A common challenge in administering a vascular-based therapy is finding adequate vascular access for administration of the therapy. What is needed is an ability to non-invasively identify a blood vessel suitable for administering a therapy before attempting to access the blood vessel. Satisfying such a need provides better patient outcomes by both minimizing failed attempts at vascular access and providing optimal administration of vascular-based therapies.
Disclosed herein are automatic vessel detection tools and methods that address at least the foregoing need.
Briefly summarized, embodiments disclosed herein are directed to enhanced ultrasound imaging apparatus, and methods thereof, for vascular access. In particular the enhanced ultrasound image provides an automatic vessel detection system used in combination with cannula tracking.
Disclosed herein is an ultrasound system for accessing a vasculature of a patient including an ultrasound probe, a cannula, one or more processors, a display communicatively coupled to the one-or-more processors, and a non-transitory storage device communicatively coupled to the one-or-more processors. The display is for depicting an ultrasound image of a subcutaneous portion of a patient. The non-transitory storage device has stored thereon logic, that when executed by the one-or-more processors, causes performance of operations including: depicting an enhanced image of the ultrasound image, including a first icon surrounding a target vessel; receiving updated information including a dimension of the cannula; and depicting the first icon in an updated state on the enhanced image according to the updated information.
In some embodiments, the dimension of the cannula includes at least one of a longitudinal length or a diameter. The dimension of the cannula is provided by a user or derived by the ultrasound system. The first icon in the updated state includes at least one of a first color, a first pattern, a first intermittent feature, or a first alphanumerical symbol to indicate the updated state. Receiving updated information further includes measuring a diameter of the target vessel and receiving a desired range of vessel occupancy, wherein the first icon in the updated state further includes indicating a percentage vessel occupancy of the target vessel is within the desired range of vessel occupancy. Receiving updated information further includes an angle of insertion of the cannula and a desired range of vessel purchase, wherein the first icon in the updated state further includes indicating a vessel purchase length is within the desired range of vessel purchase. The angle of insertion of the cannula is predetermined. The angle of insertion of the cannula is measured by the system using at least one of a needle guide or a permanent magnet and magnetic sensor array.
In some embodiments, receiving updated information further includes measuring at least one of a Doppler information or a pulsatile information. The first icon in the updated state further includes determining a flow rate of the target vessel. The first icon in the updated state further includes determining a venous or arterial flow of the target vessel. Receiving updated information further includes measuring a change in roundness of the target vessel, wherein the first icon in the updated state further includes indicating a deviation of the roundness of the target vessel. The enhanced image of the ultrasound image further includes a guideline indicating a predicted trajectory of the cannula through the subcutaneous portion of the patient. The guideline includes at least one of a first color or a first pattern to indicate when the predicted trajectory of the cannula intersects the target vessel, as well as at least one of a second color or a second pattern to indicate when the predicted trajectory of the cannula does not intersect the target vessel.
In some embodiments, the ultrasound system further includes a second icon surrounding an obstruction disposed adjacent the trajectory of the cannula between the cannula and the target vessel. The obstruction includes at least one of a nerve bundle or an arterial vessel. The second icon includes at least one of a second color, a second pattern, a second intermittent feature, or a second alphanumerical symbol. The enhanced image of the ultrasound image further includes an alert indicating a tip of the cannula is proximate a back wall of the target vessel.
Also disclosed herein is a method of accessing a vessel using ultrasonic imaging including providing an ultrasound system; depicting an enhanced image of an ultrasound image including a first icon surrounding a target vessel; receiving updated information including a dimension of the cannula; and depicting the first icon in an updated state on the enhanced image according to the updated information. The ultrasound system includes an ultrasound probe, a cannula, one or more processors, a display communicatively coupled to the one-or-more processors, and a non-transitory storage device communicatively coupled to the one-or-more processors. The display is configured for depicting the ultrasound image or the enhanced ultrasound image of a subcutaneous portion of a patient.
In some embodiments, the dimension of the cannula includes at least one of a longitudinal length or a diameter. The first icon in the updated state includes at least one of a first color, a first pattern, a first intermittent feature, or a first alphanumerical symbol to indicate the updated state. Receiving updated information further includes measuring a diameter of the target vessel and receiving a desired range of vessel occupancy, wherein the first icon in the updated state further includes indicating a percentage vessel occupancy of the target vessel is within the desired range of vessel occupancy. Receiving updated information further includes an angle of insertion of the cannula and a desired range of vessel purchase, wherein the first icon in the updated state further includes indicating a vessel purchase length is within the desired range of vessel purchase. The angle of insertion of the cannula is measured by the system using at least one of a needle guide or a permanent magnet and magnetic sensor array.
In some embodiments, receiving updated information further includes measuring a change in roundness of the target vessel, wherein the first icon in the updated state further includes indicating a deviation of the roundness of the target vessel. The enhanced image of the ultrasound image further includes a guideline indicating a predicted trajectory of the cannula through the subcutaneous portion of the patient. The guideline includes at least one of a first color or a first pattern to indicate when the predicted trajectory of the cannula intersects the target vessel, as well as at least one of a second color or a second pattern to indicate when the predicted trajectory of the cannula does not intersect the target vessel.
In some embodiments, the method of accessing a vessel using ultrasonic imaging further includes a second icon surrounding an obstruction disposed adjacent the trajectory of the cannula between the cannula and the target vessel. The obstruction includes at least one of a nerve bundle or an arterial vessel. The second icon includes at least one of a second color, a second pattern, a second intermittent feature, or a second alphanumerical symbol. The enhanced image of the ultrasound image further includes an alert indicating a tip of the cannula is proximate a back wall of the target vessel.
These and other features of the concepts provided herein will become more apparent to those of skill in the art in view of the accompanying drawings and following description, which disclose particular embodiments of such concepts in greater detail.
Before some particular embodiments are disclosed in greater detail, it should be understood that the particular embodiments disclosed herein do not limit the scope of the concepts provided herein. It should also be understood that a particular embodiment disclosed herein can have features that can be readily separated from the particular embodiment and optionally combined with or substituted for features of any of a number of other embodiments disclosed herein.
Regarding terms used herein, it should also be understood the terms are for the purpose of describing some particular embodiments, and the terms do not limit the scope of the concepts provided herein. Ordinal numbers (e.g., first, second, third, etc.) are generally used to distinguish or identify different features or steps in a group of features or steps, and do not supply a serial or numerical limitation. For example, “first,” “second,” and “third” features or steps need not necessarily appear in that order, and the particular embodiments including such features or steps need not necessarily be limited to the three features or steps. Labels such as “left,” “right,” “top,” “bottom,” “front,” “back,” and the like are used for convenience and are not intended to imply, for example, any particular fixed location, orientation, or direction. Instead, such labels are used to reflect, for example, relative location, orientation, or directions. Singular forms of “a,” “an,” and “the” include plural references unless the context clearly dictates otherwise.
With respect to “proximal,” a “proximal portion” or a “proximal end portion” of, for example, a catheter disclosed herein includes a portion of the catheter intended to be near a clinician, or user, when the catheter is used on a patient. Likewise, a “proximal length” of, for example, the catheter includes a length of the catheter intended to be near the clinician when the catheter is used on the patient. A “proximal end” of, for example, the catheter includes an end of the catheter intended to be near the clinician when the catheter is used on the patient. The proximal portion, the proximal end portion, or the proximal length of the catheter can include the proximal end of the catheter; however, the proximal portion, the proximal end portion, or the proximal length of the catheter need not include the proximal end of the catheter. That is, unless context suggests otherwise, the proximal portion, the proximal end portion, or the proximal length of the catheter is not a terminal portion or terminal length of the catheter.
With respect to “distal,” a “distal portion” or a “distal end portion” of, for example, a catheter disclosed herein includes a portion of the catheter intended to be near or in a patient when the catheter is used on the patient. Likewise, a “distal length” of, for example, the catheter includes a length of the catheter intended to be near or in the patient when the catheter is used on the patient. A “distal end” of, for example, the catheter includes an end of the catheter intended to be near or in the patient when the catheter is used on the patient. The distal portion, the distal end portion, or the distal length of the catheter can include the distal end of the catheter; however, the distal portion, the distal end portion, or the distal length of the catheter need not include the distal end of the catheter. That is, unless context suggests otherwise, the distal portion, the distal end portion, or the distal length of the catheter is not a terminal portion or terminal length of the catheter.
As shown in
As used herein, the terms “logic” and “component” are representative of hardware, firmware and/or software that is configured to perform one or more functions. As hardware, logic (or a component) may include circuitry having data processing or storage functionality. Examples of such processing or storage circuitry may include, but is not limited or restricted to the following: a processor; one or more processor cores; a programmable gate array; an I/O controller (e.g., network interface controller, disk controller, memory controller, etc.); an application specific integrated circuit; receiver, transmitter and/or transceiver circuitry; semiconductor memory; combinatorial logic, or combinations of one or more of the above components.
Logic (or a component) may be in the form of one or more software modules, such as executable code in the form of an operating system component, an executable application, firmware, an application programming interface (API), one or more subroutines, a function, a procedure, an applet, a plug-in, a servlet, a Component Object Model (COM) object, a routine, source code, object code, a shared library/dynamic linked library, a script, or one or more instructions. These software modules may be stored in any type of a suitable non-transitory storage medium, or transitory storage medium (e.g., electrical, optical, acoustical, or other form of propagated signals such as carrier waves, infrared signals, or digital signals). Examples of a “non-transitory storage medium” may include, but are not limited or restricted to a programmable circuit; non-persistent storage such as volatile memory (e.g., any type of random access memory “RAM”); persistent storage such as non-volatile memory (e.g., read-only memory “ROM”, power-backed RAM, flash memory, phase-change memory, etc.), a solid-state drive, hard disk drive, an optical disc drive, or portable memory device; and/or a semiconductor memory. As firmware, the executable code is stored in persistent storage.
A “computing system” generally refers to either a physical electronic device featuring data processing and/or network connection functionality or a virtual electronic device being software that virtualizes at least a portion of the functionality of the physical electronic device. Examples of a computing system may include, but are not limited or restricted to any physical or virtual resource operating as a server, a network device (e.g., a mobile phone, a desktop or laptop computer, a wearable, a set-top box, a tablet, a netbook, a server, a device-installed mobile software, management console, etc.), a network adapter, or an intermediary communication device (e.g., router, firewall, etc.), a cloud service, or the like. Additional examples of a network device may include, but are not limited or restricted to the following: a server; a router or other signal propagation networking equipment (e.g., a wireless or wired access point); a set-top box; a video-game console; or an endpoint (e.g., a stationary or portable computer including a desktop computer, laptop, electronic reader, netbook or tablet; a smart phone; or wearable technology such as an Apple Watch®, Fitbit® fitness wristband, or other sensor-based component, including any sensors configured for participation within an internet-of-things (IoT) environment).
Unless defined otherwise, all technical and scientific terms used herein have the same meaning as commonly understood by those of ordinary skill in the art.
As set forth above, an ability to non-invasively identify a blood vessel suitable for administering a therapy is needed. Satisfying such a need provides better patient outcomes by both minimizing failed attempts at vascular access and providing optimal administration of vascular-based therapies.
Disclosed herein are automatic vessel detection tools and methods that address at least the foregoing need. Indeed, as set forth below, ultrasound imaging combined with image processing provide valuable information to clinicians for providing administration of vascular-based therapies.
The system 10 can further include a plurality of ports 51 for connection with optional components 53 including a printer, storage media, keyboard, etc. The ports in one embodiment are USB ports, though other port types or a combination of port types can be used for this and the other interfaces connections. In certain embodiments, the ports 51 may be implemented via a wireless connection over a network. A power connection 56 is included with the console 20 to enable operable connection to an external power supply 58. An internal power supply 61 (e.g., a battery) can also be employed, either with or exclusive of an external power supply. Power management circuitry 59 is included with the digital controller/analog interface 24 of the console to regulate power use and distribution.
The display 30 can be a single stand-alone display or an integrated display integrated into the console 20 for displaying information to a clinician. (See
Those skilled in the art will appreciate that the embodiments of the present invention may be practiced in computing environments with one or more types of computer system configurations, including, personal computers, desktop computers, laptop computers, message processors, hand-held devices, multi-processor systems, microprocessor-based or programmable consumer electronics, network PCs, minicomputers, mainframe computers, mobile telephones, PDAs, pagers, and the like. Embodiments may also be practiced in distributed system environments where local and remote computer systems, which are linked (either by hardwired data links, wireless data links, or by a combination of hardwired and wireless data links) through a network, both perform tasks. In a distributed system environment, program modules may be located in both local and remote memory storage devices.
In an embodiment, the ultrasound probe 12 is operably connected to the console via a cable 31, though in an embodiment the ultrasound probe 12 can be wirelessly connected thereto. The ultrasound probe 12 includes a head portion (“probe head,” or “head”) 32 defined by a lateral length 32A and a transverse width 32B. The probe head 32 includes an acoustic surface 34 extending along at least a portion of the lateral length 32A of the probe head from which ultrasonic impulses are emitted by the transducer 90, disposed within the probe head 32, in order to penetrate and image subcutaneous portions of the patient. Note that the size, shape, and configuration of both the ultrasound probe 12, probe head 32, transducer and acoustic surface 34 can vary from what is described herein while still residing within the principles of the present disclosure. Note also that
In an embodiment, as shown in
In an embodiment, the enhanced image can further display additional information, for example, cannula size 60, angle of insertion 64 of the cannula relative to the ultrasound probe 12, and the like. In an embodiment, the cannula size is entered to the system by the clinician. In an embodiment, the system 10 receives or derives the cannula size from RFID chips, magnetic sensor arrays, and the like. For example, the cannula can include identification markers, RFID chips, barcodes, QR codes, combinations thereof, or the like, that include information about the size, diameter, length, etc. of the cannula being used. The system interprets the size of cannula being used by way of these identification markers and the like, independent of any input from the clinician.
In an embodiment, the angle of insertion of the cannula is entered to the system by the clinician. In an embodiment, the system 10 is able to determine the angle of insertion by detecting the presence of the cannula within an angled needle guide, coupled to the ultrasound probe 12. In an embodiment, the cannula includes at least one of a permanent magnet, an electromagnet, an optical marker, or acoustic marker, or the like, which is detected by a magnetic sensor array and can determined the location and orientation of the cannula in three-dimensional space. Further details of enhanced ultrasound imaging, and associated features, can be found, for example, in U.S. 2018/0015256, filed Jul. 14, 2017 and U.S. Pat. No. 9,949,720, filed Oct. 19, 2012, each of which are incorporated by reference in its entirety into this application.
In an embodiment, as shown in
In an embodiment, the system 10 can receive further information about a desired vessel occupancy range 62, for example, 40%. In an embodiment, the desired vessel occupancy range is entered by the clinician. In an embodiment, the desired vessel occupancy range derived from patient specific data. For example, based on the procedure being performed, age, weight, gender of the patient, combinations thereof, or the like. The system 10, then provides the icons 250A and 250B in an updated state to indicate if the target vessel is within the desired range. For example, the first icon 250A provides a first color, pattern, and label, while the second icon 250B which is outside of the desired range provides a second color, pattern, and label.
In an embodiment, as shown in
In an embodiment, the system 10 receives further information about a desired vessel purchase length 66, for example, 3 cm. In an embodiment, the desired vessel purchase length is entered by the clinician. In an embodiment, the desired vessel purchase length is derived from patient specific data. For example, based on the procedure being performed, age, weight, gender of the patient, combinations thereof, or the like. The system 10, then provides the icons 350A and 350B in an updated state to indicate if the target vessel is within the desired range, as described herein.
In an embodiment, a variation in insertion angle can further affect which vessels are within range. As shown in
In an embodiment, as shown in
In an embodiment, the system 10 provides feedback to the clinician directed to the positioning of the probe. For example, the system 10 identifies the location of a target vessel, depicted on the display 30, and determines if the target vessel is “moving.” If so, this would indicate that the ultrasound probe 12 is not being held steady enough. Such movement can be outside of tolerance levels that equate to normal bodily movements from the patient, such as breathing or pulsatile movements from the vessel, or the like. Accordingly, visual, audible, or tactile alerts can be provided to the clinician advising to “adjust position of the probe,” “hold the probe steady”, or the like. It will be appreciated that visual alerts can include messages, notices, icons, alphanumeric symbols, colors, or the like, depicted on the display 30. Further, visual alerts can include LED lights, indicators, or the like, operably connected with the system 10 that visually alert the clinician. Audible alerts can include sounds, instructions, alarms, or the like. Tactile alerts can include vibrations transmitted through portions of the system 10 being held by the clinician.
In an embodiment, as shown in
In an embodiment, as shown in
In an embodiment, as shown in
In an embodiment, as shown in
Currently, determination of target vessels under ultrasound imaging is based on a subjective assessment by the clinician which can lead to sub-optimal vessels being accessed, failed access attempts, loss of vessel purchase leading to oedema, and other complications, and the like. However, advantageously, embodiments disclosed herein, or combinations thereof, can provide a clear, quantitative indication of suitable vessels to target prior to any insertion of the cannula. This prevents the clinician from accessing vessels only to find the vessel is too small to receive the cannula, too deep to provide sufficient vessel purchase, has sufficient flow and is the correct vessel type for the procedure. Further, embodiments can identify insertion trajectories and any potential obstructions and improve user handling of the imaging system.
While some particular embodiments have been disclosed herein, and while the particular embodiments have been disclosed in some detail, it is not the intention for the particular embodiments to limit the scope of the concepts provided herein. Additional adaptations and/or modifications can appear to those of ordinary skill in the art, and, in broader aspects, these adaptations and/or modifications are encompassed as well. Accordingly, departures may be made from the particular embodiments disclosed herein without departing from the scope of the concepts provided herein.
This application is a continuation of U.S. patent application Ser. No. 17/020,476, filed Sep. 14, 2020, now U.S. Pat. No. 11,759,166, which claims the benefit of priority to U.S. Provisional Application No. 62/903,545, filed Sep. 20, 2019, each of which is incorporated by reference in its entirety into this application.
Number | Name | Date | Kind |
---|---|---|---|
3697917 | Orth et al. | Oct 1972 | A |
5148809 | Biegeleisen-Knight et al. | Sep 1992 | A |
5181513 | Touboul et al. | Jan 1993 | A |
5325293 | Dorne | Jun 1994 | A |
5349865 | Kavli et al. | Sep 1994 | A |
5441052 | Miyajima | Aug 1995 | A |
5549554 | Miraki | Aug 1996 | A |
5573529 | Haak et al. | Nov 1996 | A |
5775322 | Silverstein et al. | Jul 1998 | A |
5879297 | Haynor et al. | Mar 1999 | A |
5897503 | Lyon et al. | Apr 1999 | A |
5908387 | LeFree et al. | Jun 1999 | A |
5967984 | Chu et al. | Oct 1999 | A |
5970119 | Hofmann | Oct 1999 | A |
6004270 | Urbano et al. | Dec 1999 | A |
6019724 | Gronningsaeter et al. | Feb 2000 | A |
6068599 | Saito et al. | May 2000 | A |
6074367 | Hubbell | Jun 2000 | A |
6129668 | Haynor et al. | Oct 2000 | A |
6132379 | Patacsil et al. | Oct 2000 | A |
6216028 | Haynor et al. | Apr 2001 | B1 |
6233476 | Strommer et al. | May 2001 | B1 |
6245018 | Lee | Jun 2001 | B1 |
6263230 | Haynor et al. | Jul 2001 | B1 |
6375615 | Flaherty et al. | Apr 2002 | B1 |
6436043 | Bonnefous | Aug 2002 | B2 |
6498942 | Esenaliev et al. | Dec 2002 | B1 |
6503205 | Manor et al. | Jan 2003 | B2 |
6508769 | Bonnefous | Jan 2003 | B2 |
6511458 | Milo et al. | Jan 2003 | B2 |
6524249 | Moehring et al. | Feb 2003 | B2 |
6543642 | Milliorn | Apr 2003 | B1 |
6554771 | Buil et al. | Apr 2003 | B1 |
6592520 | Peszynski et al. | Jul 2003 | B1 |
6592565 | Twardowski | Jul 2003 | B2 |
6601705 | Molina et al. | Aug 2003 | B2 |
6612992 | Hossack et al. | Sep 2003 | B1 |
6613002 | Clark et al. | Sep 2003 | B1 |
6623431 | Sakuma et al. | Sep 2003 | B1 |
6641538 | Nakaya et al. | Nov 2003 | B2 |
6647135 | Bonnefous | Nov 2003 | B2 |
6687386 | Ito et al. | Feb 2004 | B1 |
6733458 | Steins et al. | May 2004 | B1 |
6749569 | Pellegretti | Jun 2004 | B1 |
6754608 | Svanerudh et al. | Jun 2004 | B2 |
6755789 | Stringer et al. | Jun 2004 | B2 |
6840379 | Franks-Farah et al. | Jan 2005 | B2 |
6857196 | Dalrymple | Feb 2005 | B2 |
6979294 | Selzer et al. | Dec 2005 | B1 |
7074187 | Selzer et al. | Jul 2006 | B2 |
7244234 | Ridley et al. | Jul 2007 | B2 |
7359554 | Klingensmith et al. | Apr 2008 | B2 |
7534209 | Abend et al. | May 2009 | B2 |
7599730 | Hunter et al. | Oct 2009 | B2 |
7637870 | Flaherty et al. | Dec 2009 | B2 |
7681579 | Schwartz | Mar 2010 | B2 |
7691061 | Hirota | Apr 2010 | B2 |
7699779 | Sasaki et al. | Apr 2010 | B2 |
7720520 | Willis | May 2010 | B2 |
7727153 | Fritz et al. | Jun 2010 | B2 |
7734326 | Pedain et al. | Jun 2010 | B2 |
7831449 | Ying et al. | Nov 2010 | B2 |
7905837 | Suzuki | Mar 2011 | B2 |
7925327 | Weese | Apr 2011 | B2 |
7927278 | Selzer et al. | Apr 2011 | B2 |
8014848 | Birkenbach et al. | Sep 2011 | B2 |
8038619 | Steinbacher | Oct 2011 | B2 |
8060181 | Rodriguez Ponce et al. | Nov 2011 | B2 |
8075488 | Burton | Dec 2011 | B2 |
8090427 | Eck et al. | Jan 2012 | B2 |
8105239 | Specht | Jan 2012 | B2 |
8172754 | Watanabe et al. | May 2012 | B2 |
8175368 | Sathyanarayana | May 2012 | B2 |
8200313 | Rambod et al. | Jun 2012 | B1 |
8211023 | Swan et al. | Jul 2012 | B2 |
8228347 | Beasley et al. | Jul 2012 | B2 |
8298147 | Huennekens et al. | Oct 2012 | B2 |
8303505 | Webler et al. | Nov 2012 | B2 |
8323202 | Roschak et al. | Dec 2012 | B2 |
8328727 | Miele et al. | Dec 2012 | B2 |
8388541 | Messerly et al. | Mar 2013 | B2 |
8409103 | Grunwald et al. | Apr 2013 | B2 |
8449465 | Nair et al. | May 2013 | B2 |
8553954 | Saikia | Oct 2013 | B2 |
8556815 | Pelissier et al. | Oct 2013 | B2 |
8585600 | Liu et al. | Nov 2013 | B2 |
8622913 | Dentinger et al. | Jan 2014 | B2 |
8706457 | Hart et al. | Apr 2014 | B2 |
8727988 | Flaherty et al. | May 2014 | B2 |
8734357 | Taylor | May 2014 | B2 |
8744211 | Owen | Jun 2014 | B2 |
8754865 | Merritt et al. | Jun 2014 | B2 |
8764663 | Smok et al. | Jul 2014 | B2 |
8781194 | Malek et al. | Jul 2014 | B2 |
8781555 | Burnside et al. | Jul 2014 | B2 |
8790263 | Randall et al. | Jul 2014 | B2 |
8849382 | Cox et al. | Sep 2014 | B2 |
8939908 | Suzuki et al. | Jan 2015 | B2 |
8961420 | Zhang | Feb 2015 | B2 |
9022940 | Meier | May 2015 | B2 |
9138290 | Hadjicostis | Sep 2015 | B2 |
9199082 | Yared et al. | Dec 2015 | B1 |
9204858 | Pelissier et al. | Dec 2015 | B2 |
9220477 | Urabe et al. | Dec 2015 | B2 |
9295447 | Shah | Mar 2016 | B2 |
9320493 | Visveshwara | Apr 2016 | B2 |
9357980 | Toji et al. | Jun 2016 | B2 |
9364171 | Harris et al. | Jun 2016 | B2 |
9427207 | Sheldon et al. | Aug 2016 | B2 |
9445780 | Hossack et al. | Sep 2016 | B2 |
9456766 | Cox et al. | Oct 2016 | B2 |
9456804 | Tamada | Oct 2016 | B2 |
9468413 | Hall et al. | Oct 2016 | B2 |
9492097 | Wilkes et al. | Nov 2016 | B2 |
9521961 | Silverstein et al. | Dec 2016 | B2 |
9554716 | Burnside et al. | Jan 2017 | B2 |
9582876 | Specht | Feb 2017 | B2 |
9610061 | Ebbini et al. | Apr 2017 | B2 |
9636031 | Cox | May 2017 | B2 |
9649037 | Lowe et al. | May 2017 | B2 |
9649048 | Cox et al. | May 2017 | B2 |
9702969 | Hope Simpson et al. | Jul 2017 | B2 |
9715757 | Ng et al. | Jul 2017 | B2 |
9717415 | Cohen et al. | Aug 2017 | B2 |
9731066 | Liu et al. | Aug 2017 | B2 |
9814433 | Benishti et al. | Nov 2017 | B2 |
9814531 | Yagi et al. | Nov 2017 | B2 |
9861337 | Patwardhan et al. | Jan 2018 | B2 |
9895138 | Sasaki | Feb 2018 | B2 |
9913605 | Harris et al. | Mar 2018 | B2 |
9949720 | Southard et al. | Apr 2018 | B2 |
10043272 | Forzoni et al. | Aug 2018 | B2 |
10449330 | Newman et al. | Oct 2019 | B2 |
10524691 | Newman et al. | Jan 2020 | B2 |
10751509 | Misener | Aug 2020 | B2 |
11564861 | Gaines | Jan 2023 | B1 |
20020038088 | Imran et al. | Mar 2002 | A1 |
20030047126 | Tomaschko | Mar 2003 | A1 |
20030106825 | Molina et al. | Jun 2003 | A1 |
20030120154 | Sauer et al. | Jun 2003 | A1 |
20030125629 | Ustuner | Jul 2003 | A1 |
20030135115 | Burdette et al. | Jul 2003 | A1 |
20030149366 | Stringer et al. | Aug 2003 | A1 |
20040015080 | Kelly et al. | Jan 2004 | A1 |
20040055925 | Franks-Farah et al. | Mar 2004 | A1 |
20040197267 | Black et al. | Oct 2004 | A1 |
20050000975 | Carco et al. | Jan 2005 | A1 |
20050049504 | Lo et al. | Mar 2005 | A1 |
20050165299 | Kressy et al. | Jul 2005 | A1 |
20050251030 | Azar et al. | Nov 2005 | A1 |
20050267365 | Sokulin et al. | Dec 2005 | A1 |
20060004290 | Smith et al. | Jan 2006 | A1 |
20060013523 | Childlers et al. | Jan 2006 | A1 |
20060015039 | Cassidy et al. | Jan 2006 | A1 |
20060020204 | Serra et al. | Jan 2006 | A1 |
20060047617 | Bacioiu et al. | Mar 2006 | A1 |
20060079781 | Germond-Rouet et al. | Apr 2006 | A1 |
20060184029 | Haim et al. | Aug 2006 | A1 |
20060210130 | Germond-Rouet et al. | Sep 2006 | A1 |
20060241463 | Shau et al. | Oct 2006 | A1 |
20070043341 | Anderson et al. | Feb 2007 | A1 |
20070049822 | Bunce et al. | Mar 2007 | A1 |
20070073155 | Park et al. | Mar 2007 | A1 |
20070167738 | Timinger et al. | Jul 2007 | A1 |
20070199848 | Ellswood et al. | Aug 2007 | A1 |
20070239120 | Brock et al. | Oct 2007 | A1 |
20070249911 | Simon | Oct 2007 | A1 |
20070287886 | Saadat | Dec 2007 | A1 |
20080021322 | Stone et al. | Jan 2008 | A1 |
20080033293 | Beasley et al. | Feb 2008 | A1 |
20080033759 | Finlay | Feb 2008 | A1 |
20080051657 | Rold | Feb 2008 | A1 |
20080108930 | Weitzel et al. | May 2008 | A1 |
20080125651 | Watanabe | May 2008 | A1 |
20080146915 | McMorrow | Jun 2008 | A1 |
20080177186 | Slater et al. | Jul 2008 | A1 |
20080221425 | Olson et al. | Sep 2008 | A1 |
20080269605 | Nakaya | Oct 2008 | A1 |
20080294037 | Richter | Nov 2008 | A1 |
20080300491 | Bonde et al. | Dec 2008 | A1 |
20090012399 | Sunagawa et al. | Jan 2009 | A1 |
20090012401 | Steinbacher | Jan 2009 | A1 |
20090074280 | Lu et al. | Mar 2009 | A1 |
20090124903 | Osaka | May 2009 | A1 |
20090137887 | Shariati et al. | May 2009 | A1 |
20090137907 | Takimoto et al. | May 2009 | A1 |
20090143672 | Harms et al. | Jun 2009 | A1 |
20090143684 | Cermak et al. | Jun 2009 | A1 |
20090156926 | Messerly et al. | Jun 2009 | A1 |
20090281413 | Boyden et al. | Nov 2009 | A1 |
20090306509 | Pedersen et al. | Dec 2009 | A1 |
20100010348 | Halmann | Jan 2010 | A1 |
20100211026 | Sheetz et al. | Aug 2010 | A2 |
20100249598 | Smith et al. | Sep 2010 | A1 |
20100286515 | Gravenstein et al. | Nov 2010 | A1 |
20100312121 | Guan | Dec 2010 | A1 |
20100324423 | El-Aklouk et al. | Dec 2010 | A1 |
20110002518 | Ziv-Ari et al. | Jan 2011 | A1 |
20110026796 | Hyun et al. | Feb 2011 | A1 |
20110071404 | Schmitt et al. | Mar 2011 | A1 |
20110074244 | Osawa | Mar 2011 | A1 |
20110087107 | Lindekugel et al. | Apr 2011 | A1 |
20110166451 | Blaivas et al. | Jul 2011 | A1 |
20110282188 | Burnside et al. | Nov 2011 | A1 |
20110295108 | Cox et al. | Dec 2011 | A1 |
20110313293 | Lindekugel et al. | Dec 2011 | A1 |
20120165679 | Orome et al. | Jun 2012 | A1 |
20120179038 | Meurer et al. | Jul 2012 | A1 |
20120179042 | Fukumoto et al. | Jul 2012 | A1 |
20120179044 | Chiang et al. | Jul 2012 | A1 |
20120197132 | O'Connor | Aug 2012 | A1 |
20120220865 | Brown et al. | Aug 2012 | A1 |
20120277576 | Lui | Nov 2012 | A1 |
20130041250 | Pelissier et al. | Feb 2013 | A1 |
20130102889 | Southard et al. | Apr 2013 | A1 |
20130131499 | Chan et al. | May 2013 | A1 |
20130131502 | Blaivas et al. | May 2013 | A1 |
20130150724 | Blaivas et al. | Jun 2013 | A1 |
20130188832 | Ma et al. | Jul 2013 | A1 |
20130197367 | Smok et al. | Aug 2013 | A1 |
20130218024 | Boctor et al. | Aug 2013 | A1 |
20130323700 | Samosky et al. | Dec 2013 | A1 |
20130338503 | Cohen et al. | Dec 2013 | A1 |
20130338508 | Nakamura et al. | Dec 2013 | A1 |
20130345566 | Weitzel et al. | Dec 2013 | A1 |
20140005530 | Liu et al. | Jan 2014 | A1 |
20140031694 | Solek | Jan 2014 | A1 |
20140066779 | Nakanishi | Mar 2014 | A1 |
20140073976 | Fonte et al. | Mar 2014 | A1 |
20140100440 | Cheline et al. | Apr 2014 | A1 |
20140114194 | Kanayama et al. | Apr 2014 | A1 |
20140170620 | Savitsky et al. | Jun 2014 | A1 |
20140180098 | Flaherty et al. | Jun 2014 | A1 |
20140180116 | Lindekugel et al. | Jun 2014 | A1 |
20140188133 | Misener | Jul 2014 | A1 |
20140188440 | Donhowe et al. | Jul 2014 | A1 |
20140276059 | Sheehan | Sep 2014 | A1 |
20140276069 | Amble et al. | Sep 2014 | A1 |
20140276081 | Tegels | Sep 2014 | A1 |
20140276085 | Miller | Sep 2014 | A1 |
20140276690 | Grace | Sep 2014 | A1 |
20140343431 | Vajinepalli et al. | Nov 2014 | A1 |
20140357994 | Jin et al. | Dec 2014 | A1 |
20150005738 | Blacker | Jan 2015 | A1 |
20150011887 | Ahn et al. | Jan 2015 | A1 |
20150065916 | Maguire et al. | Mar 2015 | A1 |
20150073279 | Cai et al. | Mar 2015 | A1 |
20150112200 | Oberg et al. | Apr 2015 | A1 |
20150141821 | Yoshikawa et al. | May 2015 | A1 |
20150190111 | Fry | Jul 2015 | A1 |
20150209113 | Burkholz et al. | Jul 2015 | A1 |
20150209510 | Burkholz et al. | Jul 2015 | A1 |
20150209526 | Matsubara et al. | Jul 2015 | A1 |
20150257735 | Ball et al. | Sep 2015 | A1 |
20150282890 | Cohen et al. | Oct 2015 | A1 |
20150294497 | Ng et al. | Oct 2015 | A1 |
20150297097 | Matsubara et al. | Oct 2015 | A1 |
20150342572 | Tahmasebi Maraghoosh et al. | Dec 2015 | A1 |
20150359520 | Shan et al. | Dec 2015 | A1 |
20150359991 | Dunbar et al. | Dec 2015 | A1 |
20160000367 | Lyon | Jan 2016 | A1 |
20160026894 | Nagase | Jan 2016 | A1 |
20160029995 | Navratil et al. | Feb 2016 | A1 |
20160113699 | Sverdlik et al. | Apr 2016 | A1 |
20160120607 | Sorotzkin et al. | May 2016 | A1 |
20160157831 | Kang et al. | Jun 2016 | A1 |
20160166232 | Merritt | Jun 2016 | A1 |
20160202053 | Walker et al. | Jul 2016 | A1 |
20160211045 | Jeon et al. | Jul 2016 | A1 |
20160213398 | Liu | Jul 2016 | A1 |
20160220124 | Grady et al. | Aug 2016 | A1 |
20160259992 | Knodt et al. | Sep 2016 | A1 |
20160278869 | Grunwald | Sep 2016 | A1 |
20160287214 | Ralovich et al. | Oct 2016 | A1 |
20160296208 | Sethuraman et al. | Oct 2016 | A1 |
20160374644 | Mauldin, Jr. et al. | Dec 2016 | A1 |
20170014105 | Chono | Jan 2017 | A1 |
20170020561 | Cox et al. | Jan 2017 | A1 |
20170079548 | Silverstein et al. | Mar 2017 | A1 |
20170143312 | Hedlund et al. | May 2017 | A1 |
20170164923 | Matsumoto | Jun 2017 | A1 |
20170172666 | Govari et al. | Jun 2017 | A1 |
20170215842 | Ryu et al. | Aug 2017 | A1 |
20170252004 | Broad et al. | Sep 2017 | A1 |
20170328751 | Lemke | Nov 2017 | A1 |
20170367678 | Sirtori et al. | Dec 2017 | A1 |
20180015256 | Southard et al. | Jan 2018 | A1 |
20180116723 | Hettrick et al. | May 2018 | A1 |
20180125450 | Blackbourne et al. | May 2018 | A1 |
20180161502 | Nanan et al. | Jun 2018 | A1 |
20180199914 | Ramachandran et al. | Jul 2018 | A1 |
20180214119 | Mehrmohammadi et al. | Aug 2018 | A1 |
20180228465 | Southard et al. | Aug 2018 | A1 |
20180235649 | Elkadi | Aug 2018 | A1 |
20180235709 | Donhowe et al. | Aug 2018 | A1 |
20180289927 | Messerly | Oct 2018 | A1 |
20180296185 | Cox et al. | Oct 2018 | A1 |
20180310955 | Lindekugel et al. | Nov 2018 | A1 |
20180344293 | Raju et al. | Dec 2018 | A1 |
20190060001 | Kohli et al. | Feb 2019 | A1 |
20190060014 | Hazelton et al. | Feb 2019 | A1 |
20190090855 | Kobayashi et al. | Mar 2019 | A1 |
20190125210 | Govari et al. | May 2019 | A1 |
20190200951 | Meier | Jul 2019 | A1 |
20190239848 | Bedi et al. | Aug 2019 | A1 |
20190307419 | Durfee | Oct 2019 | A1 |
20190307515 | Naito et al. | Oct 2019 | A1 |
20190365347 | Abe | Dec 2019 | A1 |
20190365348 | Toume et al. | Dec 2019 | A1 |
20190365354 | Du | Dec 2019 | A1 |
20200069929 | Mason et al. | Mar 2020 | A1 |
20200113540 | Gijsbers et al. | Apr 2020 | A1 |
20200163654 | Satir et al. | May 2020 | A1 |
20200200900 | Asami et al. | Jun 2020 | A1 |
20200229795 | Tadross et al. | Jul 2020 | A1 |
20200230391 | Burkholz et al. | Jul 2020 | A1 |
20200237403 | Southard et al. | Jul 2020 | A1 |
20200281563 | Muller et al. | Sep 2020 | A1 |
20200359990 | Poland et al. | Nov 2020 | A1 |
20200390416 | Swan et al. | Dec 2020 | A1 |
20210059639 | Howell | Mar 2021 | A1 |
20210077058 | Mashood et al. | Mar 2021 | A1 |
20210137492 | Imai | May 2021 | A1 |
20210161510 | Sasaki et al. | Jun 2021 | A1 |
20210186467 | Urabe et al. | Jun 2021 | A1 |
20210212668 | Li et al. | Jul 2021 | A1 |
20210267570 | Ulman et al. | Sep 2021 | A1 |
20210295048 | Buras et al. | Sep 2021 | A1 |
20210315538 | Brandl et al. | Oct 2021 | A1 |
20210378627 | Yarmush et al. | Dec 2021 | A1 |
20220039777 | Durfee | Feb 2022 | A1 |
20220039829 | Zijlstra et al. | Feb 2022 | A1 |
20220071593 | Tran | Mar 2022 | A1 |
20220096053 | Sethuraman et al. | Mar 2022 | A1 |
20220096797 | Prince | Mar 2022 | A1 |
20220104791 | Matsumoto | Apr 2022 | A1 |
20220104886 | Blanchard et al. | Apr 2022 | A1 |
20220117582 | McLaughlin et al. | Apr 2022 | A1 |
20220160434 | Messerly et al. | May 2022 | A1 |
20220168050 | Sowards et al. | Jun 2022 | A1 |
20220172354 | Misener et al. | Jun 2022 | A1 |
20220296303 | McLeod et al. | Sep 2022 | A1 |
20220330922 | Sowards et al. | Oct 2022 | A1 |
20220334251 | Sowards et al. | Oct 2022 | A1 |
20220361840 | Matsumoto et al. | Nov 2022 | A1 |
20230107629 | Sowards et al. | Apr 2023 | A1 |
20230132148 | Sowards et al. | Apr 2023 | A1 |
20230135562 | Misener et al. | May 2023 | A1 |
20230138970 | Sowards et al. | May 2023 | A1 |
20230148872 | Sowards et al. | May 2023 | A1 |
20230201539 | Howell | Jun 2023 | A1 |
20230277153 | Sowards et al. | Sep 2023 | A1 |
20230277154 | Sowards et al. | Sep 2023 | A1 |
20230293143 | Sowards et al. | Sep 2023 | A1 |
20230338010 | Sturm | Oct 2023 | A1 |
20230371928 | Rajguru et al. | Nov 2023 | A1 |
20240065673 | Sowards et al. | Feb 2024 | A1 |
Number | Date | Country |
---|---|---|
102871645 | Jan 2013 | CN |
105107067 | May 2018 | CN |
0933063 | Aug 1999 | EP |
1504713 | Feb 2005 | EP |
1591074 | May 2008 | EP |
2823766 | Jan 2015 | EP |
3181083 | Jun 2017 | EP |
3870059 | Sep 2021 | EP |
2000271136 | Oct 2000 | JP |
2007222291 | Sep 2007 | JP |
2014150928 | Aug 2014 | JP |
2018175547 | Nov 2018 | JP |
20180070878 | Jun 2018 | KR |
102176196 | Nov 2020 | KR |
2010029521 | Mar 2010 | WO |
2010076808 | Jul 2010 | WO |
2013059714 | Apr 2013 | WO |
2014115150 | Jul 2014 | WO |
2015017270 | Feb 2015 | WO |
2016081023 | May 2016 | WO |
2017096487 | Jun 2017 | WO |
2017214428 | Dec 2017 | WO |
2018026878 | Feb 2018 | WO |
2018134726 | Jul 2018 | WO |
2019232451 | Dec 2019 | WO |
2020002620 | Jan 2020 | WO |
2020016018 | Jan 2020 | WO |
2019232454 | Feb 2020 | WO |
2020044769 | Mar 2020 | WO |
2020067897 | Apr 2020 | WO |
2020083660 | Apr 2020 | WO |
2020186198 | Sep 2020 | WO |
2021198226 | Oct 2021 | WO |
2022072727 | Apr 2022 | WO |
2022081904 | Apr 2022 | WO |
2022115479 | Jun 2022 | WO |
2022119853 | Jun 2022 | WO |
2022119856 | Jun 2022 | WO |
2022221703 | Oct 2022 | WO |
2022221714 | Oct 2022 | WO |
2023059512 | Apr 2023 | WO |
2023076268 | May 2023 | WO |
2023081220 | May 2023 | WO |
2023081223 | May 2023 | WO |
2023091424 | May 2023 | WO |
2023167866 | Sep 2023 | WO |
2023177718 | Sep 2023 | WO |
2024044277 | Feb 2024 | WO |
Entry |
---|
EP 20866520.8 filed Apr. 5, 2022 Extended European Search Report dated Aug. 22, 2023. |
PCT/US2022/025097 filed Apr. 15, 2021 International Preliminary Report on Patentability dated Oct. 26, 2023. |
PCT/US2023/030970 filed Aug. 23, 2023 International Search Report and Written Opinion dated Oct. 30, 2023. |
U.S. Appl. No. 17/468,318, filed Sep. 7, 2021 Advisory Action dated Nov. 6, 2023. |
U.S. Appl. No. 17/468,318, filed Sep. 7, 2021 Final Office Action dated Sep. 8, 2023. |
U.S. Appl. No. 17/471,015, filed Sep. 9, 2021 Final Office Action dated Oct. 12, 2023. |
U.S. Appl. No. 17/534,099, filed Nov. 23, 2021 Final Office Action dated Sep. 29, 2023. |
U.S. Appl. No. 17/538,911, filed Nov. 30, 2021 Advisory Action dated Nov. 22, 2023. |
U.S. Appl. No. 17/538,911, filed Nov. 30, 2021 Final Office Action dated Sep. 13, 2023. |
U.S. Appl. No. 17/722,151, filed Apr. 15, 2022 Final Office Action dated Nov. 6, 2023. |
U.S. Appl. No. 17/722,151, filed Apr. 15, 2022 Non-Final Office Action dated Sep. 7, 2023. |
U.S. Appl. No. 17/894,460, filed Aug. 24, 2022 Non-Final Office Action dated Nov. 6, 2023. |
U.S. Appl. No. 17/468,318, filed Sep. 7, 2021 Notice of Allowance dated Jan. 18, 2024. |
U.S. Appl. No. 17/471,015, filed Sep. 9, 2021 Advisory Action dated Feb. 2, 2024. |
U.S. Appl. No. 17/534,099, filed Nov. 23, 2021 Advisory Action dated Dec. 8, 2023. |
U.S. Appl. No. 17/538,943, filed Nov. 30, 2021 Non-Final Office Action dated Jan. 30, 2024. |
U.S. Appl. No. 17/684,180, filed Mar. 1, 2022 Final Office Action dated Jan. 18, 2024. |
U.S. 17/722,111, filed Apr. 15, 2022 Non-Final Office Action dated Dec. 22, 2023. |
U.S. Appl. No. 17/722,151, filed Apr. 15, 2022 Advisory Action dated Jan. 2, 2024. |
U.S. Appl. No. 17/894,460, filed Aug. 24, 2022 Final Office Action dated Jan. 31, 2024. |
Lu Zhenyu et al “Recent advances in 5 robot-assisted echography combining perception control and cognition.” Cognitive Computation and Systems the Institution of Engineering and Technology, Michael Faraday House, Six Hills Way, Stevenage Herts. SG1 2AY UK vol. 2 No. 3 Sep. 2, 2020 (Sep. 2, 2020). |
Pagoulatos, N. et al. “New spatial localizer based on fiber optics with applications in 3D ultrasound imaging” Proceeding of Spie, vol. 3976 (Apr. 18, 2000; Apr. 18, 2000). |
PCT/US2021/049294 filed Sep. 7, 2021 International Search Report and Written Opinion dated Dec. 8, 2021. |
PCT/US2021/049712 filed Sep. 9, 2021 International Search Report and Written Opinion dated Dec. 14, 2021. |
PCT/US2021/060622 filed Nov. 23, 2021 International Search Report and Written Opinion dated Mar. 3, 2022. |
PCT/US2021/061267 filed Nov. 30, 2021 International Search Report and Written Opinion dated Mar. 9, 2022. |
PCT/US2021/061276 filed Nov. 30, 2021 International Search Report and Written Opinion dated Mar. 9, 2022. |
PCT/US2022/025082 filed Apr. 15, 2022 International Search Report and Written Opinion dated Jul. 11, 2022. |
PCT/US2022/025097 filed Apr. 15, 2022 International Search Report and Written Opinion dated Jul. 8, 2022. |
PCT/US2022/048716 filed Nov. 2, 2022 International Search Report and Written Opinion dated Feb. 24, 2023. |
PCT/US2022/048722 filed Nov. 2, 2022 International Search Report and Written Opinion dated Feb. 24, 2023. |
PCT/US2022/049983 filed Nov. 15, 2022 International Search Report and Written Opinion dated Mar. 29, 2023. |
PCT/US2022047727 filed Oct. 25, 2022 International Search Report and Written Opinion dated Jan. 25, 2023. |
PCT/US2023/014143 filed Feb. 28, 2023 International Search Report and Written Opinion dated Jun. 12, 2023. |
PCT/US2023/015266 filed Mar. 15, 2023 International Search Report and Written Opinion dated May 25, 2023. |
Saxena Ashish et al Thermographic venous blood flow characterization with external cooling stimulation Infrared Physics and Technology Elsevier Science GB vol. 90 Feb. 9, 2018 Feb. 9, 2018 pp. 8-19 XP085378852. |
Sebastian Vogt: “Real-Time Augmented Reality for Image-Guided Interventions”, Oct. 5, 2009, XPO55354720, Retrieved from the Internet: URL: https://opus4.kobv.de/opus4-fau/frontdoor/deliver/index/docld/1235/file/SebastianVogtDissertation.pdf. |
U.S. Appl. No. 15/650,474, filed Jul. 14, 2017 Final Office Action dated Jun. 2, 2020. |
U.S. Appl. No. 15/650,474, filed Jul. 14, 2017 Non-Final Office Action dated Dec. 16, 2019. |
U.S. Appl. No. 15/650,474, filed Jul. 14, 2017 Notice of Allowance dated Dec. 11, 2020. |
U.S. Appl. No. 15/650,474, filed Jul. 14, 2017 Notice of Allowance dated Mar. 1, 2021. |
U.S. Appl. No. 17/020,476, filed Sep. 14, 2020 Advisory Action dated Aug. 19, 2022. |
U.S. Appl. No. 17/020,476, filed Sep. 14, 2020 Final Office Action dated Jan. 5, 2023. |
U.S. Appl. No. 17/020,476, filed Sep. 14, 2020 Final Office Action dated Jun. 9, 2022. |
U.S. Appl. No. 17/020,476, filed Sep. 14, 2020 Non-Final Office Action dated Feb. 9, 2022. |
U.S. Appl. No. 17/020,476, filed Sep. 14, 2020 Non-Final Office Action dated Sep. 23, 2022. |
U.S. Appl. No. 17/020,476, filed Sep. 14, 2020 Notice of Allowance dated Apr. 28, 2022. |
U.S. Appl. No. 17/468,318, filed Sep. 7, 2021 Non-Final Office Action dated Apr. 12, 2023. |
U.S. Appl. No. 17/471,015, filed Sep. 9, 2021 Non-Final Office Action dated Aug. 16, 2022. |
U.S. Appl. No. 17/471,015, filed Sep. 9, 2021 Non-Final Office Action dated Mar. 30, 2023. |
U.S. Appl. No. 17/534,099, filed Nov. 23, 2021 Non-Final Office Action dated Mar. 31, 2023. |
U.S. Appl. No. 17/538,911, filed Nov. 30, 2021 Non-Final Office Action dated Mar. 2, 2023. |
U.S. Appl. No. 17/684,180, filed Mar. 1, 2022 Non-Final Office Action dated Jul. 28, 2023. |
U.S. Appl. No. 17/684,180, filed Mar. 1, 2022 Restriction Requirement dated May 19, 2023. |
William F Garrett et al: “Real-time incremental visualization of dynamic ultrasound volumes using parallel BSP trees”, Visualization '96. Proceedings, IEEE, NE, Oct. 27, 1996, pp. 235-ff, XPO58399771, ISBN: 978-0-89791-864-0 abstract, figures 1-7, pp. 236-240. |
M. Ikhsan, K. K. Tan, AS. Putra, C. F. Kong, et al., “Automatic identification of blood vessel cross-section for central venous catheter placement using a cascading classifier,” 39th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC).pp. 1489-1492 (Year: 2017). |
U.S. Appl. No. 17/471,015, filed Sep. 9, 2021 Non-Final Office Action dated Mar. 28, 2024. |
U.S. Appl. No. 17/534,099, filed Nov. 23, 2021 Non-Final Office Action dated Mar. 14, 2024. |
U.S. Appl. No. 17/538,911, filed Nov. 30, 2021 Notice of Allowance dated Mar. 14, 2024. |
U.S. Appl. No. 17/684,180, filed Mar. 1, 2022 Advisory Action dated Apr. 4, 2024. |
U.S. Appl. No. 17/684,180, filed Mar. 1, 2022 Non-Final Office Action dated May 8, 2024. |
U.S. Appl. No. 17/722,151, filed Apr. 15, 2022 Non-Final Office Action dated Mar. 25, 2024. |
U.S. Appl. No. 17/894,460, filed Aug. 24, 2022 Advisory Action dated Apr. 4, 2024. |
U.S. Appl. No. 17/979,564, filed Nov. 2, 2022 Non-Final Office Action dated Jun. 5, 2024. |
U.S. Appl. No. 17/538,943, filed Nov. 30, 2021 Notice of Allowance dated Aug. 14, 2024. |
U.S. Appl. No. 17/722,111 filed Apr. 15, 2022 Final Office Action dated Jul. 12, 2024. |
U.S. Appl. No. 17/957,562, filed Sep. 30, 2022 Non-Final Office Action dated Jun. 20, 2024. |
U.S. Appl. No. 17/979,601, filed Nov. 2, 2022 Non-Final Office Action dated Aug. 20, 2024. |
Number | Date | Country | |
---|---|---|---|
20230397900 A1 | Dec 2023 | US |
Number | Date | Country | |
---|---|---|---|
62903545 | Sep 2019 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 17020476 | Sep 2020 | US |
Child | 18238281 | US |