The claimed subject matter relates to industrial control systems and, more particularly, to automatically generating user interfaces based upon data within a programmable logic controller.
Due to advances in computing technology, businesses today are able to operate more efficiently when compared to substantially similar businesses only a few years ago. For example, internal networking enables employees of a company to communicate instantaneously by email, quickly transfer data files to disparate employees, manipulate data files, share data relevant to a project to reduce duplications in work product, etc. Furthermore, advancements in technology have enabled factory applications to become partially or completely automated. For instance, operations that once required workers to put themselves proximate to heavy machinery and other various hazardous conditions can now be completed at a safe distance therefrom.
Further, imperfections associated with human action have been minimized through employment of highly precise machines. Many of these factory devices supply data related to manufacturing to databases or web services referencing databases that are accessible by system/process/project managers on a factory floor. For instance, sensors and associated software can detect a number of instances that a particular machine has completed an operation given a defined amount of time. Further, data from sensors can be delivered to a processing unit relating to system alarms. Thus, a factory automation system can review collected data and automatically and/or semi-automatically schedule maintenance of a device, replacement of a device, and other various procedures that relate to automating a process.
While various advancements have been made with respect to automating an industrial process, utilization and design of controllers has been largely unchanged. Industrial controllers are special-purpose computers utilized for controlling industrial processes, manufacturing equipment, and other factory automation processes, such as data collection through networked systems. Controllers often work in concert with other computer systems to form an environment whereby a majority of modern and automated manufacturing operations occur. These operations involve front-end processing of materials such as steel production to more intricate manufacturing processes such as automobile production that involves assembly of previously processed materials. Often such as in the case of automobiles, complex assemblies can be manufactured with high technology robotics assisting the industrial control process.
In many automated processes, including the basic production of commodities such as food, beverages, and pharmaceuticals, complex state logic is often designed and programmed by systems Engineers or provided in some cases by automated equipment manufacturers. This logic is often programmed with common PLC ladder logic or higher level languages supported by Sequential Function Charts or Function Blocks. Sequence logic can be employed for a plurality of tasks such as material movement and conveying operations, packaging operations, or as part of an assembly process itself, wherein various stages of an assembly are sequenced from stage to stage until a final assembly occurs. As can be appreciated, much planning and design is required to implement an automated production process that can involve hundreds of machines, computers, and program logic to facilitate proper operation of the respective sequences.
A common problem associated with control systems is lack of uniformity across system/process boundaries, as well as a lack of uniformity between controller manufacturers, software vendors, and customers. Such non-uniformity can be as simplistic as discrepancies in naming conventions between a software vendor and a customer, or as complex as disparate software representations with respect to portions of an industrial automation framework. Given the above-mentioned discrepancies (as well as a myriad of other discrepancies), a substantial amount of ad-hoc coding is often required to automate a process. Accordingly, a substantial amount of cost is incurred by a manufacturer to employ computer and programming specialists to generate and maintain ad-hoc programs necessary to automate a manufacturing process. This cost is then passed on to purchasers of the manufactured product.
With more detail regarding conventional controllers, such controllers have been designed to efficiently undertake real-time control. For instance, conventional programmable logic controllers receive data from sensors and, based upon the received data, control an actuator, drive, or the like. These controllers recognize a source and/or destination of the data by way of a symbol and/or address associated with a source and/or destination. More particularly, industrial controllers include communications ports and/or adaptors, and sensors, actuators, drives, and the like are communicatively coupled to such ports/adaptors. Thus, a controller can recognize device identify when data is received and further deliver control data to an appropriate device.
As can be discerned from the above, data associated with conventional industrial controllers is created, delivered, and/or stored with a flat namespace data structure. In other words, all that can be discovered by reviewing data received and/or output by a controller is an identity of an actuator or sensor and a status thereof. This industrial controller architecture operates efficiently for real-time control of a particular device—however, problems can arise when data from industrial controllers is desired for use by a higher-level system. For example, if data from the controller was desired for use by a scheduling application, individual(s) familiar with the controller must determine which data is desirable, sort the data, package the data in a desired format, and thereafter map such data to the scheduling application. This introduces another layer of software, and thus provides opportunities for confusion in an industrial automation environment. The problem is compounded if several applications wish to utilize similar data. In operation, various controllers output data, package it in a flat namespace structure, and provide it to a network. Each application utilizing the data copies such data to internal memory, sorts the data, organizes the data, and packages the data in a desired format. Accordingly, multiple copies of similar data exist in a plurality of locations, where each copy of the data may be organized and packaged disparately.
It can be determined from the above that provision of user interfaces to operators is problematic in today's industrial automation environments. Conventionally, view frameworks are built and then populated with data received from a controller. Thus, user interfaces are pre-defined and then populated based upon data received from a programmable logic controller. In many instances, however, this one-size fits-all view is insufficient and does not provide adequate detail to an operator. For example, if data lies outside an expected range, the pre-defined interface may not adequately relay such data to an operator.
The following presents a simplified summary of the claimed subject matter in order to provide a basic understanding of some aspects described herein. This summary is not an extensive overview, and is not intended to identify key/critical elements or to delineate the scope of the claimed subject matter. Its sole purpose is to present some concepts in a simplified form as a prelude to the more detailed description that is presented later.
A user interface generation system is described herein, wherein such system is employable within an industrial automation environment. The system relies upon an ability of programmable logic controllers or proxy to receive, process, and output data objects that are in accordance with a hierarchically structured data model. For example, the hierarchically structured data model can be designed based at least in part upon ISA S88, ISA S95, OMAC, and/or a combination thereof. It is understood, however, that any suitable hierarchical structure can be employed in connection with objects received, processed, and output by programmable logic controllers. Upon creation of such an object, a user interface generation system can access the object and utilize parameters associated with the object to dynamically generate a graphical user interface. For example, the object can include data that indicates that the object is associated with a particular process or device. Moreover, the object can indicate state of a process or device, and such state can be employed when generating the graphical user interface. Accordingly, much more robust user interfaces can be created when compared with conventional user interface generation systems.
Furthermore, objects can be received in sequence, thus enabling a graphical user interface to dynamically change with change in conditions. For example, a first object can indicate that a process is at a first state, and a second (later created) object can indicate that the process is at a second state. The user interface generation system can provide this alteration to a user upon receiving the objects. Furthermore, objects from a plurality of programmable logic controllers can be aggregated, and the aggregation can be employed in connection with creating a graphical user interface. Aggregated data from a plurality of programmable logic controllers can provide a high-level overview of a system and/or process, and such overview can then be provided to a user by way of a graphical user interface. In another example, templates can be associated with disparate parameters of objects, and such templates can be utilized in connection with creating a graphical user interface. For example, an object received from a programmable logic controller can include data relating to a particular machine. A template that includes a graphical rendering of the machine can then be accessed upon analyzing the object, and such template can be utilized to provide a graphical user interface to the user.
Moreover, dynamic and robust user interfaces can be created even when data is received from legacy programmable logic controllers. For example, legacy controllers do not support the aforementioned hierarchically structured data model, but rather receive, process, and output data in a flat-file manner. Such file structure is not conducive to the dynamic and robust creation of graphical user interfaces described herein. Through use of a proxy component, however, data from legacy programmable logic controllers can be mapped so that it conforms to the hierarchically structured data model. This mapping can be accomplished, for instance, by way of user interfaces. In another example, legacy programmable logic controllers may communicate over a disparate network when compared to a display device. Thus, a bridging component can be provided to recognize and re-package data according to a network over which data is communicated.
To the accomplishment of the foregoing and related ends, certain illustrative aspects of the invention are described herein in connection with the following description and the annexed drawings. These aspects are indicative, however, of but a few of the various ways in which the principles of the invention can be employed and the subject invention is intended to include all such aspects and their equivalents. Other advantages and novel features of the invention will become apparent from the following detailed description of the invention when considered in conjunction with the drawings.
The claimed subject matter is now described with reference to the drawings, wherein like reference numerals are used to refer to like elements throughout. In the following description, for purposes of explanation, numerous specific details are set forth in order to provide a thorough understanding of the claimed subject matter. It may be evident, however, that such matter can be practiced without these specific details. In other instances, well-known structures and devices are shown in block diagram form in order to facilitate describing the invention.
As used in this application, the terms “component” and “system” and the like are intended to refer to a computer-related entity, either hardware, a combination of hardware and software, software, or software in execution. For example, a component may be, but is not limited to being, a process running on a processor, a processor, an object, an instance, an executable, a thread of execution, a program, and/or a computer. By way of illustration, both an application running on a computer and the computer can be a component. One or more components may reside within a process and/or thread of execution and a component may be localized on one computer and/or distributed between two or more computers.
Furthermore, the claimed subject matter may be implemented as a method, apparatus, or article of manufacture using standard programming and/or engineering techniques to produce software, firmware, hardware, or any combination thereof to control a computer to implement the disclosed subject matter. The term “article of manufacture” as used herein is intended to encompass a computer program accessible from any computer-readable device, carrier, or media. For example, computer readable media can include but are not limited to magnetic storage devices (e.g., hard disk, floppy disk, magnetic strips . . . ), optical disks (e.g., compact disk (CD), digital versatile disk (DVD) . . . ), smart cards, and flash memory devices (e.g., card, stick, key drive . . . ). Additionally it should be appreciated that a carrier wave can be employed to carry computer-readable electronic data such as those used in transmitting and receiving electronic mail or in accessing a network such as the Internet or a local area network (LAN). Of course, those skilled in the art will recognize many modifications may be made to this configuration without departing from the scope or spirit of the claimed subject matter. Moreover, the word “exemplary” is used herein to mean serving as an example, instance, or illustration. Any aspect or design described herein as “exemplary” is not necessarily to be construed as preferred or advantageous over other aspects or designs.
Turning now to the drawings,
The hierarchically structured data model can be designed in such a manner to enable data objects to correspond to a hierarchical arrangement of a system and/or a hierarchical arrangement of processes that occur within the plant. Furthermore, the hierarchically structured data model can be designed in a manner that enables modeling of a plant across system and/or process boundaries. For instance, today's manufacturing facilities include batch processing, continuous processing, discrete processing, as well as inventory processing. Communication of meaningful data between these systems and processes is extremely difficult, as they are often designed and operated without regard for an adjacent process. The hierarchically structured data model can be implemented so that a substantially similar structure is provided with respect to a batch process, a continuous process, a discrete process, and inventory tracking. In one particular example, the hierarchically structured data model can be modeled in accordance with ISA S95, ISA S88, OMAC, and/or a combination thereof.
Thus, the controller 106 can generate instantiated objects that are received by the reception component 104. The objects can relate to low-level drives, motors, and the like, or more complex systems and/or processes, such as pumps, conveyors, etc. Furthermore, the objects can be representative of a state of a device and/or process. In other words, the programmable logic controller 106 can be utilized to undertake state-based control, and objects generated by the programmable logic controller 106 can be representative of particular states. A view generation component 108 that is communicatively coupled to the reception component 104 can then receive at least a subset of the instantiated objects, and thereafter dynamically create a user interface 110 based upon the received objects. For example, the object can include data indicating a process and/or a part thereof related to the object as well as a state associated with the process. The view generation component 108 can analyze the object and generate a display that is customized for such object. For instance, the user interface 110 can include a graphical depiction of a motor as well as a state of a motor. Conventionally, a user interface shell is created and data retrieved from the programmable logic controller 106 is displayed within the shell, regardless of state of a process, without graphical depictions, etc. The view generation component 108 enables creation of more robust user interfaces.
Furthermore, as described above, the hierarchically structured data model can be designed in accordance with a plant hierarchy. Thus any portion of the plant hierarchy can be utilized to dynamically generate views. For example, a “control module” object can be a child of an “equipment module” object, and the “equipment module” object can be a child of a “phase” object. Therefore, a process phase represented by a “phase” object can be utilized in connection with analyzing children of the object, and the view generation component 108 can dynamically create the user interface 110. Moreover, the view generation component 108 can receive a plurality of objects in sequence, thereby enabling the user interface 110 to be created in such a way to dynamically illustrate alteration in a system/process. The user interface 110 can be displayed upon any suitable display, such as a LCD display, a CRT display, a plasma display, or any other suitable display. Thus, it can be discerned that data received directly from a controller can be employed in connection with dynamically generating the user interface 110. In still another example, the view generation component 108 can consider context associated with a user/entity in connection with dynamically generating the user interface 110. For instance, the view generation component 108 can determine a user's role, current usage scenario, etc. The view generation component 108 can then generate the user interface 110 based upon such context. Thus, the view generation component 108 can cause wiring semantics for maintenance user's to be automatically generated, for example, if the context dictates such generation.
Referring now to
The programmable logic controller 200 can further include a reception component 212 that receives the objects 206-210 from memory 204 (or from an associated hard disk). A view generation component 214 is communicatively coupled to the reception component 212, and generates a user interface 216 based upon content of the objects 206-210. Thus, the programmable logic controller 200 itself can be utilized to generate the graphical user interface 216 (e.g., a display unit can be simply coupled to a port of the programmable logic controller 200). As described above, the objects 206-210 can be created in accordance with a hierarchically structured data model, and can further represent a state of a device and/or process. Based upon the data structure and the state information, the view generation component 214 can dynamically generate the user interface 216. Moreover, the objects 206-210 can represent a sequence of states—thus, if the view generation component 214 receives such objects 206-210 as they are created, the user interface 216 can represent a current state of a device/process and illustrate alterations of state as such alterations occur.
Now turning to
Referring now to
In more detail, the proxy component 408 can include a bridging component 410 that operates as a bridge between disparate networks. For example, the programmable logic controller 404 may be adapted to send/receive data over a first network protocol, such as ProfiBus, FieldBus, Foundation FieldBus, Hart, or the like, while a display mechanism may be designed to send/receive data over a second network protocol, such as the Common Industrial Protocol (CIP). The bridging component 410 can recognize that data from the programmable logic controller 404 is packaged in accordance with the first network protocol and thereafter re-package such data so that it conforms to the second network protocol. The bridging component 410 can be associated with a mapping component 412 that can reformat the data so that it is in accordance with the hierarchically structured data model. For instance, the mapping component 412 can access templates associated with a data model associated with that employed by the programmable logic controller 404 and utilize such templates to map the data to the hierarchically structured data model. Resulting data, upon being manipulated by the proxy component 408, can then be provided to a view generation component 414. The view generation component 414 can then utilize such structured data to dynamically create a user interface 416. Thus, the view generation component 414 can be employed to generate customized, robust interfaces even when programmable logic controllers do not support the hierarchically structured data model.
Referring now to
If the security component 504 determines that a requesting user is authorized to review requested data, a reception component 506 can be employed to receive instantiated objects from a programmable logic controller 508. For example, the reception component 506 can first request particular data from the programmable logic controller 508, and thereafter receive results of such request. A filtering component 510 can then be employed to filter data based at least in part upon one of user identity and location. For instance, the user may be authorized for particular objects, but based upon location it is undesirable or unnecessary to display certain data to the user. Thus, the filtering component 510 can selectively filter such data.
Data (objects) that have not been filtered by the filtering component 510 can then be provided to a view generation component 512 that dynamically generates a user interface 514 based upon parameters associated with the objects. For instance, the objects can be state-based, and thus the view generation component 512 can generate a user interface 514 that displays a current state. As the view generation component 512 receives more objects, the user interface 514 can be updated. The user interface generation system 502 further includes a feedback component 516 that enables users to provide feedback with respect to the user interface 514. For instance, a user may wish to view a split screen, illustrating a first process in a first portion and a second process in a second portion. In another example, the user may wish to switch a system/process being viewed entirely. Moreover, the feedback component 516 can be utilized to alter/halt a process. For instance, through a keyboard, mouse, touch sensitive screen, pushbutton, or the like, the user can provide commands to the programmable logic controller 508 to alter/halt a particular device/process. The view generation component 512 can then provide an updated user interface upon such occurrence.
Turning now to
Referring to
Turning specifically to
Now turning to
Referring now to
Referring now to
With reference to
The system bus 1118 can be any of several types of bus structure(s) including the memory bus or memory controller, a peripheral bus or external bus, and/or a local bus using any variety of available bus architectures including, but not limited to, 8-bit bus, Industrial Standard Architecture (ISA), Micro-Channel Architecture (MSA), Extended ISA (EISA), Intelligent Drive Electronics (IDE), VESA Local Bus (VLB), Peripheral Component Interconnect (PCI), Universal Serial Bus (USB), Advanced Graphics Port (AGP), Personal Computer Memory Card International Association bus (PCMCIA), and Small Computer Systems Interface (SCSI).
The system memory 1116 includes volatile memory 1120 and nonvolatile memory 1122. The basic input/output system (BIOS), containing the basic routines to transfer information between elements within the computer 1112, such as during start-up, is stored in nonvolatile memory 1122. By way of illustration, and not limitation, nonvolatile memory 1122 can include read only memory (ROM), programmable ROM (PROM), electrically programmable ROM (EPROM), electrically erasable ROM (EEPROM), or flash memory. Volatile memory 1120 includes random access memory (RAM), which acts as external cache memory. By way of illustration and not limitation, RAM is available in many forms such as synchronous RAM (SRAM), dynamic RAM (DRAM), synchronous DRAM (SDRAM), double data rate SDRAM (DDR SDRAM), enhanced SDRAM (ESDRAM), Synchlink DRAM (SLDRAM), and direct Rambus RAM (DRRAM).
Computer 1112 also includes removable/non-removable, volatile/non-volatile computer storage media.
It is to be appreciated that
A user enters commands or information into the computer 1112 through input device(s) 1136. Input devices 1136 include, but are not limited to, a pointing device such as a mouse, trackball, stylus, touch pad, keyboard, microphone, joystick, game pad, satellite dish, scanner, TV tuner card, digital camera, digital video camera, web camera, and the like. These and other input devices connect to the processing unit 1114 through the system bus 1118 via interface port(s) 1138. Interface port(s) 1138 include, for example, a serial port, a parallel port, a game port, and a universal serial bus (USB). Output device(s) 1140 use some of the same type of ports as input device(s) 1136. Thus, for example, a USB port may be used to provide input to computer 1112, and to output information from computer 1112 to an output device 1140. Output adapter 1142 is provided to illustrate that there are some output devices 1140 like monitors, speakers, and printers, among other output devices 1140, which require special adapters. The output adapters 1142 include, by way of illustration and not limitation, video and sound cards that provide a means of connection between the output device 1140 and the system bus 1118. It should be noted that other devices and/or systems of devices provide both input and output capabilities such as remote computer(s) 1144.
Computer 1112 can operate in a networked environment using logical connections to one or more remote computers, such as remote computer(s) 1144. The remote computer(s) 1144 can be a personal computer, a server, a router, a network PC, a workstation, a microprocessor based appliance, a peer device or other common network node and the like, and typically includes many or all of the elements described relative to computer 1112. For purposes of brevity, only a memory storage device 1146 is illustrated with remote computer(s) 1144. Remote computer(s) 1144 is logically connected to computer 1112 through a network interface 1148 and then physically connected via communication connection 1150. Network interface 1148 encompasses communication networks such as local-area networks (LAN) and wide-area networks (WAN). LAN technologies include Fiber Distributed Data Interface (FDDI), Copper Distributed Data Interface (CDDI), Ethernet/IEEE 802.3, Token Ring/IEEE 802.5 and the like. WAN technologies include, but are not limited to, point-to-point links, circuit switching networks like Integrated Services Digital Networks (ISDN) and variations thereon, packet switching networks, and Digital Subscriber Lines (DSL).
Communication connection(s) 1150 refers to the hardware/software employed to connect the network interface 1148 to the bus 1118. While communication connection 1150 is shown for illustrative clarity inside computer 1112, it can also be external to computer 1112. The hardware/software necessary for connection to the network interface 1148 includes, for exemplary purposes only, internal and external technologies such as, modems including regular telephone grade modems, cable modems and DSL modems, ISDN adapters, and Ethernet cards.
What has been described above includes examples of the invention. It is, of course, not possible to describe every conceivable combination of components or methodologies for purposes of describing the subject invention, but one of ordinary skill in the art may recognize that many further combinations and permutations of the invention are possible. Accordingly, the invention is intended to embrace all such alterations, modifications and variations that fall within the spirit and scope of the appended claims. Furthermore, to the extent that the term “includes” is used in either the detailed description or the claims, such term is intended to be inclusive in a manner similar to the term “comprising” as “comprising” is interpreted when employed as a transitional word in a claim.
This application is a continuation of U.S. patent application Ser. No. 11/238,607, filed on Sep. 29, 2005 and entitled “AUTOMATIC USER INTERFACE GENERATION,” which claims the benefit of U.S. Provisional Patent Application Ser. No. 60/680,682, filed on May 13, 2005 and entitled “SCHEMA THAT FACILITATES PLANT REPRESENTATION AND RELATED FUNCTIONALITY,” the entireties of which are incorporated herein by reference.
Number | Name | Date | Kind |
---|---|---|---|
4268901 | Subrizi et al. | May 1981 | A |
4347564 | Sugano et al. | Aug 1982 | A |
4623964 | Getz et al. | Nov 1986 | A |
5072374 | Sexton et al. | Dec 1991 | A |
5185708 | Hall et al. | Feb 1993 | A |
5253184 | Kleinschnitz | Oct 1993 | A |
5282244 | Fuller et al. | Jan 1994 | A |
5301320 | McAtee et al. | Apr 1994 | A |
5446868 | Gardea et al. | Aug 1995 | A |
5455775 | Huber et al. | Oct 1995 | A |
5485620 | Sadre et al. | Jan 1996 | A |
5504891 | Motoyama et al. | Apr 1996 | A |
5537585 | Blickenstaff et al. | Jul 1996 | A |
5572731 | Morel et al. | Nov 1996 | A |
5611059 | Benton et al. | Mar 1997 | A |
5619724 | Moore | Apr 1997 | A |
5634048 | Ryu et al. | May 1997 | A |
5644740 | Kiuchi | Jul 1997 | A |
5675748 | Ross | Oct 1997 | A |
5715413 | Ishai et al. | Feb 1998 | A |
5721905 | Elixmann et al. | Feb 1998 | A |
5761499 | Sonderegger | Jun 1998 | A |
5790935 | Payton | Aug 1998 | A |
5797137 | Golshani et al. | Aug 1998 | A |
5812773 | Norin | Sep 1998 | A |
5828851 | Nixon et al. | Oct 1998 | A |
5832486 | Itoh et al. | Nov 1998 | A |
5838563 | Dove et al. | Nov 1998 | A |
5848273 | Fontana et al. | Dec 1998 | A |
5862052 | Nixon et al. | Jan 1999 | A |
5884025 | Baehr et al. | Mar 1999 | A |
5884033 | Duvall et al. | Mar 1999 | A |
5913029 | Shostak | Jun 1999 | A |
5924094 | Sutter | Jul 1999 | A |
5936539 | Fuchs | Aug 1999 | A |
5940294 | Dove | Aug 1999 | A |
5940854 | Green, Jr. et al. | Aug 1999 | A |
5951440 | Reichlinger | Sep 1999 | A |
5960420 | Leymann et al. | Sep 1999 | A |
5966705 | Koneru | Oct 1999 | A |
5970494 | Velissaropoulos et al. | Oct 1999 | A |
5978577 | Rierden et al. | Nov 1999 | A |
5980078 | Krivoshein et al. | Nov 1999 | A |
5983016 | Brodsky et al. | Nov 1999 | A |
5997167 | Crater et al. | Dec 1999 | A |
6011899 | Ohishi et al. | Jan 2000 | A |
6032208 | Nixon et al. | Feb 2000 | A |
6044217 | Brealey et al. | Mar 2000 | A |
6061740 | Ferguson et al. | May 2000 | A |
6063129 | Dadd et al. | May 2000 | A |
6081899 | Byrd | Jun 2000 | A |
6098116 | Nixon et al. | Aug 2000 | A |
6101531 | Eggleston et al. | Aug 2000 | A |
6157864 | Schwenke et al. | Dec 2000 | A |
6195591 | Nixon et al. | Feb 2001 | B1 |
6208987 | Nihei | Mar 2001 | B1 |
6234899 | Nulph | May 2001 | B1 |
6266726 | Nixon et al. | Jul 2001 | B1 |
6268853 | Hoskins et al. | Jul 2001 | B1 |
6275977 | Nagai et al. | Aug 2001 | B1 |
6308168 | Dovich et al. | Oct 2001 | B1 |
6308224 | Leymann et al. | Oct 2001 | B1 |
6311187 | Jeyaraman | Oct 2001 | B1 |
6327511 | Naismith et al. | Dec 2001 | B1 |
6336152 | Richman et al. | Jan 2002 | B1 |
6356920 | Vandersluis | Mar 2002 | B1 |
6377957 | Jeyaraman | Apr 2002 | B1 |
6393566 | Levine | May 2002 | B1 |
6398106 | Ulvr et al. | Jun 2002 | B1 |
6409082 | Davis et al. | Jun 2002 | B1 |
6411987 | Steger et al. | Jun 2002 | B1 |
6415983 | Ulvr et al. | Jul 2002 | B1 |
6425051 | Burton et al. | Jul 2002 | B1 |
6438744 | Toutonghi et al. | Aug 2002 | B2 |
6445963 | Blevins et al. | Sep 2002 | B1 |
6446202 | Krivoshein et al. | Sep 2002 | B1 |
6457053 | Satagopan et al. | Sep 2002 | B1 |
6469986 | Lecheler et al. | Oct 2002 | B1 |
6473656 | Langels et al. | Oct 2002 | B1 |
6477435 | Ryan et al. | Nov 2002 | B1 |
6484061 | Papadopoulos et al. | Nov 2002 | B2 |
6501996 | Bieber | Dec 2002 | B1 |
6505247 | Steger et al. | Jan 2003 | B1 |
6510352 | Badavas et al. | Jan 2003 | B1 |
6539271 | Lech et al. | Mar 2003 | B2 |
6539430 | Humes | Mar 2003 | B1 |
6539458 | Holmberg | Mar 2003 | B2 |
6615091 | Birchenough et al. | Sep 2003 | B1 |
6631519 | Nicholson et al. | Oct 2003 | B1 |
6643555 | Eller et al. | Nov 2003 | B1 |
6661426 | Jetha et al. | Dec 2003 | B1 |
6664981 | Ashe et al. | Dec 2003 | B2 |
6676309 | Shima | Jan 2004 | B2 |
6681227 | Kojima et al. | Jan 2004 | B1 |
6687817 | Paul | Feb 2004 | B1 |
6697797 | Hoggatt et al. | Feb 2004 | B1 |
6704746 | Sokolov et al. | Mar 2004 | B2 |
6714949 | Frey, Jr. | Mar 2004 | B1 |
6714981 | Skaggs | Mar 2004 | B1 |
6738821 | Wilson et al. | May 2004 | B1 |
6745089 | Rasmussen et al. | Jun 2004 | B2 |
6748486 | Burton et al. | Jun 2004 | B2 |
6751634 | Judd | Jun 2004 | B1 |
6758403 | Keys et al. | Jul 2004 | B1 |
6760721 | Chasen et al. | Jul 2004 | B1 |
6760732 | Busshart et al. | Jul 2004 | B2 |
6763395 | Austin | Jul 2004 | B1 |
6766312 | Landt | Jul 2004 | B2 |
6768987 | Couch et al. | Jul 2004 | B1 |
6769095 | Brassard et al. | Jul 2004 | B1 |
6778537 | Ishibashi | Aug 2004 | B1 |
6801822 | Fujiwara et al. | Oct 2004 | B1 |
6807632 | Carpentier et al. | Oct 2004 | B1 |
6809732 | Zatz et al. | Oct 2004 | B2 |
6832120 | Frank et al. | Dec 2004 | B1 |
6836892 | Ikoma et al. | Dec 2004 | B2 |
6839790 | Barros De Almeida et al. | Jan 2005 | B2 |
6842769 | Kim et al. | Jan 2005 | B1 |
6853920 | Hsiung et al. | Feb 2005 | B2 |
6865509 | Hsiung et al. | Mar 2005 | B1 |
6868413 | Grindrod et al. | Mar 2005 | B1 |
6874145 | Ye et al. | Mar 2005 | B1 |
6874146 | Iyengar | Mar 2005 | B1 |
6880060 | Talagala et al. | Apr 2005 | B2 |
6889282 | Schollenberger | May 2005 | B2 |
6901578 | Beaven et al. | May 2005 | B1 |
6904450 | King et al. | Jun 2005 | B1 |
6904473 | Bloxham et al. | Jun 2005 | B1 |
6920474 | Walsh et al. | Jul 2005 | B2 |
6928521 | Burton et al. | Aug 2005 | B1 |
6930985 | Rathi et al. | Aug 2005 | B1 |
6934749 | Black et al. | Aug 2005 | B1 |
6938079 | Anderson et al. | Aug 2005 | B1 |
6944626 | Cameron et al. | Sep 2005 | B2 |
6947947 | Block et al. | Sep 2005 | B2 |
6950900 | McKean et al. | Sep 2005 | B1 |
6954770 | Carlson et al. | Oct 2005 | B1 |
6961728 | Wynblatt et al. | Nov 2005 | B2 |
6973556 | Milligan et al. | Dec 2005 | B2 |
6975913 | Kreidler et al. | Dec 2005 | B2 |
6985902 | Wise et al. | Jan 2006 | B2 |
7000017 | McGill et al. | Feb 2006 | B1 |
7031782 | Kappelhoff et al. | Apr 2006 | B2 |
7065714 | Theel et al. | Jun 2006 | B1 |
7146355 | Chu-Carroll | Dec 2006 | B2 |
7162312 | Gross et al. | Jan 2007 | B2 |
7171476 | Maeda et al. | Jan 2007 | B2 |
7225193 | Mets et al. | May 2007 | B2 |
7251193 | Jung | Jul 2007 | B2 |
7251222 | Chen et al. | Jul 2007 | B2 |
7308454 | Abineri et al. | Dec 2007 | B2 |
8291309 | Callaghan et al. | Oct 2012 | B2 |
20020007286 | Okamoto | Jan 2002 | A1 |
20020012401 | Karolys et al. | Jan 2002 | A1 |
20020013748 | Edmison et al. | Jan 2002 | A1 |
20020069167 | Conlow | Jun 2002 | A1 |
20020073236 | Helgeson et al. | Jun 2002 | A1 |
20020087786 | Burton et al. | Jul 2002 | A1 |
20020091838 | Rupp et al. | Jul 2002 | A1 |
20020103785 | Harvey | Aug 2002 | A1 |
20020131404 | Mehta et al. | Sep 2002 | A1 |
20020161827 | Brault | Oct 2002 | A1 |
20020188366 | Pepper et al. | Dec 2002 | A1 |
20020194577 | Connor et al. | Dec 2002 | A1 |
20030014387 | Kreidler et al. | Jan 2003 | A1 |
20030036876 | Fuller et al. | Feb 2003 | A1 |
20030065673 | Grobler et al. | Apr 2003 | A1 |
20030090514 | Cole et al. | May 2003 | A1 |
20030120710 | Pulsipher et al. | Jun 2003 | A1 |
20030123467 | Du et al. | Jul 2003 | A1 |
20030126308 | Kim | Jul 2003 | A1 |
20030172145 | Nguyen | Sep 2003 | A1 |
20030177114 | Lin et al. | Sep 2003 | A1 |
20030184584 | Vachuska et al. | Oct 2003 | A1 |
20030212828 | Miyazaki et al. | Nov 2003 | A1 |
20030218641 | Longobardi | Nov 2003 | A1 |
20030233427 | Taguchi | Dec 2003 | A1 |
20040006401 | Yamada et al. | Jan 2004 | A1 |
20040024995 | Swaine | Feb 2004 | A1 |
20040044421 | Brune et al. | Mar 2004 | A1 |
20040073565 | Kaufman et al. | Apr 2004 | A1 |
20040098153 | Neudeck | May 2004 | A1 |
20040098269 | Wise et al. | May 2004 | A1 |
20040117624 | Brandt et al. | Jun 2004 | A1 |
20040153171 | Brandt et al. | Aug 2004 | A1 |
20040167790 | Grasse | Aug 2004 | A1 |
20040193449 | Wildman et al. | Sep 2004 | A1 |
20040196855 | Davies et al. | Oct 2004 | A1 |
20040199655 | Davies et al. | Oct 2004 | A1 |
20040203620 | Thome et al. | Oct 2004 | A1 |
20040210629 | Klindt et al. | Oct 2004 | A1 |
20040249771 | Berg et al. | Dec 2004 | A1 |
20040260591 | King | Dec 2004 | A1 |
20040268186 | Maturana et al. | Dec 2004 | A1 |
20050005289 | Adolph et al. | Jan 2005 | A1 |
20050015397 | Abineri et al. | Jan 2005 | A1 |
20050043922 | Weidl et al. | Feb 2005 | A1 |
20050044112 | Yamamoto et al. | Feb 2005 | A1 |
20050065626 | Kappelhoff et al. | Mar 2005 | A1 |
20050065829 | Birkhoelzer | Mar 2005 | A1 |
20050065971 | Honda | Mar 2005 | A1 |
20050069853 | Tyson et al. | Mar 2005 | A1 |
20050091349 | Scheibli | Apr 2005 | A1 |
20050102672 | Brothers | May 2005 | A1 |
20050107897 | Callaghan | May 2005 | A1 |
20050108247 | Heinla et al. | May 2005 | A1 |
20050120021 | Tang et al. | Jun 2005 | A1 |
20050129247 | Gammel et al. | Jun 2005 | A1 |
20050135782 | Ando et al. | Jun 2005 | A1 |
20050154741 | Hebert et al. | Jul 2005 | A1 |
20050166215 | Holloway et al. | Jul 2005 | A1 |
20050177687 | Rao | Aug 2005 | A1 |
20050187925 | Schechinger et al. | Aug 2005 | A1 |
20050193118 | Le et al. | Sep 2005 | A1 |
20050198248 | Morimoto et al. | Sep 2005 | A1 |
20050216460 | Yoon et al. | Sep 2005 | A1 |
20050223010 | Murray | Oct 2005 | A1 |
20050251527 | Phillips et al. | Nov 2005 | A1 |
20050256788 | Mukai | Nov 2005 | A1 |
20050268253 | Johnson et al. | Dec 2005 | A1 |
20050278373 | Corbett et al. | Dec 2005 | A1 |
20060004475 | Brackett et al. | Jan 2006 | A1 |
20060004847 | Claudatos et al. | Jan 2006 | A1 |
20060064428 | Colaco et al. | Mar 2006 | A1 |
20060173895 | Engquist et al. | Aug 2006 | A1 |
20060195817 | Moon | Aug 2006 | A1 |
20060212855 | Bournas et al. | Sep 2006 | A1 |
20070268922 | Dougan et al. | Nov 2007 | A1 |
Entry |
---|
Office Action dated Nov. 16, 2009 for U.S. Appl. No. 11/238,607, 84 pages. |
Office Action dated Oct. 28, 2008 for U.S. Appl. No. 11/240,335, 15 pages. |
Office Action dated Apr. 15, 2009 for U.S. Appl. No. 11/240,335, 10 pages. |
Office Action dated May 15, 2008 for U.S. Appl. No. 11/240,335, 31 pages. |
Office Action dated Oct. 8, 2008 for U.S. Appl. No. 11/238,607, 32 pages. |
ISR mailed Jul. 7, 2008 for PCT Application No. PCT/US06/18180, 2 pages. |
Office Action dated Mar. 6, 2009 for U.S. Appl. No. 11/238,607, 61 pages. |
Office Action dated Apr. 2, 2008 for U.S. Appl. No. 11/238,607, 37 pages. |
Office Action dated Jun. 3, 2009 for U.S. Appl. No. 11/238,606, 25 pages |
Office Action dated Jul. 2, 2008 for U.S. Appl. No. 11/238,606, 17 pages. |
Office Action dated Jan. 18, 2008 for U.S. Appl. No. 11/238,606, 8 pages. |
Office Action dated Nov. 20, 2008 for U.S. Appl. No. 11/238,606, 19 pages. |
Office Action dated Apr. 22, 2008 for U.S. Appl. No. 11/238,537, 48 pages. |
Office Action dated Apr. 15, 2009 for U.S. Appl. No. 11/238,537, 22 pages. |
Ozsoyoglu, et al. Database Systems for Programmable Logic Contollers. Last accessed Apr. 15, 2009, 17 pages. |
Office Action dated Oct. 20, 2008 for U.S. Appl. No. 11/238,537, 44 pages. |
Office Action dated May 1, 2009 for U.S. Appl. No. 11/239,567, 35 pages. |
Office Action dated May 30, 2008 for U.S. Appl. No. 11/239,567, 29 pages. |
Pitzek et al., Configuration and Management of a Real-Time Smart Transducer Network, 2003 IEEE, 2003, 4 pages. |
European Search Report dated Jun. 12, 2005 for European Patent Application Serial No. EP05016793, 3 pages. |
John Kubiatowicz, et al. “OceanStore: An Architecture for Global-Scale Persistent Storage” ASPLOS 2000, Cambridge, Massachusetts (2000). |
Roy Goldman, et al. “From Semistructured Data to XML: Migrating the Lore Data Model and Query Language” (1999). |
SOFA/DCUP: Architecture for Component Trading and Dynamic Updating, by Plasil et al., Proceedings of the International Conference on Configurable Distributed Systems, p. 43, 1998, ISBN:O-8186-8451-8. |
Office Action dated Oct. 9, 2009 for U.S. Appl. No. 11/239,567, 41 pages. |
Office Action dated Nov. 14, 2008 for U.S. Appl. No. 11/239,567, 34 pages. |
Office Action dated Nov. 2, 2007 for U.S. Appl. No. 11/239,567,23 pages. |
Office Action dated Jul. 15, 2013 for U.S. Appl. No. 11/238,607, 21 pages. |
Notice of Allowance dated Jan. 2, 2014 for U.S. Appl. No. 11/238,607, 15 pages. |
Number | Date | Country | |
---|---|---|---|
20140223342 A1 | Aug 2014 | US |
Number | Date | Country | |
---|---|---|---|
60680682 | May 2005 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 11238607 | Sep 2005 | US |
Child | 14249728 | US |