1. Field of the Invention
The present invention relates generally to mechanical transmissions, and more specifically to automatic transmissions and methods of controlling said transmissions.
2. Related Technology
Automatic transmissions are found in a variety of machines. However, in certain fields manual operation of the transmission is still prevalent. For example, in the bicycle industry, most bicycles are configured for manual operation of the transmission, which generally involves manually actuating levers, cables, and linkages to cause a chain to move from one rear sprocket to another. However, an ongoing need has been manifested for systems and corresponding methods to facilitate the automatic control of the transmission of a bicycle.
Inventive embodiments disclosed here address this need, among others, by providing systems for, and methods of, automatically controlling transmissions, which systems and methods in some cases are particularly suitable for human powered vehicles such as bicycles.
The systems and methods described herein have several features, no single one of which is solely responsible for the overall desirable attributes. Without limiting the scope as expressed by the claims that follow, the more prominent features of certain embodiments of the invention will now be discussed briefly. After considering this discussion, and particularly after reading the section entitled “Detailed Description of the Preferred Embodiments,” one will understand how the features of the systems and methods provide several advantages over related traditional systems and methods.
In one aspect the invention addresses a method of automatically controlling a ball-planetary transmission of a bicycle. The method involves receiving an input associated with a target user pedaling speed, determining a speed of the bicycle, and determining a target transmission ratio based at least in part on the target user pedaling speed and the determined speed of the bicycle. The method can also include adjusting a transmission ratio of the transmission to be substantially equal to the target transmission ratio.
In another aspect, the invention is directed to a method of automatically controlling a ball-planetary transmission of a bicycle. The method includes receiving an input associated with a target user pedaling speed, determining a speed of the bicycle, and based upon the target user pedaling speed and the determined speed of the bicycle, adjusting a speed ratio of the bicycle to maintain a user pedaling speed within a band of the target user pedaling speed.
Yet another aspect of the invention relates to a method of automatically controlling a ball-planetary transmission of a bicycle. The method involves providing an input associated with a target user pedaling speed, determining a speed of the bicycle, and identifying a target encoder position associated with the speed of the bicycle. The method can further include actuating a servo to achieve the target encoder position.
In one instance, the invention is concerned with a system for automatically shifting a ball-planetary bicycle transmission. The system includes a speed sensor configured to detect a speed of the bicycle, a processor configured to receive input from the speed sensor, and a data input interface configured to provide cadence data to the processor, said cadence data indicative of a desired, constant input pedaling speed. The system can additionally have a memory in communication with the processor, the memory having stored therein one or more maps correlating bicycle speeds with speed ratios. In one embodiment, the system includes a logic module in communication with the processor, the logic module configured to cooperate with the processor to determine from said maps a target speed ratio based on a bicycle speed and a desired, constant input pedaling speed. In some embodiments, the system has an actuator, in communication with the processor, the actuator configured to adjust a speed ratio of the transmission to be substantially equal to the determined target speed ratio.
Another aspect of the invention addresses a bicycle having a ball-planetary transmission and a system for automatically shifting the ball-planetary transmission. In one embodiment, the system has a speed sensor configured to detect a speed of the bicycle. The system has a processor configured to receive input from the speed sensor. In some embodiments, the system includes a data input interface configured to provide cadence data to the processor. The cadence data is indicative of a desired, constant input pedaling speed. The system can include a memory in communication with the processor. In one embodiment, the memory has stored therein one or more maps correlating bicycle speeds with speed ratios. The system includes a logic module in communication with the processor. The logic module is configured to cooperate with the processor to determine from the maps a target speed ratio based on a bicycle speed and a desired, constant input pedaling speed. The system can also include an actuator in communication with the processor. The actuator is configured to adjust a speed ratio of the transmission to be substantially equal to the determined target speed ratio.
Yet another aspect of the invention concerns an automatic shifting bicycle system having a ball-planetary transmission having a shift rod. In one embodiment, the system has an actuator operably coupled to the shift rod. The system includes a processor in communication with the actuator. The system also includes a memory in communication with the processor. In some embodiments, the memory has at least one table correlating a position of the actuator to the transmission ratio.
These and other improvements will become apparent to those skilled in the art as they read the following detailed description and view the enclosed figures.
Preferred embodiments of the present invention will now be described with reference to the accompanying figures, wherein like numerals refer to like elements throughout. The inventive systems and methods described here can be generally used with transmissions and variators disclosed in U.S. Pat. Nos. 6,241,636; 6,419,608; 6,689,012; and 7,011,600. Likewise, the inventive systems and methods disclosed here are related to transmissions, controllers, user interfaces, and vehicles or technology applications described in U.S. patent applications Ser. Nos. 11/243,484; 11/543,311; 60/887,767; 60/895,713; and 60/914,633. The entire disclosure of each of these patents and patent applications is hereby incorporated herein by reference.
With reference to
The transmission 106 can be a conventional range box, gear box, planetary-gear-based transmission, traction-based transmission (such as a toroidal transmission, a ball planetary transmission, or any other continuously variable or infinitely variable transmission), or any combination thereof. The transmission controller 108 can include various integrated circuits, computer processors, logic modules, input and output interfaces, data structures, digital memory, power sources, actuators, sensors, encoders, servo mechanisms, etc. Preferably, in one embodiment, the transmission controller 108 includes a data structure that correlates vehicle output speed wo to data associated with SR of the transmission 106.
Passing to
During operation, the speed sensor 202 provides to the digital processor 204 an indication of the output speed wo. The input device 210 provides to the digital processor 204 a target input speed wc. The digital processor 204, in cooperation with the logic module 209 and/or the tables 208, determines a SR associated with the indicated output speed wo and the target input speed wc. The digital processor 204 then commands the actuator 212 to adjust the operating speed ratio of the transmission 107 to the determined SR. In some embodiments, the target input speed wc can be substantially constant over a range of output speeds wo, resulting in the rider pedaling at a substantially constant cadence. In one embodiment, the input device 210 provides a map, or a selection indicative of such a map, of predetermined input speed wc values associated with output speed wo values.
Referencing
In some embodiments, the control unit 302 includes a digital processor 322 that is in communication with a memory 324 and a logic module 326. The control unit 302 can additionally include a motor controller 328 that is in communication with the digital processor 322. It should be noted that the digital processor 322, memory 324, logic module 326, and the motor controller 328 need not be all integrated into one device or housed in a common housing. That is, in some embodiments, any one of the digital processor 322, memory 324, logic module 326, and motor controller 328 can be remotely located from any of the others; communication between or among them can be wired or wireless. The memory 324 is preferably provided with one more tables 330 having data that correlates values of output speed wo to values of SR. In one embodiment, as illustrated in
In one embodiment, the user interface 308 includes a display 332 and one or more operation button switches 334. The display 332 can be any suitable screen, or the like, for presenting a variety of graphical and/or alphanumerical information. The operation switches 334 can include one or more buttons or manipulators configured to allow an operator to enter data, make selections, or change values, for example. In some embodiments, the operation switches 334 allow the rider to select among modes of operation (for example, automatic continuous ratio adjustment, automatic stepped ratio adjustment, manual, etc.). The operation switches 334 can be configured to allow the rider to command different cadence levels while in automatic mode, or to request a SR adjustment while in manual mode.
Still referring to
Referring to
The process 400 then moves to a decision state 414 wherein it is determined whether the end of the range of the transmission 316 has been reached. For the current purposes, it is assumed that the range of encoder positions can be coextensive with the range of speed ratios of the transmission 316. When the transmission 316 is a continuously variable transmission there is an infinite number of transmission speed ratios within a given range; however, as a practical matter, both the encoder positions and the speed ratios of the transmission 316 will be each a finite set. If the end of the range of the transmission 316 has been reached, the process 400 continues to a state 416 at which the encoder is moved to the next encoder position. The process 400 then returns to the state 404 and records the new encoder position. The process 400 then repeats until at the decision state 414 it is determined that the end of the range of the transmission 316 has been reached, in which case the process 400 ends at a state 418.
Thus, a result of the process 400 is data structures correlating encoder positions with empirically determined speed ratios of the transmission 316. For a certain class of continuously variable transmissions, the speed ratio and encoder position data can be fit to a curve generally described by SR=A*exp(B*p), wherein A and B are constants or parameters characteristic of individual devices, and p is the encoder position. For example, for an exemplary CVP, A=0.4844 and B=0.0026. The data tables 330 can incorporate the encoder position and speed ratio data generated by the process 400.
Passing to
Of course, those values in the requested SR data structure 506 that fall within the possible range of speed ratios of the transmission 316 correspond to identical entries in the possible SR data structure 508. It should be noted that, other than for values falling below and above the possible range of the transmission 316, in the table 330 there is a unique encoder position value in the encoder position data structure 505 that corresponds to a unique SR value in the possible SR data structure 508. However, a speed range (rather than a unique speed) corresponds to a given encoder position. Hence, for a wheel speed of 58-rpm and less than 60-rpm in the vehicle speed data structure 502, there corresponds only one value of encoder position (that is, 24) and one value of possible speed ratio (that is, 0.52). The illustrative table 330 includes a cadence data structure 510 having data associated with a calculated cadence (using the expression wi=wo/SR). The cadence structure 510 need not be part of the table 330; however, the inclusion of the cadence structure 510 in the illustrative table 330 facilitates a demonstration of how the cadence can be maintained constant (as shown by the constant value of 50 in the cadence data structure 510) over the possible range of speed ratios of the transmission 316.
Turning to
Those of skill will recognize that the various illustrative logical blocks, modules, circuits, and algorithm steps described in connection with the embodiments disclosed herein, including with reference to the automatic shifting bicycle system 300 may be implemented as electronic hardware, software stored on a computer readable medium and executable by a processor, or combinations of both. To clearly illustrate this interchangeability of hardware and software, various illustrative components, blocks, modules, circuits, and steps have been described above generally in terms of their functionality. Whether such functionality is implemented as hardware or software depends upon the particular application and design constraints imposed on the overall system. Skilled artisans may implement the described functionality in varying ways for each particular application, but such implementation decisions should not be interpreted as causing a departure from the scope of the present invention. For example, various illustrative logical blocks, modules, and circuits described in connection with the embodiments disclosed herein may be implemented or performed with a general purpose processor, a digital signal processor (DSP), an application specific integrated circuit (ASIC), a field programmable gate array (FPGA) or other programmable logic device, discrete gate or transistor logic, discrete hardware components, or any combination thereof designed to perform the functions described herein. A general purpose processor may be a microprocessor, but in the alternative, the processor may be any conventional processor, controller, microcontroller, or state machine. A processor may also be implemented as a combination of computing devices, e.g., a combination of a DSP and a microprocessor, a plurality of microprocessors, one or more microprocessors in conjunction with a DSP core, or any other such configuration. Software associated with such modules may reside in RAM memory, flash memory, ROM memory, EPROM memory, EEPROM memory, registers, a hard disk, a removable disk, a CD-ROM, or any other suitable form of storage medium known in the art. An exemplary storage medium is coupled to the processor such the processor can read information from, and write information to, the storage medium. In the alternative, the storage medium may be integral to the processor. The processor and the storage medium may reside in an ASIC. For example, in one embodiment, the control unit 302 comprises a processor (not shown). The processor of the control unit 302 may also be configured to perform the functions described herein with reference to one or both of the motor controller 328 and the user interface 308.
The foregoing description details certain preferred embodiments of the present invention and describes the best mode contemplated. It will be appreciated, however, that no matter how detailed the foregoing appears in text, the invention can be practiced in many ways. The scope of the present invention should therefore be construed only in accordance with the appended claims and any equivalents thereof.
This application is a continuation of U.S. patent application Ser. No. 12/335,810, filed Dec. 16, 2008 and scheduled to issue on Nov. 27, 2012 as U.S. Pat. No. 8,321,097, which claims the benefit of U.S. Provisional Patent Application No. 61/016,305, filed on Dec. 21, 2007, both of which are hereby incorporated by reference in their entirety.
Number | Name | Date | Kind |
---|---|---|---|
719595 | Huss | Feb 1903 | A |
1121210 | Techel | Dec 1914 | A |
1175677 | Barnes | Mar 1916 | A |
1207985 | Null et al. | Dec 1916 | A |
1380006 | Nielson | May 1921 | A |
1390971 | Samain | Sep 1921 | A |
1558222 | Beetow | Oct 1925 | A |
1629092 | Arter et el. | May 1927 | A |
1629902 | Arter et al. | May 1927 | A |
1631069 | Smith | May 1927 | A |
1686446 | Gilman | Oct 1928 | A |
1774254 | Daukus | Aug 1930 | A |
1793571 | Vaughn | Feb 1931 | A |
1847027 | Thomsen et al. | Feb 1932 | A |
1858696 | Weiss | May 1932 | A |
1865102 | Hayes | Jun 1932 | A |
1903228 | Thomson | Mar 1933 | A |
1978439 | Sharpe | Oct 1934 | A |
2030203 | Gove et al. | Feb 1936 | A |
2060884 | Madle | Nov 1936 | A |
2086491 | Dodge | Jul 1937 | A |
2100629 | Chilton | Nov 1937 | A |
2109845 | Madle | Mar 1938 | A |
2112763 | Cloudsley | Mar 1938 | A |
2134225 | Christiansen | Oct 1938 | A |
2152796 | Erban | Apr 1939 | A |
2209254 | Ahnger | Jul 1940 | A |
2230398 | Benjafield | Feb 1941 | A |
2259933 | Holloway | Oct 1941 | A |
2325502 | Auguste | Jul 1943 | A |
2469653 | Kopp | May 1949 | A |
2480968 | Ronai | Sep 1949 | A |
2596538 | Dicke | May 1952 | A |
2597849 | Alfredeen | May 1952 | A |
2675713 | Acker | Apr 1954 | A |
2730904 | Rennerfelt | Jan 1956 | A |
2748614 | Weisel | Jun 1956 | A |
2868038 | Billeter | Jan 1959 | A |
2959070 | Flinn | Jan 1959 | A |
2873911 | Perrine | Feb 1959 | A |
2874592 | Oehrli | Feb 1959 | A |
2883883 | Chillson | Apr 1959 | A |
2913932 | Oehru | Nov 1959 | A |
2931234 | Hayward | Apr 1960 | A |
2931235 | Hayward | Apr 1960 | A |
2949800 | Neuschotz | Aug 1960 | A |
2959063 | Perry | Nov 1960 | A |
2959972 | Madison | Nov 1960 | A |
2964959 | Beck | Dec 1960 | A |
3008061 | Mims et al. | Nov 1961 | A |
3048056 | Wolfram | Aug 1962 | A |
3051020 | Hartupee | Aug 1962 | A |
3071194 | Geske | Jan 1963 | A |
3087348 | Kraus | Apr 1963 | A |
3154957 | Kashihara | Nov 1964 | A |
3163050 | Kraus | Dec 1964 | A |
3176542 | Monch | Apr 1965 | A |
3184983 | Kraus | May 1965 | A |
3204476 | Rouverol | Sep 1965 | A |
3209606 | Yamamoto | Oct 1965 | A |
3211364 | Wentling et al. | Oct 1965 | A |
3216283 | General | Nov 1965 | A |
3246531 | Kashihara | Apr 1966 | A |
3248960 | Schottler | May 1966 | A |
3273468 | Allen | Sep 1966 | A |
3280646 | Lemieux | Oct 1966 | A |
3292443 | Felix | Dec 1966 | A |
3340895 | Osgood, Jr. et al. | Sep 1967 | A |
3374009 | Jeunet | Mar 1968 | A |
3407687 | Hayashi | Oct 1968 | A |
3440895 | Fellows | Apr 1969 | A |
3464281 | Azuma et al. | Sep 1969 | A |
3477315 | Macks | Nov 1969 | A |
3487726 | Burnett | Jan 1970 | A |
3487727 | Gustafsson | Jan 1970 | A |
3574289 | Scheiter et al. | Apr 1971 | A |
3661404 | Bossaer | May 1972 | A |
3695120 | Titt | Oct 1972 | A |
3707888 | Schottler | Jan 1973 | A |
3727473 | Bayer | Apr 1973 | A |
3727474 | Fullerton | Apr 1973 | A |
3736803 | Horowitz et al. | Jun 1973 | A |
3768715 | Tout | Oct 1973 | A |
3769849 | Hagen | Nov 1973 | A |
3800607 | Zurcher | Apr 1974 | A |
3802284 | Sharpe et al. | Apr 1974 | A |
3810398 | Kraus | May 1974 | A |
3820416 | Kraus | Jun 1974 | A |
3866985 | Whitehurst | Feb 1975 | A |
3891235 | Shelly | Jun 1975 | A |
3934493 | Hillyer | Jan 1976 | A |
3954282 | Hege | May 1976 | A |
3984129 | Hege | Oct 1976 | A |
3996807 | Adams | Dec 1976 | A |
4053173 | Chase, Sr. | Oct 1977 | A |
4086026 | Tamanini | Apr 1978 | A |
4103514 | Grosse-Entrup | Aug 1978 | A |
4159653 | Koivunen | Jul 1979 | A |
4169609 | Zampedro | Oct 1979 | A |
4177683 | Moses | Dec 1979 | A |
4227712 | Dick | Oct 1980 | A |
4314485 | Adams | Feb 1982 | A |
4345486 | Olesen | Aug 1982 | A |
4369667 | Kemper | Jan 1983 | A |
4382186 | Cronin | May 1983 | A |
4391156 | Tibbals | Jul 1983 | A |
4459873 | Black | Jul 1984 | A |
4464952 | Stubbs | Aug 1984 | A |
4468984 | Castelli et al. | Sep 1984 | A |
4493677 | Ikenoya | Jan 1985 | A |
4494524 | Wagner | Jan 1985 | A |
4496051 | Ortner | Jan 1985 | A |
4526255 | Hennessey et al. | Jul 1985 | A |
4549874 | Wen | Oct 1985 | A |
4560369 | Hattori | Dec 1985 | A |
4567781 | Russ | Feb 1986 | A |
4574649 | Seol | Mar 1986 | A |
4585429 | Marier | Apr 1986 | A |
4628766 | De Brie Perry | Dec 1986 | A |
4630839 | Seol | Dec 1986 | A |
4647060 | Tomkinson | Mar 1987 | A |
4700581 | Tibbals, Jr. | Oct 1987 | A |
4713976 | Wilkes | Dec 1987 | A |
4717368 | Yamaguchi et al. | Jan 1988 | A |
4725258 | Joanis, Jr. | Feb 1988 | A |
4735430 | Tomkinson | Apr 1988 | A |
4744261 | Jacobson | May 1988 | A |
4756211 | Fellows | Jul 1988 | A |
4781663 | Reswick | Nov 1988 | A |
4806066 | Rhodes et al. | Feb 1989 | A |
4838122 | Takamiya et al. | Jun 1989 | A |
4856374 | Kreuzer | Aug 1989 | A |
4857035 | Anderson | Aug 1989 | A |
4869130 | Wiecko | Sep 1989 | A |
4881925 | Hattori | Nov 1989 | A |
4900046 | Aranceta-Angoitia | Feb 1990 | A |
4909101 | Terry | Mar 1990 | A |
4918344 | Chikamori et al. | Apr 1990 | A |
4961477 | Sweeney | Oct 1990 | A |
4964312 | Kraus | Oct 1990 | A |
4976170 | Hayashi et al. | Dec 1990 | A |
5006093 | Itoh et al. | Apr 1991 | A |
5020384 | Kraus | Jun 1991 | A |
5033322 | Nakano | Jul 1991 | A |
5037361 | Takahashi | Aug 1991 | A |
5069655 | Schievelbusch | Dec 1991 | A |
5121654 | Fasce | Jun 1992 | A |
5125677 | Ogilvie et al. | Jun 1992 | A |
5156412 | Meguerditchian | Oct 1992 | A |
5194052 | Kazuhiko et al. | Mar 1993 | A |
5230258 | Nakano | Jul 1993 | A |
5236211 | Meguerditchian | Aug 1993 | A |
5236403 | Schievelbusch | Aug 1993 | A |
5267920 | Hibi | Dec 1993 | A |
5273501 | Schievelbusch | Dec 1993 | A |
5318486 | Lutz | Jun 1994 | A |
5323570 | Kuhlman et al. | Jun 1994 | A |
5330396 | Lohr et al. | Jul 1994 | A |
5355749 | Obara et al. | Oct 1994 | A |
5356348 | Bellio et al. | Oct 1994 | A |
5375865 | Terry, Sr. | Dec 1994 | A |
5379661 | Nakano | Jan 1995 | A |
5383677 | Thomas | Jan 1995 | A |
5387000 | Sato | Feb 1995 | A |
5401221 | Fellows et al. | Mar 1995 | A |
5413540 | Streib et al. | May 1995 | A |
5451070 | Lindsay et al. | Sep 1995 | A |
5489003 | Ohyama et al. | Feb 1996 | A |
5508574 | Vlock | Apr 1996 | A |
5562564 | Folino | Oct 1996 | A |
5564998 | Fellows | Oct 1996 | A |
5601301 | Liu | Feb 1997 | A |
5607373 | Ochiai et al. | Mar 1997 | A |
5645507 | Hathaway | Jul 1997 | A |
5651750 | Imanishi et al. | Jul 1997 | A |
5664636 | Ikuma et al. | Sep 1997 | A |
5669758 | Williamson | Sep 1997 | A |
5683322 | Meyerle | Nov 1997 | A |
5690346 | Keskitalo | Nov 1997 | A |
5746676 | Kawase et al. | May 1998 | A |
5755303 | Yamamoto et al. | May 1998 | A |
5799541 | Arbeiter | Sep 1998 | A |
5819864 | Koike et al. | Oct 1998 | A |
5823052 | Nobumoto | Oct 1998 | A |
5846155 | Taniguchi et al. | Dec 1998 | A |
5888160 | Miyata et al. | Mar 1999 | A |
5899827 | Nakano et al. | May 1999 | A |
5902207 | Sugihara | May 1999 | A |
5967933 | Valdenaire | Oct 1999 | A |
5984826 | Nakano | Nov 1999 | A |
6000707 | Miller | Dec 1999 | A |
6006151 | Graf | Dec 1999 | A |
6015359 | Kunii | Jan 2000 | A |
6019701 | Mori et al. | Feb 2000 | A |
6029990 | Busby | Feb 2000 | A |
6042132 | Suenaga et al. | Mar 2000 | A |
6045477 | Schmidt | Apr 2000 | A |
6045481 | Kumagai | Apr 2000 | A |
6050854 | Fang et al. | Apr 2000 | A |
6053833 | Masaki | Apr 2000 | A |
6053841 | Kolde et al. | Apr 2000 | A |
6066067 | Greenwood | May 2000 | A |
6071210 | Kato | Jun 2000 | A |
6076846 | Clardy | Jun 2000 | A |
6079726 | Busby | Jun 2000 | A |
6095940 | Ai et al. | Aug 2000 | A |
6099431 | Hoge et al. | Aug 2000 | A |
6113513 | Itoh et al. | Sep 2000 | A |
6119539 | Papanicolaou | Sep 2000 | A |
6119800 | McComber | Sep 2000 | A |
6155132 | Yamane | Dec 2000 | A |
6159126 | Oshidan | Dec 2000 | A |
6171210 | Miyata et al. | Jan 2001 | B1 |
6174260 | Tsukada et al. | Jan 2001 | B1 |
6186922 | Bursal et al. | Feb 2001 | B1 |
6201315 | Larsson | Mar 2001 | B1 |
6217473 | Ueda et al. | Apr 2001 | B1 |
6241636 | Miller | Jun 2001 | B1 |
6243638 | Abo et al. | Jun 2001 | B1 |
6251038 | Ishikawa et al. | Jun 2001 | B1 |
6258003 | Hirano et al. | Jul 2001 | B1 |
6261200 | Miyata et al. | Jul 2001 | B1 |
6293575 | Burrows et al. | Sep 2001 | B1 |
6311113 | Danz et al. | Oct 2001 | B1 |
6312358 | Goi et al. | Nov 2001 | B1 |
6322475 | Miller | Nov 2001 | B2 |
6325386 | Shoge | Dec 2001 | B1 |
6340067 | Fujiwara | Jan 2002 | B1 |
6358178 | Wittkopp | Mar 2002 | B1 |
6375412 | Dial | Apr 2002 | B1 |
6390946 | Hibi et al. | May 2002 | B1 |
6406399 | Xioalan | Jun 2002 | B1 |
6419608 | Miller | Jul 2002 | B1 |
6425838 | Matsubara et al. | Jul 2002 | B1 |
6461268 | Milner | Oct 2002 | B1 |
6482094 | Kefes | Nov 2002 | B2 |
6492785 | Kasten et al. | Dec 2002 | B1 |
6494805 | Ooyama et al. | Dec 2002 | B2 |
6499373 | Van Cor | Dec 2002 | B2 |
6514175 | Taniguchi et al. | Feb 2003 | B2 |
6523223 | Wang | Feb 2003 | B2 |
6532890 | Chen | Mar 2003 | B2 |
6551210 | Miller | Apr 2003 | B2 |
6571726 | Tsai et al. | Jun 2003 | B2 |
6575047 | Reik et al. | Jun 2003 | B2 |
6659901 | Sakai et al. | Dec 2003 | B2 |
6672418 | Makino | Jan 2004 | B1 |
6676559 | Miller | Jan 2004 | B2 |
6679109 | Gierling et al. | Jan 2004 | B2 |
6682432 | Shinozuka | Jan 2004 | B1 |
6689012 | Miller | Feb 2004 | B2 |
6723016 | Sumi | Apr 2004 | B2 |
6805654 | Nishii | Oct 2004 | B2 |
6849020 | Sumi | Feb 2005 | B2 |
6931316 | Joe et al. | Aug 2005 | B2 |
6932739 | Miyata et al. | Aug 2005 | B2 |
6942593 | Nishii et al. | Sep 2005 | B2 |
6945903 | Miller | Sep 2005 | B2 |
6949049 | Miller | Sep 2005 | B2 |
6958029 | Inoue | Oct 2005 | B2 |
6991575 | Inoue | Jan 2006 | B2 |
6991579 | Kobayashi et al. | Jan 2006 | B2 |
7011600 | Miller et al. | Mar 2006 | B2 |
7011601 | Miller | Mar 2006 | B2 |
7014591 | Miller | Mar 2006 | B2 |
7029418 | Taketsuna et al. | Apr 2006 | B2 |
7032914 | Miller | Apr 2006 | B2 |
7036620 | Miller et al. | May 2006 | B2 |
7044884 | Miller | May 2006 | B2 |
7063640 | Miller | Jun 2006 | B2 |
7074007 | Miller | Jul 2006 | B2 |
7074154 | Miller | Jul 2006 | B2 |
7074155 | Miller | Jul 2006 | B2 |
7077777 | Miyata et al. | Jul 2006 | B2 |
7086979 | Frenken | Aug 2006 | B2 |
7086981 | Ali et al. | Aug 2006 | B2 |
7094171 | Inoue | Aug 2006 | B2 |
7111860 | Grimaldos | Sep 2006 | B1 |
7112158 | Miller | Sep 2006 | B2 |
7112159 | Miller et al. | Sep 2006 | B2 |
7125297 | Miller et al. | Oct 2006 | B2 |
7131930 | Miller et al. | Nov 2006 | B2 |
7140999 | Miller | Nov 2006 | B2 |
7147586 | Miller et al. | Dec 2006 | B2 |
7153233 | Miller et al. | Dec 2006 | B2 |
7156770 | Miller | Jan 2007 | B2 |
7160220 | Shinojima et al. | Jan 2007 | B2 |
7160222 | Miller | Jan 2007 | B2 |
7163485 | Miller | Jan 2007 | B2 |
7163486 | Miller et al. | Jan 2007 | B2 |
7166052 | Miller et al. | Jan 2007 | B2 |
7166056 | Miller et al. | Jan 2007 | B2 |
7166057 | Miller et al. | Jan 2007 | B2 |
7166058 | Miller et al. | Jan 2007 | B2 |
7169076 | Miller et al. | Jan 2007 | B2 |
7172529 | Miller et al. | Feb 2007 | B2 |
7175564 | Miller | Feb 2007 | B2 |
7175565 | Miller et al. | Feb 2007 | B2 |
7175566 | Miller et al. | Feb 2007 | B2 |
7192381 | Miller et al. | Mar 2007 | B2 |
7197915 | Luh et al. | Apr 2007 | B2 |
7198582 | Miller et al. | Apr 2007 | B2 |
7198583 | Miller et al. | Apr 2007 | B2 |
7198584 | Miller et al. | Apr 2007 | B2 |
7198585 | Miller et al. | Apr 2007 | B2 |
7201693 | Miller et al. | Apr 2007 | B2 |
7201694 | Miller et al. | Apr 2007 | B2 |
7201695 | Miller et al. | Apr 2007 | B2 |
7204777 | Miller et al. | Apr 2007 | B2 |
7214159 | Miller et al. | May 2007 | B2 |
7217215 | Miller et al. | May 2007 | B2 |
7217216 | Inoue | May 2007 | B2 |
7217220 | Careau et al. | May 2007 | B2 |
7232395 | Miller et al. | Jun 2007 | B2 |
7234873 | Kato et al. | Jun 2007 | B2 |
7235031 | Miller et al. | Jun 2007 | B2 |
D546741 | Iteya et al. | Jul 2007 | S |
7238136 | Miller et al. | Jul 2007 | B2 |
7238137 | Miller et al. | Jul 2007 | B2 |
7238138 | Miller et al. | Jul 2007 | B2 |
7238139 | Roethler et al. | Jul 2007 | B2 |
7246672 | Shirai et al. | Jul 2007 | B2 |
7250018 | Miller et al. | Jul 2007 | B2 |
D548655 | Barrow et al. | Aug 2007 | S |
7261663 | Miller et al. | Aug 2007 | B2 |
7275610 | Kuang et al. | Oct 2007 | B2 |
7285068 | Hosoi | Oct 2007 | B2 |
7288042 | Miller et al. | Oct 2007 | B2 |
7288043 | Shioiri et al. | Oct 2007 | B2 |
7320660 | Miller | Jan 2008 | B2 |
7322901 | Miller et al. | Jan 2008 | B2 |
7347801 | Guenter et al. | Mar 2008 | B2 |
7384370 | Miller | Jun 2008 | B2 |
7393300 | Miller et al. | Jul 2008 | B2 |
7393302 | Miller | Jul 2008 | B2 |
7393303 | Miller | Jul 2008 | B2 |
7395731 | Miller et al. | Jul 2008 | B2 |
7396209 | Miller et al. | Jul 2008 | B2 |
7402122 | Miller | Jul 2008 | B2 |
7410443 | Miller | Aug 2008 | B2 |
7419451 | Miller | Sep 2008 | B2 |
7422541 | Miller | Sep 2008 | B2 |
7422546 | Miller et al. | Sep 2008 | B2 |
7427253 | Miller | Sep 2008 | B2 |
7431677 | Miller et al. | Oct 2008 | B2 |
D579833 | Acenbrak | Nov 2008 | S |
7452297 | Miller et al. | Nov 2008 | B2 |
7455611 | Miller et al. | Nov 2008 | B2 |
7455617 | Miller et al. | Nov 2008 | B2 |
7462123 | Miller et al. | Dec 2008 | B2 |
7462127 | Miller et al. | Dec 2008 | B2 |
7470210 | Miller et al. | Dec 2008 | B2 |
7481736 | Miller et al. | Jan 2009 | B2 |
7510499 | Miller | Mar 2009 | B2 |
7540818 | Miller et al. | Jun 2009 | B2 |
7547263 | Fukuda et al. | Jun 2009 | B2 |
7547264 | Usoro | Jun 2009 | B2 |
7574935 | Rohs et al. | Aug 2009 | B2 |
7591755 | Petrzik et al. | Sep 2009 | B2 |
7632203 | Miller | Dec 2009 | B2 |
7651437 | Miller et al. | Jan 2010 | B2 |
7670243 | Miller | Mar 2010 | B2 |
7686729 | Miller et al. | Mar 2010 | B2 |
7727101 | Miller | Jun 2010 | B2 |
7727107 | Miller | Jun 2010 | B2 |
7727108 | Miller et al. | Jun 2010 | B2 |
7727115 | Serkh | Jun 2010 | B2 |
7731615 | Miller et al. | Jun 2010 | B2 |
7762920 | Smithson et al. | Jul 2010 | B2 |
7785228 | Smithson et al. | Aug 2010 | B2 |
7828685 | Miller | Nov 2010 | B2 |
7871353 | Nichols et al. | Jan 2011 | B2 |
7882762 | Armstrong et al. | Feb 2011 | B2 |
7883442 | Miller et al. | Feb 2011 | B2 |
7885747 | Miller et al. | Feb 2011 | B2 |
7909727 | Smithson et al. | Mar 2011 | B2 |
7914029 | Miller et al. | Mar 2011 | B2 |
7959533 | Nichols et al. | Jun 2011 | B2 |
7963880 | Smithson et al. | Jun 2011 | B2 |
7967719 | Smithson et al. | Jun 2011 | B2 |
7976426 | Smithson et al. | Jul 2011 | B2 |
8066613 | Smithson et al. | Nov 2011 | B2 |
8066614 | Miller et al. | Nov 2011 | B2 |
8070635 | Miller | Dec 2011 | B2 |
8087482 | Miles et al. | Jan 2012 | B2 |
8123653 | Smithson et al. | Feb 2012 | B2 |
8133149 | Smithson et al. | Mar 2012 | B2 |
8142323 | Tsuchiya et al. | Mar 2012 | B2 |
8167759 | Pohl et al. | May 2012 | B2 |
8171636 | Smithson et al. | May 2012 | B2 |
8262536 | Nichols et al. | Sep 2012 | B2 |
8267829 | Miller et al. | Sep 2012 | B2 |
8317650 | Nichols et al. | Nov 2012 | B2 |
8317651 | Lohr | Nov 2012 | B2 |
8321097 | Vasiliotis et al. | Nov 2012 | B2 |
8342999 | Miller | Jan 2013 | B2 |
8360917 | Nichols et al. | Jan 2013 | B2 |
8376903 | Pohl et al. | Feb 2013 | B2 |
20010008192 | Morisawa | Jul 2001 | A1 |
20010041644 | Yasuoka et al. | Nov 2001 | A1 |
20010044361 | Taniguchi et al. | Nov 2001 | A1 |
20020019285 | Henzler | Feb 2002 | A1 |
20020028722 | Sakai et al. | Mar 2002 | A1 |
20020045511 | Geiberger et al. | Apr 2002 | A1 |
20020153695 | Wang | Oct 2002 | A1 |
20020189524 | Chen | Dec 2002 | A1 |
20030015358 | Abe et al. | Jan 2003 | A1 |
20030015874 | Abe et al. | Jan 2003 | A1 |
20030022753 | Mizuno et al. | Jan 2003 | A1 |
20030036456 | Skrabs | Feb 2003 | A1 |
20030176247 | Gottschalk | Sep 2003 | A1 |
20030216201 | Takeda | Nov 2003 | A1 |
20030216216 | Inoue et al. | Nov 2003 | A1 |
20030221892 | Matsumoto et al. | Dec 2003 | A1 |
20040051375 | Uno | Mar 2004 | A1 |
20040058772 | Inoue et al. | Mar 2004 | A1 |
20040082421 | Wafzig | Apr 2004 | A1 |
20040119345 | Takano | Jun 2004 | A1 |
20040204283 | Inoue | Oct 2004 | A1 |
20040237698 | Hilsky et al. | Dec 2004 | A1 |
20050037876 | Unno et al. | Feb 2005 | A1 |
20050172752 | Florczyk et al. | Aug 2005 | A1 |
20050215369 | Fukuda et al. | Sep 2005 | A1 |
20050227809 | Bitzer et al. | Oct 2005 | A1 |
20060052204 | Eckert et al. | Mar 2006 | A1 |
20060108956 | Clark | May 2006 | A1 |
20060111212 | Ai et al. | May 2006 | A9 |
20060180363 | Uchisasai | Aug 2006 | A1 |
20060223667 | Nakazeki | Oct 2006 | A1 |
20060234822 | Morscheck et al. | Oct 2006 | A1 |
20060276299 | Imanishi | Dec 2006 | A1 |
20070004552 | Matsudaira et al. | Jan 2007 | A1 |
20070004556 | Rohs et al. | Jan 2007 | A1 |
20070149342 | Guenter et al. | Jun 2007 | A1 |
20070155567 | Miller et al. | Jul 2007 | A1 |
20080032852 | Smithson et al. | Feb 2008 | A1 |
20080032854 | Smithson et al. | Feb 2008 | A1 |
20080039269 | Smithson et al. | Feb 2008 | A1 |
20080039273 | Smithson et al. | Feb 2008 | A1 |
20080039276 | Smithson et al. | Feb 2008 | A1 |
20080081728 | Faulring et al. | Apr 2008 | A1 |
20080139363 | Williams | Jun 2008 | A1 |
20080141809 | Miller et al. | Jun 2008 | A1 |
20080200300 | Smithson et al. | Aug 2008 | A1 |
20080305920 | Nishii et al. | Dec 2008 | A1 |
20090107454 | Hiyoshi et al. | Apr 2009 | A1 |
20090251013 | Vollmer et al. | Oct 2009 | A1 |
20100056322 | Thomassy | Mar 2010 | A1 |
20110088503 | Armstrong et al. | Apr 2011 | A1 |
20110127096 | Schneidewind | Jun 2011 | A1 |
20110172050 | Nichols et al. | Jul 2011 | A1 |
20110218072 | Lohr et al. | Sep 2011 | A1 |
20110230297 | Shiina et al. | Sep 2011 | A1 |
20110291507 | Post | Dec 2011 | A1 |
20110319222 | Ogawa et al. | Dec 2011 | A1 |
20120238386 | Pohl et al. | Sep 2012 | A1 |
20120258839 | Smithson et al. | Oct 2012 | A1 |
20120309579 | Miller et al. | Dec 2012 | A1 |
20130035200 | Noji et al. | Feb 2013 | A1 |
20130053211 | Fukuda et al. | Feb 2013 | A1 |
20130072340 | Bazyn et al. | Mar 2013 | A1 |
20130079191 | Lohr | Mar 2013 | A1 |
20130080006 | Vasiliotis et al. | Mar 2013 | A1 |
20130095977 | Smithson et al. | Apr 2013 | A1 |
20130102434 | Nichols et al. | Apr 2013 | A1 |
20130106258 | Miller | May 2013 | A1 |
Number | Date | Country |
---|---|---|
118064 | Dec 1926 | CH |
1157379 | Aug 1997 | CN |
498 701 | May 1930 | DE |
1171692 | Jun 1964 | DE |
2 310880 | Sep 1974 | DE |
2 136 243 | Jan 1975 | DE |
2436496 | Feb 1975 | DE |
263566 | Jan 1989 | DE |
39 40 919 | Jun 1991 | DE |
4120540 | Nov 1992 | DE |
19851738 | May 2000 | DE |
10155372 | May 2003 | DE |
10261372 | Jul 2003 | DE |
0 432 742 | Dec 1990 | EP |
0528381 | Feb 1993 | EP |
0528382 | Feb 1993 | EP |
635639 | Jan 1995 | EP |
0638741 | Feb 1995 | EP |
0976956 | Feb 2000 | EP |
1010612 | Jun 2000 | EP |
1136724 | Sep 2001 | EP |
1366978 | Mar 2003 | EP |
1362783 | Nov 2003 | EP |
1452441 | Sep 2004 | EP |
1518785 | Mar 2005 | EP |
620375 | Apr 1927 | FR |
2460427 | Jan 1981 | FR |
2590638 | May 1987 | FR |
14132 | May 1910 | GB |
391448 | Apr 1933 | GB |
592320 | Sep 1947 | GB |
906 002 | Sep 1962 | GB |
919430 | Feb 1963 | GB |
1132473 | Nov 1968 | GB |
1165545 | Oct 1969 | GB |
1 376 057 | Dec 1974 | GB |
2031822 | Apr 1980 | GB |
2 035 482 | Jun 1980 | GB |
2 080 452 | Aug 1982 | GB |
44-1098 | Jan 1944 | JP |
42-2844 | Feb 1967 | JP |
47-29762 | Nov 1972 | JP |
48-54371 | Jul 1973 | JP |
49-12742 | Mar 1974 | JP |
50-114581 | Sep 1975 | JP |
51-25903 | Aug 1976 | JP |
51-150380 | Dec 1976 | JP |
47-20535 | Aug 1977 | JP |
53 048166 | Jan 1978 | JP |
55-135259 | Apr 1979 | JP |
A-S56-127852 | Oct 1981 | JP |
58065361 | Apr 1983 | JP |
59069565 | Apr 1984 | JP |
60-247011 | Dec 1985 | JP |
61031754 | Feb 1986 | JP |
61-144466 | Jul 1986 | JP |
61-173722 | Oct 1986 | JP |
63-219953 | Sep 1988 | JP |
63219953 | Sep 1988 | JP |
63-160465 | Oct 1988 | JP |
02157483 | Jun 1990 | JP |
02271142 | Jun 1990 | JP |
04-166619 | Jun 1992 | JP |
04-272553 | Sep 1992 | JP |
52-35481 | Sep 1993 | JP |
7-42799 | Feb 1995 | JP |
7-139600 | May 1995 | JP |
08170706 | Jul 1996 | JP |
09024743 | Jan 1997 | JP |
09-089064 | Mar 1997 | JP |
10-115356 | May 1998 | JP |
411063130 | Mar 1999 | JP |
11-257479 | Sep 1999 | JP |
2000-46135 | Feb 2000 | JP |
2001-27298 | Jan 2001 | JP |
2001521109 | Nov 2001 | JP |
2002-147558 | May 2002 | JP |
2002-250421 | Jun 2002 | JP |
2002-291272 | Oct 2002 | JP |
2003-028257 | Jan 2003 | JP |
2003-56662 | Feb 2003 | JP |
2003-524119 | Aug 2003 | JP |
2003-336732 | Nov 2003 | JP |
2004162652 | Jun 2004 | JP |
8-247245 | Sep 2004 | JP |
2005240928 | Sep 2005 | JP |
2006015025 | Jan 2006 | JP |
2007-535715 | Dec 2007 | JP |
2008-002687 | Jan 2008 | JP |
03-149442 | Jan 2009 | JP |
2010069005 | Apr 2010 | JP |
98467 | Jul 1961 | NE |
582363 | Apr 2004 | TW |
590955 | Jun 2004 | TW |
I235214 | Jan 2005 | TW |
200637745 | Nov 2006 | TW |
WO 0173319 | Oct 2001 | WO |
WO 02088573 | Nov 2002 | WO |
WO 03086849 | Oct 2003 | WO |
WO 03100294 | Dec 2003 | WO |
WO 2005083305 | Sep 2005 | WO |
WO 2008002457 | Jan 2008 | WO |
WO 2008057507 | May 2008 | WO |
WO 2008095116 | Aug 2008 | WO |
WO 2008100792 | Aug 2008 | WO |
WO 2008101070 | Aug 2008 | WO |
WO 2008131353 | Oct 2008 | WO |
WO 2008154437 | Dec 2008 | WO |
WO 2009006481 | Jan 2009 | WO |
WO 2009148461 | Dec 2009 | WO |
WO 2009157920 | Dec 2009 | WO |
WO 2010017242 | Feb 2010 | WO |
WO 2010024809 | Mar 2010 | WO |
WO 2010044778 | Apr 2010 | WO |
WO 2011101991 | Aug 2011 | WO |
Entry |
---|
Goi et al., DeVelopment of Traction Drive IDG (T-IDG), Proceedings of International Congress on Continuously Variable and Hybrid Transmissions, Sep. 2009, pp. 6 pages. |
International Search Report and Written Opinion dated Apr. 7, 2009 for PCT Application No. PCT/US2008/087034. |
Pohl, Brad., CVT Split Power Transmissions, A Configuration versus Performance Study with an Emphasis on the Hydromechanical Type, Society of Automotive Engineers, Mar. 4, 2002, pp. 11 pages. |
Pohl, et al., Configuration Analysis of a Spherical Traction Drive CVT/IVT, SAE International, 2004 International Continuously Variable and Hybrid Transmission Congress, Sep. 23, 2004, pp. 6 pages. |
Smithson et al., Scalability for an Alternative Rolling Traction CVT, Society of Automotive Engineers, Mar. 8, 2004, pp. 6 pages. |
Office Action dated Feb. 12, 2010 from Japanese Patent Application No. 2009-294086. |
Office Action dated Feb. 17, 2010 from Japanese Patent Application No. 2006-508892. |
Office Action dated Jan. 9, 2012 for U.S. Appl. No. 12/335,810. |
Chinese Office Action dated Mar. 5, 2013 for Chinese Patent Application No. 200880125031.2. |
Japanese Office Action dated Feb. 19, 2013 for Japanese Patent Application No. 2010-539711. |
Number | Date | Country | |
---|---|---|---|
20130080006 A1 | Mar 2013 | US |
Number | Date | Country | |
---|---|---|---|
61016305 | Dec 2007 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 12335810 | Dec 2008 | US |
Child | 13681792 | US |