1. Field of the Invention
The present invention generally relates to methods and apparatus utilized in subterranean wells. More particularly, the invention relates to methods and apparatus to control fluid flow between a tubing string bore and an ambient region.
2. Description of the Related Art
Extracting hydrocarbons from subterranean formations typically involves running a tubular string into a well. Illustrative tubular strings include work strings, completion strings and production string. Some operations subsequent to (or during) running a tubular string into a wellbore, require the presence of fluid in the tubular string. To this end, it is advantageous for fluid in the wellbore to enter the tubular string as the tubular string is being lowered into the wellbore. If unrestricted fluid communication exists between the bore formed by the tubular string and the annulus formed between the tubular string and the wellbore, fluid pressure in the tubular string bore and the annulus may be equalized, thereby facilitating some operations.
In general, the tubular string bore may be filled with fluid either by flowing fluid into the bore from the wellbore surface, or by allowing fluid already in the wellbore (which is typically present after drilling) to flow into the tubular string bore via an opening in the sidewall of the tubular string. However, filling the tubular string bore with fluid from the wellbore surface is typically not desirable. Therefore, it is preferable to fill the tubular string bore with fluid from the annulus.
While the tubular string bore may be filled with fluid from the annulus simply by providing an opening at a lower end of the tubular string bore, it is often desirable to maintain a degree of control over fluid flow between the annulus and the tubular string bore. Such control may be advantageous, for example, to pressure test the tubular string periodically as it is being run in the well. However, if the tubular string is open-ended or is otherwise open to fluid communication with the annulus, it may be difficult or uneconomical to periodically close off the opening so that a pressure test may be performed, and then reopen the tubular string so that it may continue to fill while it is lowered further in the well. Additionally, when other items of equipment are pressure tested, such as after setting a packer, it may be advantageous to permit fluid flow through the opening in the tubular string. Furthermore, after the tubular string has been installed and various subsequent operations (e.g., pressure testing) concluded, it is sometimes advantageous to prevent or restrict fluid flow through the tubular string sidewall. For example, after a production tubing string has been installed it may be desirable to close off any opening through the tubing string sidewall, except at particular locations, so that hydrocarbons may be extracted.
Accordingly, there is a need for the ability to control fluid flow between the annulus and the interior tubular string bore. Preferably, control may be maintained whether the desired form is from the annulus to the tube string bore or vise versa.
The present invention generally relates to a method and apparatus utilized in subterranean wells. More particularly, the invention relates to methods and apparatus used to fill the tubing string as it is lowered into the subterranean hydrocarbon well.
In one embodiment, the apparatus to fill a tubular with fluid in a wellbore comprises a housing with a central bore, the housing having at least one aperture formed in a wall thereof. The aperture provides fluid communication between the central bore and a region exterior to the housing. A sleeve (piston valve) is slidingly disposed in the housing. The sleeve is selectively movable (in response to pressure) relative to the housing to control fluid communication between an interior and exterior of the housing. In operation, the movement of the sleeve is determined by a pressure differential between the central bore and the exterior region of the housing.
One embodiment provides a wellbore apparatus for filling a tube string. The apparatus comprises a tubular member defining at least a central bore and at least a first fluid port formed in a wall of the tubular member, wherein the first fluid port provides at least selective fluid communication between the central bore and an ambient environment of the tubular member; a piston valve slidingly disposed in the tubular member; and an actuating mechanism disposed at least partially on the piston valve; wherein the actuating member operates to move the piston valve axially relative to the tubular member from an open position to a closed position. In one embodiment, selective fluid flow is allowed from the central bore into the ambient environment of the tubular member as well as from the ambient environment of the tubular member into the central bore.
Another embodiment comprises a tubing string assembly configured to control fluid flow between an interior tubing string bore and an ambient environment. The tubing string assembly comprises a tubular member defining a first fluid port and a second fluid port, the first fluid port providing selective fluid communication between the interior tubing string bore and the ambient environment and a piston valve disposed within the tubular member and capable of reciprocal axial movement therethrough. The piston valve defines at least a first piston area at one end and a second piston area at a second end, the first piston area being relatively larger than the second piston area and, in combination with the tubular member and the piston areas, defines an internal chamber which fluidly communicates with the ambient environment via the second fluid port. The piston valve is pressure actuated, according to relative pressures on the respective piston areas, to be in one of an (i) open position, (ii) a closed and unlocked position and (iii) a closed and locked position; wherein the first fluid port is open in the open position so that fluid flow is permitted between the ambient environment and the interior tubing string bores and wherein the first fluid port is closed in the closed and unlocked position and in the closed and locked position; and wherein the piston valve may be pressure actuated from the closed and unlocked position to the open position by providing a relatively greater hydrostatic pressure in the ambient environment relative to the tubing string bore.
Another embodiment provides a wellbore apparatus, comprising a tubular member defining at least a central bore and at least a first fluid port formed in a wall of the tubular member, wherein the first fluid port provides at least selective fluid communication between the central bore and an ambient environment of the tubular member; and a piston valve slidingly disposed in the tubular member and defining a piston area differential between a pair of piston areas and further defining a volume between the tubular member and at least one of the pair of piston areas. The piston valve is selectively movable relative to the tubular member in response to a relative pressure on the pair of piston areas; wherein the piston valve is actuatable from a closed position, in which the first fluid port is obstructed by the piston valve, to an open position, in which the first fluid port is not obstructed by the piston valve.
Yet another embodiment provides a method, providing a tube filler apparatus comprising: (i) a tubular member defining at least a central bore and at least a first fluid port formed in a wall of the tubular member, wherein the first fluid port provides at least selective fluid communication between the central bore and an ambient environment of the tubular member; and (ii) a piston valve slidingly disposed in the tubular member. The method further comprises pressure actuating the piston valve in a first direction to place the piston valve in a closed position when an increasing relative hydrostatic pressure gradient from the central bore to the annulus exists; and pressure actuating the piston valve in a second direction to move the piston valve from the closed position into an open position when an increasing relative hydrostatic pressure gradient from the annulus to the central bore exists.
Still another embodiment provides a wellbore apparatus, comprising a tubular member defining at least a central bore and at least a first fluid port formed in a wall of the tubular member, wherein the first fluid port provides at least selective fluid communication between the central bore and an ambient environment of the tubular member; a piston valve slidingly disposed in the tubular member; and a pressure-responsive actuating mechanism disposed at least partially on the piston valve; wherein the pressure-responsive actuating member operates to move the piston valve axially relative to the tubular member from a closed position to an open position.
So that the manner in which the above recited features, advantages and objects of the present invention are attained and can be understood in detail, a more particular description of the invention, briefly summarized above, may be had by reference to the embodiments thereof which are illustrated in the appended drawings.
It is to be noted, however, that the appended drawings illustrate only typical embodiments of this invention and are therefore not to be considered limiting of its scope, for the invention may admit to other equally effective embodiments.
Illustratively, the tubing string 20 carries, or is made up of, an un-set packer 26, an automatic tubing filler 28, a tubing plug 36, and a perforation gun 31 in wellbore 12. Typically, the packer 26 is operated by either hydraulic or mechanical means and is used to isolate one formation from another. The packer 26 may seal, for example, an annular space formed between production tubing and the wellbore casing 16. Alternatively, the packer may seal an annular space between the outside of a tubular and an unlined wellbore. Common uses of packers include protection of casing from pressure and corrosive fluids; isolation of casing leaks, squeezed perforations, or multiple producing intervals; and holding of treating fluids, heavy fluids or kill fluids.
The automatic filling sub assembly 28 is threadedly attached to tubing string 20 and is used to allow fluid to enter and/or exit tubing string 20 as it is lowered into wellbore 12. Embodiments of the automatic filling sub assembly 28 will be described below.
The tubing string 20 is equipped with a tubing plug 36 at a lower end thereof. The tubing plug 36 may include a frangible portion disposed in its central bore. The plug 36 is used to seal the lower end of the tubing string 2050 other downhole tools disposed on the tubing string 20 above the plug 36 may be operated using pressure applied within a bore 40 of the tubing string 20.
To recover hydrocarbons from the wellbore 12, perforations 30 are formed in casing 16 and in formation 22 to allow hydrocarbons to enter the casing opening 17. In the illustrative embodiment, the perforations 30 are formed through the use of a perforation gun 31. The perforating gun 31 is activated either hydraulically or mechanically and includes shaped charges constructed and arranged to perforate casing 16 and also formation 22 to allow the hydrocarbons trapped in the formations to flow to the surface of the well 10.
It is understood that the tubular string 20 shown in
In operation, the tube string 20 is run into the well for extraction of hydrocarbons. Generally, a wellbore remains filled with fluid after drilling, as represented by the fluid level 32 in
At any given time, there may exist a height differential (i.e., head) between the fluid line 32 in the annulus 18 and a fluid line 34 in the string tube bore 40. Naturally, fluid has a tendency to flow in manner which will equilibrate the pressure differential. However, for the reasons given above, it is often desirable to control the flow of fluid between the annulus 18 and the tubing string bore. To this end, the automatic tube filler 28 is configured to be placed in an open position (allowing fluid flow from the annulus into the tubing string bore), a closed unlocked position (temporarily restricting or preventing fluid flow in either direction) and a closed locked position (permanently restricting or preventing fluid flow in either direction).
Assuming no fluids are being added, the fluid levels 32 and 34 will reach an equal height when the pressure differential is equalized, as illustrated in
Referring now to
The lower sub 42 is generally sized to accommodate the axially reciprocating movement of the piston valve 48 therethrough. In the open position shown in
In the illustrative embodiment of
The piston valve 48 also carries a split ring 76 (also referred to as a detent ring) in a groove 74 formed on its outer surface. In the open position illustrated in
The position of the piston valve 48 upon encountering the shear screws 58 is referred to herein as the closed and unlocked position. This closed and unlocked position is illustrated in
Each of the shear screws 58 have a shear strength which can be overcome by application of sufficient force. Upon application of such force, the shear screws 58 are sheared and the piston valve 48 continues traveling downward relative to the lower sub 42 until engaging a shoulder 6072 formed at a lower end of the lower sub 42. The resulting position is referred to herein as closed and locked, and is illustrated in
In operation, the piston valve 48 moves axially upward relative to the lower sub 42 when the hydrostatic fluid pressure in the intermediate chamber 50 (and therefore also the annulus 18) is greater than in the tubing string bore 40. Likewise, the piston valve 48 will also move downward to a closed position when the hydrostatic fluid pressure in the tubing string bore 40 is greater than the hydrostatic fluid pressure in the intermediate chamber 50. As will be described in more detail below, the mechanism by which this occurs is a piston area differential.
As tubing string 20 is lowered into wellbore 12, fluid level 32 in the annulus 18 is higher than fluid level 34 in the tubing string, as shown in
As piston valve 48 is moved in an upward direction, the shoulders 59 and 62 will engage to restrict any further displacement upward of piston valve 48. In addition, split-ring 76, which is disposed in recessed groove 52, will help to hold piston valve 48 in an open position if the tubing is jarred during running or other procedures. Thus, as tubing string 20 is lowered into wellbore 12, piston valve 48 of housing 44 will remain in an open position, as shown in
The open position may be maintained, for example, while circulating a heavy fluid (not shown) into wellbore 12 before any subsequent downhole operations are performed in wellbore 12, such as setting packer 26. The heavy fluid, which is heavier than the hydrocarbons to be extracted from wellbore 12, is added into annulus 18 and circulated through the apparatus via fluid port 46. As the heavy fluid is added into annulus 18, hydrostatic fluid pressure in annulus 18 and intermediate chamber 50 increases relative to the hydrostatic fluid pressure in tubing string bore 40. As a result, the automatic filler tube 28 remains in the open position.
If the fluid level 34 in the tubing string bore 40 is allowed to increase relative to the fluid level 32 in the annulus 18, the hydrostatic pressure differential between the intermediate chamber 50 and tubing string bore 40 also equalizes. An equilibrium state is represented in
Once the heavy fluid has been added and the hydrostatic fluid pressure in tubing string bore 40, annulus 18 and intermediate chamber 50 have equalized, it may be necessary to close piston valve 48 (as represented in
In some cases, it may be necessary to subsequently reopen fluid port 46 by displacing piston valve 48 in an upward direction to allow fluid to again enter tubing string bore 40 through fluid port 46. To displace piston valve 48 in an upward direction, fluid pressure is increased in annulus 18 relative to fluid pressure in the tubing string bore 40. By increasing the pressure in annulus 18, the relative hydrostatic fluid pressure increases in annulus 18 and intermediate chamber 50. Thus, as hydrostatic fluid pressure increases in annulus 18, a hydraulic force, created as annulus fluid flows into intermediate chamber 50 through fluid sensing port 56, is exerted on O-ring 66 of piston valve 48 displacing piston valve 48 upward. As piston valve 48 moves in an upward direction, split-ring 76 will expand to engage groove 54. At the same time, shoulder 62 of piston valve 48 will engage shoulder 59 of the upper sub 41, thereby restricting further movement upward of piston valve 48. Thus, fluid port 46 is reopened to allow fluid communication between the annulus 18 and the tubing string bore 40.
From the closed and unlocked position of the automatic filler tube 28 (shown in
Once the necessary downhole operations, such as circulating heavy fluid, setting packer 26 etc., have been performed, and wellsite 10 is ready to go into production mode, piston valve 48 can be placed in a closed and locked position, as shown in
As piston valve 48 continues to displace in a downward axial direction towards the shoulder 72 of the lower sub 42, the shoulder 78 of piston valve 48 cooperatively engages shoulder 61 (via shear screw remnants) of the lower sub 42, the lower end of the piston valve 48 cooperatively engages shoulder 60 of the lower sub 42, and the split-ring 76 is released fully into the recessed groove 54 of the lower sub 42, thereby preventing further downward displacement of piston valve 48. By releasing split-ring 76 into the recessed groove 54, piston valve 48 is permanently locked, and further movement of the piston valve 48 is prevented in the upward direction by shoulder 79 formed on the upper side of groove 54 which cooperatively engages a flat non-tapered edge of split-ring 76.
With piston valve 48 permanently locked, hydrostatic fluid pressure in the tubing string bore 40 can be increased to the necessary pressure to activate tubing plug 36 to fracture the frangible plug member and then activate the perforation gun to perforate casing 16 and formation 22 so the well can go into a production mode.
It is understood that the particular configuration and geometry of the automatic tube filler 28 shown in
A particular example of another embodiment of the automatic tube filler 28 will now be described with reference to
In addition to components described above, the automatic tube filler 28 shown in
Illustratively, the body 100 is a generally cylindrical member (although other shapes are contemplated) having a fluid port 46 at the lower end and a fluid sensing port 56 at a midsection. As in the previous embodiments, the fluid port 46 provides fluid communication between the annulus 18 and the tubing string bore 40 while the fluid sensing port 56 provides fluid communication between the annulus and the intermediate chamber 50. Other similar components include the grooves 52 and 54 for receiving the split-ring 76, which is carried by the piston valve 48.
In contrast to previous embodiments, the automatic tube filler 28 of
Referring briefly to
In operation, the automatic tube filler 28 is in the open position shown in
Subsequently, if a greater pressure exists within the tubing string bore 40 relative to the annulus 18, fluid will tend to flow from the tubing string bore 40 into the annulus 18. Accordingly, a pressure will be exerted on the flexible flow restricting members 114 causing the flow restricting members 114 to engage the body 100, as shown in
With a continuing greater pressure in the tubing string bore 40 relative to the annulus 18, the piston valve 48 moves downward with respect to the body 100 into the closed and unlocked position. Such a position is shown in
When it is desirable to lock the automatic tube filler 28 a sufficient hydraulic pressure may be exerted on the piston valve 48, as described above with respect to the previous embodiments. As a result of such a pressure, the shoulder 78 will bear down with sufficient force to shear the shear screws 58. The resulting closed and locked position is shown in
Yet another embodiment of the automatic tube filler 28 is shown in
Referring first to
The spring 130 is generally disposed between the piston valve 48 and a portion of the upper sub 41. Further, the spring 130 is restrained at one end by a shoulder 132 of the piston valve 48 and at another end by a retaining member 134 (seen in
In operation, a sufficient positive hydrostatic pressure differential between the annulus 18 and tubing string bore 40 overcomes the force applied by the spring 130 to keep the fluid port 46 open. In the absence of sufficient fluid pressure, the force supplied by the spring 130 operates to close the piston valve 48, as shown in
Words used herein referring to position and orientation (such as over, under, adjacent, proximate, behind, next to, etc.) are relative and merely for purpose of describing a particular embodiment. Persons skilled in the art will recognize that other configurations are contemplated.
While the foregoing is directed to embodiments of the present invention, other and further embodiments of the invention may be devised without departing from the basic scope thereof, and the scope thereof is determined by the claims that follow.
Number | Name | Date | Kind |
---|---|---|---|
2642140 | Brown | Jun 1953 | A |
2698054 | Brown et al. | Dec 1954 | A |
2847074 | Maly et al. | Aug 1958 | A |
3687202 | Young et al. | Aug 1972 | A |
3850250 | Holden et al. | Nov 1974 | A |
3970147 | Jessup et al. | Jul 1976 | A |
4113012 | Evans et al. | Sep 1978 | A |
4178992 | Regan et al. | Dec 1979 | A |
4324293 | Hushbeck | Apr 1982 | A |
4429741 | Hyland | Feb 1984 | A |
4453599 | Fredd | Jun 1984 | A |
4609005 | Upchurch | Sep 1986 | A |
4625762 | Hassanzadeh et al. | Dec 1986 | A |
4651818 | Johnson et al. | Mar 1987 | A |
4984631 | Reesing | Jan 1991 | A |
5156207 | Haugen et al. | Oct 1992 | A |
5343956 | Coronado | Sep 1994 | A |
5366010 | Zwart | Nov 1994 | A |
5411049 | Colvard | May 1995 | A |
5441111 | Whiteford | Aug 1995 | A |
5464063 | Boehm, Jr. | Nov 1995 | A |
5509476 | Vick, Jr. | Apr 1996 | A |
5542475 | Turner et al. | Aug 1996 | A |
5609178 | Hennig et al. | Mar 1997 | A |
5685372 | Gano | Nov 1997 | A |
5727632 | Richards | Mar 1998 | A |
5765641 | Shy et al. | Jun 1998 | A |
5979553 | Brink | Nov 1999 | A |
6059038 | Vick, Jr. | May 2000 | A |
6123151 | Regan et al. | Sep 2000 | A |
6230811 | Ringgenberg et al. | May 2001 | B1 |
6508309 | French | Jan 2003 | B1 |
Number | Date | Country |
---|---|---|
0 939 193 | Sep 1999 | EP |
2 268 770 | Jan 1994 | GB |
WO 0106086 | Jan 2001 | WO |
Number | Date | Country | |
---|---|---|---|
20020189814 A1 | Dec 2002 | US |