Congress, Sep. 23, 2004, 6 pages.
Smithson et al., Scalability for an Alternative Rolling Traction CVT, Society of Automotive Engineers, Mar. 8, 2004, 6 pages.
Office Action dated Jun. 8, 2016 in U.S. Appl. No. 15/012,420.
Office Action dated Dec. 15, 2016 in U.S. Appl. No. 15/012,420.
First Office Action dated Apr. 6, 2017 in Chinese Patent Application No. 201510697301.9.
Office Action dated Jun. 5, 2017 in Taiwan Patent Application No. 105127987.
Second Office Action dated Feb. 2, 2018 in Chinese Patent Application No. 201510697301.9.
First Examination Report dated Oct. 23, 2017 in Indian Patent Application No. 2180/KOLNP/2010.
Office Action dated Oct. 3, 2017 in Japanese Patent Application No. 2015-243148.
Related Publications (1)
Number Date Country
20170343105 A1 Nov 2017 US
Provisional Applications (1)
Number Date Country
61016305 Dec 2007 US
Continuations (4)
Number Date Country
Parent 15012420 Feb 2016 US
Child 15680506 US
Parent 14147026 Jan 2014 US
Child 15012420 US
Parent 13681792 Nov 2012 US
Child 14147026 US
Parent 12335810 Dec 2008 US
Child 13681792 US