Automatic vessel detection tools and methods

Information

  • Patent Grant
  • 12138108
  • Patent Number
    12,138,108
  • Date Filed
    Friday, August 25, 2023
    a year ago
  • Date Issued
    Tuesday, November 12, 2024
    10 days ago
Abstract
Disclosed herein is an ultrasound system for accessing a vasculature of a patient. The ultrasound system is configured to depict an enhanced ultrasound image of a subcutaneous portion of the patient including an icon surrounding a target vessel depicted on the display. The icon indicates to a clinician the target vessel is within range of a percentage vessel occupancy or vessel purchase length depending on a size of cannula or angle of insertion. The icon can also indicate blood flow strength, vessel type, or vessel deformation. The enhanced image can further include cannula trajectory guidelines and visual alerts for the clinician if the cannula tip can potentially backwall the vessel. Additional icons can indicate obstructions disposed on the cannula trajectory.
Description
BACKGROUND

A common challenge in administering a vascular-based therapy is finding adequate vascular access for administration of the therapy. What is needed is an ability to non-invasively identify a blood vessel suitable for administering a therapy before attempting to access the blood vessel. Satisfying such a need provides better patient outcomes by both minimizing failed attempts at vascular access and providing optimal administration of vascular-based therapies.


Disclosed herein are automatic vessel detection tools and methods that address at least the foregoing need.


SUMMARY

Briefly summarized, embodiments disclosed herein are directed to enhanced ultrasound imaging apparatus, and methods thereof, for vascular access. In particular the enhanced ultrasound image provides an automatic vessel detection system used in combination with cannula tracking.


Disclosed herein is an ultrasound system for accessing a vasculature of a patient including an ultrasound probe, a cannula, one or more processors, a display communicatively coupled to the one-or-more processors, and a non-transitory storage device communicatively coupled to the one-or-more processors. The display is for depicting an ultrasound image of a subcutaneous portion of a patient. The non-transitory storage device has stored thereon logic, that when executed by the one-or-more processors, causes performance of operations including: depicting an enhanced image of the ultrasound image, including a first icon surrounding a target vessel; receiving updated information including a dimension of the cannula; and depicting the first icon in an updated state on the enhanced image according to the updated information.


In some embodiments, the dimension of the cannula includes at least one of a longitudinal length or a diameter. The dimension of the cannula is provided by a user or derived by the ultrasound system. The first icon in the updated state includes at least one of a first color, a first pattern, a first intermittent feature, or a first alphanumerical symbol to indicate the updated state. Receiving updated information further includes measuring a diameter of the target vessel and receiving a desired range of vessel occupancy, wherein the first icon in the updated state further includes indicating a percentage vessel occupancy of the target vessel is within the desired range of vessel occupancy. Receiving updated information further includes an angle of insertion of the cannula and a desired range of vessel purchase, wherein the first icon in the updated state further includes indicating a vessel purchase length is within the desired range of vessel purchase. The angle of insertion of the cannula is predetermined. The angle of insertion of the cannula is measured by the system using at least one of a needle guide or a permanent magnet and magnetic sensor array.


In some embodiments, receiving updated information further includes measuring at least one of a Doppler information or a pulsatile information. The first icon in the updated state further includes determining a flow rate of the target vessel. The first icon in the updated state further includes determining a venous or arterial flow of the target vessel. Receiving updated information further includes measuring a change in roundness of the target vessel, wherein the first icon in the updated state further includes indicating a deviation of the roundness of the target vessel. The enhanced image of the ultrasound image further includes a guideline indicating a predicted trajectory of the cannula through the subcutaneous portion of the patient. The guideline includes at least one of a first color or a first pattern to indicate when the predicted trajectory of the cannula intersects the target vessel, as well as at least one of a second color or a second pattern to indicate when the predicted trajectory of the cannula does not intersect the target vessel.


In some embodiments, the ultrasound system further includes a second icon surrounding an obstruction disposed adjacent the trajectory of the cannula between the cannula and the target vessel. The obstruction includes at least one of a nerve bundle or an arterial vessel. The second icon includes at least one of a second color, a second pattern, a second intermittent feature, or a second alphanumerical symbol. The enhanced image of the ultrasound image further includes an alert indicating a tip of the cannula is proximate a back wall of the target vessel.


Also disclosed herein is a method of accessing a vessel using ultrasonic imaging including providing an ultrasound system; depicting an enhanced image of an ultrasound image including a first icon surrounding a target vessel; receiving updated information including a dimension of the cannula; and depicting the first icon in an updated state on the enhanced image according to the updated information. The ultrasound system includes an ultrasound probe, a cannula, one or more processors, a display communicatively coupled to the one-or-more processors, and a non-transitory storage device communicatively coupled to the one-or-more processors. The display is configured for depicting the ultrasound image or the enhanced ultrasound image of a subcutaneous portion of a patient.


In some embodiments, the dimension of the cannula includes at least one of a longitudinal length or a diameter. The first icon in the updated state includes at least one of a first color, a first pattern, a first intermittent feature, or a first alphanumerical symbol to indicate the updated state. Receiving updated information further includes measuring a diameter of the target vessel and receiving a desired range of vessel occupancy, wherein the first icon in the updated state further includes indicating a percentage vessel occupancy of the target vessel is within the desired range of vessel occupancy. Receiving updated information further includes an angle of insertion of the cannula and a desired range of vessel purchase, wherein the first icon in the updated state further includes indicating a vessel purchase length is within the desired range of vessel purchase. The angle of insertion of the cannula is measured by the system using at least one of a needle guide or a permanent magnet and magnetic sensor array.


In some embodiments, receiving updated information further includes measuring a change in roundness of the target vessel, wherein the first icon in the updated state further includes indicating a deviation of the roundness of the target vessel. The enhanced image of the ultrasound image further includes a guideline indicating a predicted trajectory of the cannula through the subcutaneous portion of the patient. The guideline includes at least one of a first color or a first pattern to indicate when the predicted trajectory of the cannula intersects the target vessel, as well as at least one of a second color or a second pattern to indicate when the predicted trajectory of the cannula does not intersect the target vessel.


In some embodiments, the method of accessing a vessel using ultrasonic imaging further includes a second icon surrounding an obstruction disposed adjacent the trajectory of the cannula between the cannula and the target vessel. The obstruction includes at least one of a nerve bundle or an arterial vessel. The second icon includes at least one of a second color, a second pattern, a second intermittent feature, or a second alphanumerical symbol. The enhanced image of the ultrasound image further includes an alert indicating a tip of the cannula is proximate a back wall of the target vessel.


These and other features of the concepts provided herein will become more apparent to those of skill in the art in view of the accompanying drawings and following description, which disclose particular embodiments of such concepts in greater detail.





DRAWINGS


FIG. 1A illustrates an example ultrasound system, in accordance with embodiments disclosed herein.



FIG. 1B illustrates an example ultrasound probe, in accordance with embodiments disclosed herein.



FIG. 1C illustrates a block diagram of the ultrasound probe coupled to the ultrasound system, in accordance with embodiments disclosed herein.



FIG. 2A illustrates an enhanced ultrasound image including blood vessel iconography for medical device occupancy, in accordance with embodiments disclosed herein.



FIG. 2B illustrates the enhanced ultrasound image of FIG. 2A further including medical device iconography, in accordance with embodiments disclosed herein.



FIG. 3A illustrates an enhanced ultrasound image including blood vessel iconography for purchase length, in accordance with embodiments disclosed herein.



FIG. 3B illustrates a cross sectional view of cannulae disposed within the vessels referenced in FIG. 3A, in accordance with embodiments disclosed herein.



FIG. 4A illustrates an enhanced ultrasound image including blood vessel iconography for a first insertion angle, in accordance with embodiments disclosed herein.



FIG. 4B illustrates enhanced ultrasound image including blood vessel iconography for a second insertion angle, in accordance with embodiments disclosed herein.



FIG. 5A illustrates an enhanced ultrasound image including blood vessel iconography for a vessel-flow characteristics, in accordance with embodiments disclosed herein.



FIG. 5B illustrates an enhanced ultrasound image including blood vessel iconography for a venous-arterial differentiation, in accordance with embodiments disclosed herein.



FIG. 6 illustrates an enhanced ultrasound image including blood vessel iconography for roundness of a blood vessel, in accordance with embodiments disclosed herein.



FIG. 7 illustrates an enhanced ultrasound image including guidelines for predicted trajectories to target blood vessels, in accordance with embodiments disclosed herein.



FIG. 8 illustrates an enhanced ultrasound image including blood vessel and medical device iconography upon access to the blood vessel, in accordance with embodiments disclosed herein.



FIG. 9 illustrates an enhanced ultrasound image including blood vessel and medical device iconography for predicted procedural errors such as backwalling, in accordance with embodiments disclosed herein.



FIG. 10 illustrates an enhanced ultrasound image including iconography for potential obstructions between a medical device and a target blood vessel, in accordance with embodiments disclosed herein.





DESCRIPTION

Before some particular embodiments are disclosed in greater detail, it should be understood that the particular embodiments disclosed herein do not limit the scope of the concepts provided herein. It should also be understood that a particular embodiment disclosed herein can have features that can be readily separated from the particular embodiment and optionally combined with or substituted for features of any of a number of other embodiments disclosed herein.


Regarding terms used herein, it should also be understood the terms are for the purpose of describing some particular embodiments, and the terms do not limit the scope of the concepts provided herein. Ordinal numbers (e.g., first, second, third, etc.) are generally used to distinguish or identify different features or steps in a group of features or steps, and do not supply a serial or numerical limitation. For example, “first,” “second,” and “third” features or steps need not necessarily appear in that order, and the particular embodiments including such features or steps need not necessarily be limited to the three features or steps. Labels such as “left,” “right,” “top,” “bottom,” “front,” “back,” and the like are used for convenience and are not intended to imply, for example, any particular fixed location, orientation, or direction. Instead, such labels are used to reflect, for example, relative location, orientation, or directions. Singular forms of “a,” “an,” and “the” include plural references unless the context clearly dictates otherwise.


With respect to “proximal,” a “proximal portion” or a “proximal end portion” of, for example, a catheter disclosed herein includes a portion of the catheter intended to be near a clinician, or user, when the catheter is used on a patient. Likewise, a “proximal length” of, for example, the catheter includes a length of the catheter intended to be near the clinician when the catheter is used on the patient. A “proximal end” of, for example, the catheter includes an end of the catheter intended to be near the clinician when the catheter is used on the patient. The proximal portion, the proximal end portion, or the proximal length of the catheter can include the proximal end of the catheter; however, the proximal portion, the proximal end portion, or the proximal length of the catheter need not include the proximal end of the catheter. That is, unless context suggests otherwise, the proximal portion, the proximal end portion, or the proximal length of the catheter is not a terminal portion or terminal length of the catheter.


With respect to “distal,” a “distal portion” or a “distal end portion” of, for example, a catheter disclosed herein includes a portion of the catheter intended to be near or in a patient when the catheter is used on the patient. Likewise, a “distal length” of, for example, the catheter includes a length of the catheter intended to be near or in the patient when the catheter is used on the patient. A “distal end” of, for example, the catheter includes an end of the catheter intended to be near or in the patient when the catheter is used on the patient. The distal portion, the distal end portion, or the distal length of the catheter can include the distal end of the catheter; however, the distal portion, the distal end portion, or the distal length of the catheter need not include the distal end of the catheter. That is, unless context suggests otherwise, the distal portion, the distal end portion, or the distal length of the catheter is not a terminal portion or terminal length of the catheter.


As shown in FIG. 1A, and to assist in the description of the components of embodiments described herein, the ultrasound probe is described in terms of being held vertically with an acoustic surface being held against a horizontal surface, for example, a skin surface of a patient. The longitudinal axis extends perpendicular to the acoustic surface. The acoustic surface is defined by the lateral and transverse axes, with the lateral axis extending normal to the longitudinal axis, and the transverse axis extending normal to both the lateral and longitudinal axis. As used herein, the term “cannula” refers to an elongate medical device, or medical device assembly, that can be inserted subcutaneously to access a vasculature of the patient. Example cannulae can include, but not limited to needles, catheters, stylets, guidewires, trocars, combinations thereof, and the like. As used herein in a “vessel” refers to a given portion of a vascular system for a patient. While embodiments are described herein in reference to a blood vessel, it will be appreciated that aspects of the invention can be applied to various other vasculature systems, body cavities, and the like.


As used herein, the terms “logic” and “component” are representative of hardware, firmware and/or software that is configured to perform one or more functions. As hardware, logic (or a component) may include circuitry having data processing or storage functionality. Examples of such processing or storage circuitry may include, but is not limited or restricted to the following: a processor; one or more processor cores; a programmable gate array; an I/O controller (e.g., network interface controller, disk controller, memory controller, etc.); an application specific integrated circuit; receiver, transmitter and/or transceiver circuitry; semiconductor memory; combinatorial logic, or combinations of one or more of the above components.


Logic (or a component) may be in the form of one or more software modules, such as executable code in the form of an operating system component, an executable application, firmware, an application programming interface (API), one or more subroutines, a function, a procedure, an applet, a plug-in, a servlet, a Component Object Model (COM) object, a routine, source code, object code, a shared library/dynamic linked library, a script, or one or more instructions. These software modules may be stored in any type of a suitable non-transitory storage medium, or transitory storage medium (e.g., electrical, optical, acoustical, or other form of propagated signals such as carrier waves, infrared signals, or digital signals). Examples of a “non-transitory storage medium” may include, but are not limited or restricted to a programmable circuit; non-persistent storage such as volatile memory (e.g., any type of random access memory “RAM”); persistent storage such as non-volatile memory (e.g., read-only memory “ROM”, power-backed RAM, flash memory, phase-change memory, etc.), a solid-state drive, hard disk drive, an optical disc drive, or portable memory device; and/or a semiconductor memory. As firmware, the executable code is stored in persistent storage.


A “computing system” generally refers to either a physical electronic device featuring data processing and/or network connection functionality or a virtual electronic device being software that virtualizes at least a portion of the functionality of the physical electronic device. Examples of a computing system may include, but are not limited or restricted to any physical or virtual resource operating as a server, a network device (e.g., a mobile phone, a desktop or laptop computer, a wearable, a set-top box, a tablet, a netbook, a server, a device-installed mobile software, management console, etc.), a network adapter, or an intermediary communication device (e.g., router, firewall, etc.), a cloud service, or the like. Additional examples of a network device may include, but are not limited or restricted to the following: a server; a router or other signal propagation networking equipment (e.g., a wireless or wired access point); a set-top box; a video-game console; or an endpoint (e.g., a stationary or portable computer including a desktop computer, laptop, electronic reader, netbook or tablet; a smart phone; or wearable technology such as an Apple Watch®, Fitbit® fitness wristband, or other sensor-based component, including any sensors configured for participation within an internet-of-things (IoT) environment).


Unless defined otherwise, all technical and scientific terms used herein have the same meaning as commonly understood by those of ordinary skill in the art.


As set forth above, an ability to non-invasively identify a blood vessel suitable for administering a therapy is needed. Satisfying such a need provides better patient outcomes by both minimizing failed attempts at vascular access and providing optimal administration of vascular-based therapies.


Disclosed herein are automatic vessel detection tools and methods that address at least the foregoing need. Indeed, as set forth below, ultrasound imaging combined with image processing provide valuable information to clinicians for providing administration of vascular-based therapies.



FIGS. 1A-1C show example embodiments of an ultrasound imaging system 10 that generally includes an ultrasound probe 12 and a console 20 including a display 30 for depicting an image produced by the ultrasound probe 12. It will be appreciated that the console 20 can take one of a variety of forms. A processor 21 together with non-volatile memory 22 (e.g., EEPROM) is included in the console 20 for controlling system function during operation of the system 10, thus acting as a control processor. A digital controller/analog interface 24 is also included with the console 20 and is in communication with both the processor 21 and other system components to govern interfacing between the ultrasound probe 12, transducer 90, optional magnetic sensors, and other system components.


The system 10 can further include a plurality of ports 51 for connection with optional components 53 including a printer, storage media, keyboard, etc. The ports in one embodiment are USB ports, though other port types or a combination of port types can be used for this and the other interfaces connections. In certain embodiments, the ports 51 may be implemented via a wireless connection over a network. A power connection 56 is included with the console 20 to enable operable connection to an external power supply 58. An internal power supply 61 (e.g., a battery) can also be employed, either with or exclusive of an external power supply. Power management circuitry 59 is included with the digital controller/analog interface 24 of the console to regulate power use and distribution.


The display 30 can be a single stand-alone display or an integrated display integrated into the console 20 for displaying information to a clinician. (See FIGS. 2A, 2B, 3A, etc.) As set forth below, the content depicted by the display 30 can change in accordance with different ultrasound image enhancements. In certain embodiments, a console button interface 33 and buttons included on the ultrasound probe 12 can be used to immediately call up a desired mode to the display 30 with ultrasound image enhancements for the clinician to assist in the procedure.


Those skilled in the art will appreciate that the embodiments of the present invention may be practiced in computing environments with one or more types of computer system configurations, including, personal computers, desktop computers, laptop computers, message processors, hand-held devices, multi-processor systems, microprocessor-based or programmable consumer electronics, network PCs, minicomputers, mainframe computers, mobile telephones, PDAs, pagers, and the like. Embodiments may also be practiced in distributed system environments where local and remote computer systems, which are linked (either by hardwired data links, wireless data links, or by a combination of hardwired and wireless data links) through a network, both perform tasks. In a distributed system environment, program modules may be located in both local and remote memory storage devices.


In an embodiment, the ultrasound probe 12 is operably connected to the console via a cable 31, though in an embodiment the ultrasound probe 12 can be wirelessly connected thereto. The ultrasound probe 12 includes a head portion (“probe head,” or “head”) 32 defined by a lateral length 32A and a transverse width 32B. The probe head 32 includes an acoustic surface 34 extending along at least a portion of the lateral length 32A of the probe head from which ultrasonic impulses are emitted by the transducer 90, disposed within the probe head 32, in order to penetrate and image subcutaneous portions of the patient. Note that the size, shape, and configuration of both the ultrasound probe 12, probe head 32, transducer and acoustic surface 34 can vary from what is described herein while still residing within the principles of the present disclosure. Note also that FIGS. 1A-1C show example ultrasound imaging systems; other systems including other components can also benefit from the principles described herein.



FIG. 1C further shows that the ultrasound probe 12 can further include a button and memory controller 41 for governing button and probe operation. The button and memory controller 41 can include non-volatile memory, such as EEPROM, in certain embodiments. The button and memory controller 41 is in operable communication with a probe interface 44 of the console 20, which often includes a piezo input/output component 44A for interfacing with the probe piezoelectric array and a button and memory input/output component 44B for interfacing with the button and memory controller 41.


In an embodiment, as shown in FIGS. 2A-2B, the display 30 depicts an enhanced ultrasound image including an imaged subcutaneous portion of a patient, and one or more icons each surrounding a target area, for example a target vessel 50. The system 10 autonomously determines target structures within the image and positions the icon accordingly. The icon can identify potential target vessels within the image and clearly distinguish these vessels from surrounding structures to make them easily and quickly identifiable. The icon includes one or more colors, patterns, intermittent (“flashing” or “blinking”) features, alphanumeric symbols, combinations thereof, or the like, to further distinguish the target vessel from surrounding imaged structures. The icon further includes an updated state which includes a change in the one-or-more colors, patterns, intermittent features, alphanumeric symbols, combinations thereof, or the like that indicates to a clinician information regarding the target vessel the icon is associated with. The enhanced image can also display additional icons representing, for example, a cannula 40, or tip thereof 42, guidelines, trajectory ranges of the cannula, and potential obstructions.


In an embodiment, the enhanced image can further display additional information, for example, cannula size 60, angle of insertion 64 of the cannula relative to the ultrasound probe 12, and the like. In an embodiment, the cannula size is entered to the system by the clinician. In an embodiment, the system 10 receives or derives the cannula size from RFID chips, magnetic sensor arrays, and the like. For example, the cannula can include identification markers, RFID chips, barcodes, QR codes, combinations thereof, or the like, that include information about the size, diameter, length, etc. of the cannula being used. The system interprets the size of cannula being used by way of these identification markers and the like, independent of any input from the clinician.


In an embodiment, the angle of insertion of the cannula is entered to the system by the clinician. In an embodiment, the system 10 is able to determine the angle of insertion by detecting the presence of the cannula within an angled needle guide, coupled to the ultrasound probe 12. In an embodiment, the cannula includes at least one of a permanent magnet, an electromagnet, an optical marker, or acoustic marker, or the like, which is detected by a magnetic sensor array and can determined the location and orientation of the cannula in three-dimensional space. Further details of enhanced ultrasound imaging, and associated features, can be found, for example, in U.S. 2018/0015256, filed Jul. 14, 2017 and U.S. Pat. No. 9,949,720, filed Oct. 19, 2012, each of which are incorporated by reference in its entirety into this application.


In an embodiment, as shown in FIGS. 2A-2B, the enhanced image depicted on the display 30 indicates a first icon 250A highlighting the target vessel 50. To note, the system autonomously identifies one or more target vessels within the image and positions one or more icons surrounding the one-or-more target vessels. The system 10 can measure the diameter of the target vessel and, together with information on the cannula size 60 of the cannula being used, determine a percentage vessel occupancy for the target vessel. For example, as shown, the first icon 250A highlights a first target vessel 50A, and determines a vessel occupancy of 30% with an 18-gauge cannula. A second icon 250B highlights a second target vessel 50B, and determines a 50% vessel occupancy with an 18-gauge cannula.


In an embodiment, the system 10 can receive further information about a desired vessel occupancy range 62, for example, 40%. In an embodiment, the desired vessel occupancy range is entered by the clinician. In an embodiment, the desired vessel occupancy range derived from patient specific data. For example, based on the procedure being performed, age, weight, gender of the patient, combinations thereof, or the like. The system 10, then provides the icons 250A and 250B in an updated state to indicate if the target vessel is within the desired range. For example, the first icon 250A provides a first color, pattern, and label, while the second icon 250B which is outside of the desired range provides a second color, pattern, and label. FIG. 2B shows the target vessels with the cannula 40 disposed in each to illustrate the percentage vessel occupancy.


In an embodiment, as shown in FIG. 3A, the enhanced image depicted on the display 30 indicates a first icon 350A highlighting the first target vessel 50A. The system 10 can measure the depth of the target vessel relative to the skin surface and, together with information on the cannula size 60 of the cannula being used and the angle of insertion 64, determine a vessel purchase length for the target vessel. For example, as shown, the first icon 350A highlights the first target vessel 50A, and determines a vessel purchase length of 4 cm. A second icon 350B highlights a second target vessel 50B, and determines a 2 cm vessel purchase length.


In an embodiment, the system 10 receives further information about a desired vessel purchase length 66, for example, 3 cm. In an embodiment, the desired vessel purchase length is entered by the clinician. In an embodiment, the desired vessel purchase length is derived from patient specific data. For example, based on the procedure being performed, age, weight, gender of the patient, combinations thereof, or the like. The system 10, then provides the icons 350A and 350B in an updated state to indicate if the target vessel is within the desired range, as described herein. FIG. 3B illustrates the target vessels 50A and 50B respectively with a cannula 40A and 40B disposed therein to illustrate how the vessel purchase length varies with depth of the target vessel. To note, embodiments described herein can be combined such that a user can enter both a desired vessel occupancy range and a desired vessel purchase range and icons can be provided in an updated state to indicate the one or both of these requirements are met. Further, it will be appreciated, that additional embodiments described herein can also be combined in a similar manner without departing from the spirit of the invention.


In an embodiment, a variation in insertion angle can further affect which vessels are within range. As shown in FIG. 4A, the needle is provided at a 40° angle. The system 10 can determine this angle by way of a needle guide, permanent magnet and magnetic sensor array, markers, or the like, as disclosed herein. The console then provides an enhanced image to indicate which of the vessels imaged are within the desired vessel purchase range. As shown, a first icon 450A and a second icon 450B highlight vessels and indicates they are within a desired vessel purchase range, as described herein. A third icon 450C highlights a third vessel and indicates that while it is possible to be accessed, it would only allow a 2 cm vessel purchase length which is outside of the desired range, and is therefore indicated as such.



FIG. 4B shows the cannula being inserted at a shallower angle, for example, 10°, than that shown in FIG. 4A, which limits the depth accessible by the cannula. Accordingly, the first vessel highlighted by the first icon 450A is still accessible and still within the desired vessel purchase range, albeit with less absolute vessel purchase length. The second vessel, highlighted by the second icon 450B, is now outside of the desired vessel purchase range and is indicated as such. The third vessel, highlighted by icon 450C is now too deep to access at all, and is also indicated as such on the screen.


In an embodiment, as shown in FIGS. 5A-5B the system 10 determines flow characteristics of the target vessels being imaged and provides icons in an updated state to indicate these features to the clinician. For example, the system 10 includes Doppler measurements, pulsatile measurements, combinations thereof, or the like to determine if the vessel has sufficient flow for a procedure. As shown in FIG. 5A, a first icon 550A indicates a first target vessel has sufficient flow (“good flow”) using a first color, pattern, label, or combinations thereof. A second icon 550B indicates a second vessel has “poor flow” using a second color, pattern, label, or combinations thereof. Similarly, a third icon 550C indicates a third vessel as having “no flow” using a third color, pattern, label, or combinations thereof. Further, as shown in FIG. 5B, the system 10 can determine if the target vessel is either venous or arterial, through Doppler measurements of a fluid flow through the vessel, the presence or absence of pulsatile movements of the vessel, or combinations thereof. Accordingly, the icons can include colors, patterns, labels, or combinations thereof, to indicate as such.


In an embodiment, the system 10 provides feedback to the clinician directed to the positioning of the probe. For example, the system 10 identifies the location of a target vessel, depicted on the display 30, and determines if the target vessel is “moving.” If so, this would indicate that the ultrasound probe 12 is not being held steady enough. Such movement can be outside of tolerance levels that equate to normal bodily movements from the patient, such as breathing or pulsatile movements from the vessel, or the like. Accordingly, visual, audible, or tactile alerts can be provided to the clinician advising to “adjust position of the probe,” “hold the probe steady”, or the like. It will be appreciated that visual alerts can include messages, notices, icons, alphanumeric symbols, colors, or the like, depicted on the display 30. Further, visual alerts can include LED lights, indicators, or the like, operably connected with the system 10 that visually alert the clinician. Audible alerts can include sounds, instructions, alarms, or the like. Tactile alerts can include vibrations transmitted through portions of the system 10 being held by the clinician.


In an embodiment, as shown in FIG. 6, the system 10 can measure the roundness of a target vessel, or changes thereof, to determine if the pressure of the ultrasound probe 12 against the skin surface is affecting the patency of the target vessel 50. If the roundness of the vessel 50 deviates from acceptable tolerance levels, the system can provide visual, audible, or tactile alerts, as described herein, to “release pressure on probe” or the like.


In an embodiment, as shown in FIG. 7, the system 10 provides guidelines, for example, guidelines 712 and 714, superimposed on the ultrasound image to indicate a predicted trajectory of the cannula 40, relative to the target vessel 50. As discussed herein, the system 10 can determine the position and orientation of the cannula 40 relative to the ultrasound probe 12, for example using needle guides or magnetic sensor arrays. Accordingly, the system 10 can display a predicted trajectory of the cannula by the guideline 712, or range of trajectory, relative to the target vessel 50, and indicate with colors, patterns, or instructions displayed proximate thereto if the cannula is on course to access the target vessel. Where the cannula is not on course to access the vessel, the guideline 714 can indicate as such through different colors, patterns, or instructions displayed proximate thereto.


In an embodiment, as shown in FIGS. 8-9, the system 10 can determine the location of the cannula tip 42 of the cannula 40 in three-dimensional space, as discussed herein. As shown in FIG. 8, the cannula tip 42 can include additional color, patterns, highlights, and the like to indicate to the clinician a successful accessing of the vessel. In an embodiment, as shown in FIG. 9, the system can determine if the cannula tip 42 is proximate to a lower wall of the target vessel 50. As such, the system 10 can provide visual, audible, or tactile alerts, as described herein, to indicate the cannula can potentially be inserted through a far wall of the vessel, termed “backwalling.” The cannula tip 42 can be represented as an image, symbol, icon, or the like, and can be depicted with a distinct color, pattern, highlighted, or “flashing,” to indicate a proximity to “backwalling” the vessel.


In an embodiment, as shown in FIG. 10, the system 10 can provide additional icons to identify potential obstructions between the target vessel 50 and the cannula 40. For example, a nerve bundle 52, or an arterial vessel 54, or the like, can be disposed between the target vessel 50 and the cannula 40. The system 10 can provide icons including different colors, patterns, labels, or the like, from that of icons highlighting the target vessels 50 to indicate to the clinician that an alternate path to the target vessel is required. The system 10 can further display additional visual, audible, or tactile alerts to notify the clinician of the obstruction.


Currently, determination of target vessels under ultrasound imaging is based on a subjective assessment by the clinician which can lead to sub-optimal vessels being accessed, failed access attempts, loss of vessel purchase leading to oedema, and other complications, and the like. However, advantageously, embodiments disclosed herein, or combinations thereof, can provide a clear, quantitative indication of suitable vessels to target prior to any insertion of the cannula. This prevents the clinician from accessing vessels only to find the vessel is too small to receive the cannula, too deep to provide sufficient vessel purchase, has sufficient flow and is the correct vessel type for the procedure. Further, embodiments can identify insertion trajectories and any potential obstructions and improve user handling of the imaging system.


While some particular embodiments have been disclosed herein, and while the particular embodiments have been disclosed in some detail, it is not the intention for the particular embodiments to limit the scope of the concepts provided herein. Additional adaptations and/or modifications can appear to those of ordinary skill in the art, and, in broader aspects, these adaptations and/or modifications are encompassed as well. Accordingly, departures may be made from the particular embodiments disclosed herein without departing from the scope of the concepts provided herein.

Claims
  • 1. An ultrasound system, comprising: an ultrasound probe;a display communicatively coupled to at least one processor and the ultrasound probe, the display designed to depict an ultrasound image sent from the ultrasound probe; anda non-transitory storage device communicatively coupled to the at least one processor, the non-transitory storage device having stored logic, that when executed by the at least one processor, causes performance of operations including: determining that motion of a target vessel depicted in the ultrasound image, as caused solely by a positional instability of the ultrasound probe, exceeds a threshold equated to normal bodily motion; andproviding a first notification advising of the positional instability of the ultrasound probe.
  • 2. The ultrasound system according to claim 1, wherein the performance of operations further includes depicting an enhanced image of the ultrasound image, including an icon surrounding the target vessel.
  • 3. The ultrasound system according to claim 2, wherein the icon surrounding the target vessel is depicted in at least one of a color, a pattern, an intermittent feature, and an alphanumerical symbol to indicate an updated state.
  • 4. The ultrasound system according to claim 3, wherein the performance of operations further includes measuring a diameter of the target vessel and receiving a desired range of vessel occupancy, and wherein the icon in the updated state includes indicating whether a percentage vessel occupancy of the target vessel is within the desired range of vessel occupancy.
  • 5. The ultrasound system according to claim 1, further comprising a cannula, wherein the performance of operations further includes receiving updated information related to a dimension of the cannula.
  • 6. The ultrasound system according to claim 5, wherein the dimension of the cannula is derived by the ultrasound system.
  • 7. The ultrasound system according to claim 6, wherein the dimension of the cannula includes one or both of a longitudinal length and a diameter.
  • 8. The ultrasound system according to claim 5, wherein receiving updated information further includes information related to an angle of insertion of the cannula and a desired range of vessel purchase.
  • 9. The ultrasound system according to claim 8, wherein the angle of insertion of the cannula is predetermined.
  • 10. The ultrasound system according to claim 8, wherein the angle of insertion of the cannula is measured by the ultrasound system using at least one of a needle guide or a permanent magnet and magnetic sensor array.
  • 11. The ultrasound system according to claim 1, wherein the performance of operations further include determining flow characteristics of the target vessel using Doppler measurements, pulsatile measurements, or a combination thereof.
  • 12. The ultrasound system according to claim 11, wherein determining the flow characteristics of the target vessel further comprises determining a flow rate in the target vessel and assessing whether the target vessel is a vein or an artery based on the flow rate.
  • 13. The ultrasound system according to claim 1, wherein the performance of operations further includes measuring a change in roundness of the target vessel and wherein the display is configured to indicate a deviation of the roundness of the target vessel.
  • 14. The ultrasound system according to claim 1, wherein the performance of operations further includes depicting an enhanced image of the ultrasound image, the enhanced image of the ultrasound image including a guideline indicating a predicted trajectory of a cannula used in conjunction with the ultrasound system.
  • 15. The ultrasound system according to claim 14, wherein the guideline includes at least one of a first color or a first pattern to indicate when the predicted trajectory of the cannula intersects the target vessel and includes at least one of a second color or a second pattern to indicate when the predicted trajectory of the cannula does not intersect the target vessel.
  • 16. The ultrasound system according to claim 14, wherein the performance of operations further includes depicting an icon surrounding an obstruction disposed adjacent the predicted trajectory of the cannula between the cannula and the target vessel.
  • 17. The ultrasound system according to claim 16, wherein the icon includes at least one of a second color, a second pattern, a second intermittent feature, or a second alphanumerical symbol.
  • 18. The ultrasound system according to claim 5, wherein the performance of operations further include a second notification indicating when a tip of the cannula is proximate a back wall of the target vessel.
PRIORITY

This application is a continuation of U.S. patent application Ser. No. 17/020,476, filed Sep. 14, 2020, now U.S. Pat. No. 11,759,166, which claims the benefit of priority to U.S. Provisional Application No. 62/903,545, filed Sep. 20, 2019, each of which is incorporated by reference in its entirety into this application.

US Referenced Citations (357)
Number Name Date Kind
3697917 Orth et al. Oct 1972 A
5148809 Biegeleisen-Knight et al. Sep 1992 A
5181513 Touboul et al. Jan 1993 A
5325293 Dorne Jun 1994 A
5349865 Kavli et al. Sep 1994 A
5441052 Miyajima Aug 1995 A
5549554 Miraki Aug 1996 A
5573529 Haak et al. Nov 1996 A
5775322 Silverstein et al. Jul 1998 A
5879297 Haynor et al. Mar 1999 A
5897503 Lyon et al. Apr 1999 A
5908387 LeFree et al. Jun 1999 A
5967984 Chu et al. Oct 1999 A
5970119 Hofmann Oct 1999 A
6004270 Urbano et al. Dec 1999 A
6019724 Gronningsaeter et al. Feb 2000 A
6068599 Saito et al. May 2000 A
6074367 Hubbell Jun 2000 A
6129668 Haynor et al. Oct 2000 A
6132379 Patacsil et al. Oct 2000 A
6216028 Haynor et al. Apr 2001 B1
6233476 Strommer et al. May 2001 B1
6245018 Lee Jun 2001 B1
6263230 Haynor et al. Jul 2001 B1
6375615 Flaherty et al. Apr 2002 B1
6436043 Bonnefous Aug 2002 B2
6498942 Esenaliev et al. Dec 2002 B1
6503205 Manor et al. Jan 2003 B2
6508769 Bonnefous Jan 2003 B2
6511458 Milo et al. Jan 2003 B2
6524249 Moehring et al. Feb 2003 B2
6543642 Milliorn Apr 2003 B1
6554771 Buil et al. Apr 2003 B1
6592520 Peszynski et al. Jul 2003 B1
6592565 Twardowski Jul 2003 B2
6601705 Molina et al. Aug 2003 B2
6612992 Hossack et al. Sep 2003 B1
6613002 Clark et al. Sep 2003 B1
6623431 Sakuma et al. Sep 2003 B1
6641538 Nakaya et al. Nov 2003 B2
6647135 Bonnefous Nov 2003 B2
6687386 Ito et al. Feb 2004 B1
6733458 Steins et al. May 2004 B1
6749569 Pellegretti Jun 2004 B1
6754608 Svanerudh et al. Jun 2004 B2
6755789 Stringer et al. Jun 2004 B2
6840379 Franks-Farah et al. Jan 2005 B2
6857196 Dalrymple Feb 2005 B2
6979294 Selzer et al. Dec 2005 B1
7074187 Selzer et al. Jul 2006 B2
7244234 Ridley et al. Jul 2007 B2
7359554 Klingensmith et al. Apr 2008 B2
7534209 Abend et al. May 2009 B2
7599730 Hunter et al. Oct 2009 B2
7637870 Flaherty et al. Dec 2009 B2
7681579 Schwartz Mar 2010 B2
7691061 Hirota Apr 2010 B2
7699779 Sasaki et al. Apr 2010 B2
7720520 Willis May 2010 B2
7727153 Fritz et al. Jun 2010 B2
7734326 Pedain et al. Jun 2010 B2
7831449 Ying et al. Nov 2010 B2
7905837 Suzuki Mar 2011 B2
7925327 Weese Apr 2011 B2
7927278 Selzer et al. Apr 2011 B2
8014848 Birkenbach et al. Sep 2011 B2
8038619 Steinbacher Oct 2011 B2
8060181 Rodriguez Ponce et al. Nov 2011 B2
8075488 Burton Dec 2011 B2
8090427 Eck et al. Jan 2012 B2
8105239 Specht Jan 2012 B2
8172754 Watanabe et al. May 2012 B2
8175368 Sathyanarayana May 2012 B2
8200313 Rambod et al. Jun 2012 B1
8211023 Swan et al. Jul 2012 B2
8228347 Beasley et al. Jul 2012 B2
8298147 Huennekens et al. Oct 2012 B2
8303505 Webler et al. Nov 2012 B2
8323202 Roschak et al. Dec 2012 B2
8328727 Miele et al. Dec 2012 B2
8388541 Messerly et al. Mar 2013 B2
8409103 Grunwald et al. Apr 2013 B2
8449465 Nair et al. May 2013 B2
8553954 Saikia Oct 2013 B2
8556815 Pelissier et al. Oct 2013 B2
8585600 Liu et al. Nov 2013 B2
8622913 Dentinger et al. Jan 2014 B2
8706457 Hart et al. Apr 2014 B2
8727988 Flaherty et al. May 2014 B2
8734357 Taylor May 2014 B2
8744211 Owen Jun 2014 B2
8754865 Merritt et al. Jun 2014 B2
8764663 Smok et al. Jul 2014 B2
8781194 Malek et al. Jul 2014 B2
8781555 Burnside et al. Jul 2014 B2
8790263 Randall et al. Jul 2014 B2
8849382 Cox et al. Sep 2014 B2
8939908 Suzuki et al. Jan 2015 B2
8961420 Zhang Feb 2015 B2
9022940 Meier May 2015 B2
9138290 Hadjicostis Sep 2015 B2
9199082 Yared et al. Dec 2015 B1
9204858 Pelissier et al. Dec 2015 B2
9220477 Urabe et al. Dec 2015 B2
9295447 Shah Mar 2016 B2
9320493 Visveshwara Apr 2016 B2
9357980 Toji et al. Jun 2016 B2
9364171 Harris et al. Jun 2016 B2
9427207 Sheldon et al. Aug 2016 B2
9445780 Hossack et al. Sep 2016 B2
9456766 Cox et al. Oct 2016 B2
9456804 Tamada Oct 2016 B2
9468413 Hall et al. Oct 2016 B2
9492097 Wilkes et al. Nov 2016 B2
9521961 Silverstein et al. Dec 2016 B2
9554716 Burnside et al. Jan 2017 B2
9582876 Specht Feb 2017 B2
9610061 Ebbini et al. Apr 2017 B2
9636031 Cox May 2017 B2
9649037 Lowe et al. May 2017 B2
9649048 Cox et al. May 2017 B2
9702969 Hope Simpson et al. Jul 2017 B2
9715757 Ng et al. Jul 2017 B2
9717415 Cohen et al. Aug 2017 B2
9731066 Liu et al. Aug 2017 B2
9814433 Benishti et al. Nov 2017 B2
9814531 Yagi et al. Nov 2017 B2
9861337 Patwardhan et al. Jan 2018 B2
9895138 Sasaki Feb 2018 B2
9913605 Harris et al. Mar 2018 B2
9949720 Southard et al. Apr 2018 B2
10043272 Forzoni et al. Aug 2018 B2
10449330 Newman et al. Oct 2019 B2
10524691 Newman et al. Jan 2020 B2
10751509 Misener Aug 2020 B2
11564861 Gaines Jan 2023 B1
20020038088 Imran et al. Mar 2002 A1
20030047126 Tomaschko Mar 2003 A1
20030106825 Molina et al. Jun 2003 A1
20030120154 Sauer et al. Jun 2003 A1
20030125629 Ustuner Jul 2003 A1
20030135115 Burdette et al. Jul 2003 A1
20030149366 Stringer et al. Aug 2003 A1
20040015080 Kelly et al. Jan 2004 A1
20040055925 Franks-Farah et al. Mar 2004 A1
20040197267 Black et al. Oct 2004 A1
20050000975 Carco et al. Jan 2005 A1
20050049504 Lo et al. Mar 2005 A1
20050165299 Kressy et al. Jul 2005 A1
20050251030 Azar et al. Nov 2005 A1
20050267365 Sokulin et al. Dec 2005 A1
20060004290 Smith et al. Jan 2006 A1
20060013523 Childlers et al. Jan 2006 A1
20060015039 Cassidy et al. Jan 2006 A1
20060020204 Serra et al. Jan 2006 A1
20060047617 Bacioiu et al. Mar 2006 A1
20060079781 Germond-Rouet et al. Apr 2006 A1
20060184029 Haim et al. Aug 2006 A1
20060210130 Germond-Rouet et al. Sep 2006 A1
20060241463 Shau et al. Oct 2006 A1
20070043341 Anderson et al. Feb 2007 A1
20070049822 Bunce et al. Mar 2007 A1
20070073155 Park et al. Mar 2007 A1
20070167738 Timinger et al. Jul 2007 A1
20070199848 Ellswood et al. Aug 2007 A1
20070239120 Brock et al. Oct 2007 A1
20070249911 Simon Oct 2007 A1
20070287886 Saadat Dec 2007 A1
20080021322 Stone et al. Jan 2008 A1
20080033293 Beasley et al. Feb 2008 A1
20080033759 Finlay Feb 2008 A1
20080051657 Rold Feb 2008 A1
20080108930 Weitzel et al. May 2008 A1
20080125651 Watanabe May 2008 A1
20080146915 McMorrow Jun 2008 A1
20080177186 Slater et al. Jul 2008 A1
20080221425 Olson et al. Sep 2008 A1
20080269605 Nakaya Oct 2008 A1
20080294037 Richter Nov 2008 A1
20080300491 Bonde et al. Dec 2008 A1
20090012399 Sunagawa et al. Jan 2009 A1
20090012401 Steinbacher Jan 2009 A1
20090074280 Lu et al. Mar 2009 A1
20090124903 Osaka May 2009 A1
20090137887 Shariati et al. May 2009 A1
20090137907 Takimoto et al. May 2009 A1
20090143672 Harms et al. Jun 2009 A1
20090143684 Cermak et al. Jun 2009 A1
20090156926 Messerly et al. Jun 2009 A1
20090281413 Boyden et al. Nov 2009 A1
20090306509 Pedersen et al. Dec 2009 A1
20100010348 Halmann Jan 2010 A1
20100211026 Sheetz et al. Aug 2010 A2
20100249598 Smith et al. Sep 2010 A1
20100286515 Gravenstein et al. Nov 2010 A1
20100312121 Guan Dec 2010 A1
20100324423 El-Aklouk et al. Dec 2010 A1
20110002518 Ziv-Ari et al. Jan 2011 A1
20110026796 Hyun et al. Feb 2011 A1
20110071404 Schmitt et al. Mar 2011 A1
20110074244 Osawa Mar 2011 A1
20110087107 Lindekugel et al. Apr 2011 A1
20110166451 Blaivas et al. Jul 2011 A1
20110282188 Burnside et al. Nov 2011 A1
20110295108 Cox et al. Dec 2011 A1
20110313293 Lindekugel et al. Dec 2011 A1
20120165679 Orome et al. Jun 2012 A1
20120179038 Meurer et al. Jul 2012 A1
20120179042 Fukumoto et al. Jul 2012 A1
20120179044 Chiang et al. Jul 2012 A1
20120197132 O'Connor Aug 2012 A1
20120220865 Brown et al. Aug 2012 A1
20120277576 Lui Nov 2012 A1
20130041250 Pelissier et al. Feb 2013 A1
20130102889 Southard et al. Apr 2013 A1
20130131499 Chan et al. May 2013 A1
20130131502 Blaivas et al. May 2013 A1
20130150724 Blaivas et al. Jun 2013 A1
20130188832 Ma et al. Jul 2013 A1
20130197367 Smok et al. Aug 2013 A1
20130218024 Boctor et al. Aug 2013 A1
20130323700 Samosky et al. Dec 2013 A1
20130338503 Cohen et al. Dec 2013 A1
20130338508 Nakamura et al. Dec 2013 A1
20130345566 Weitzel et al. Dec 2013 A1
20140005530 Liu et al. Jan 2014 A1
20140031694 Solek Jan 2014 A1
20140066779 Nakanishi Mar 2014 A1
20140073976 Fonte et al. Mar 2014 A1
20140100440 Cheline et al. Apr 2014 A1
20140114194 Kanayama et al. Apr 2014 A1
20140170620 Savitsky et al. Jun 2014 A1
20140180098 Flaherty et al. Jun 2014 A1
20140180116 Lindekugel et al. Jun 2014 A1
20140188133 Misener Jul 2014 A1
20140188440 Donhowe et al. Jul 2014 A1
20140276059 Sheehan Sep 2014 A1
20140276069 Amble et al. Sep 2014 A1
20140276081 Tegels Sep 2014 A1
20140276085 Miller Sep 2014 A1
20140276690 Grace Sep 2014 A1
20140343431 Vajinepalli et al. Nov 2014 A1
20140357994 Jin et al. Dec 2014 A1
20150005738 Blacker Jan 2015 A1
20150011887 Ahn et al. Jan 2015 A1
20150065916 Maguire et al. Mar 2015 A1
20150073279 Cai et al. Mar 2015 A1
20150112200 Oberg et al. Apr 2015 A1
20150141821 Yoshikawa et al. May 2015 A1
20150190111 Fry Jul 2015 A1
20150209113 Burkholz et al. Jul 2015 A1
20150209510 Burkholz et al. Jul 2015 A1
20150209526 Matsubara et al. Jul 2015 A1
20150257735 Ball et al. Sep 2015 A1
20150282890 Cohen et al. Oct 2015 A1
20150294497 Ng et al. Oct 2015 A1
20150297097 Matsubara et al. Oct 2015 A1
20150342572 Tahmasebi Maraghoosh et al. Dec 2015 A1
20150359520 Shan et al. Dec 2015 A1
20150359991 Dunbar et al. Dec 2015 A1
20160000367 Lyon Jan 2016 A1
20160026894 Nagase Jan 2016 A1
20160029995 Navratil et al. Feb 2016 A1
20160113699 Sverdlik et al. Apr 2016 A1
20160120607 Sorotzkin et al. May 2016 A1
20160157831 Kang et al. Jun 2016 A1
20160166232 Merritt Jun 2016 A1
20160202053 Walker et al. Jul 2016 A1
20160211045 Jeon et al. Jul 2016 A1
20160213398 Liu Jul 2016 A1
20160220124 Grady et al. Aug 2016 A1
20160259992 Knodt et al. Sep 2016 A1
20160278869 Grunwald Sep 2016 A1
20160287214 Ralovich et al. Oct 2016 A1
20160296208 Sethuraman et al. Oct 2016 A1
20160374644 Mauldin, Jr. et al. Dec 2016 A1
20170014105 Chono Jan 2017 A1
20170020561 Cox et al. Jan 2017 A1
20170079548 Silverstein et al. Mar 2017 A1
20170143312 Hedlund et al. May 2017 A1
20170164923 Matsumoto Jun 2017 A1
20170172666 Govari et al. Jun 2017 A1
20170215842 Ryu et al. Aug 2017 A1
20170252004 Broad et al. Sep 2017 A1
20170328751 Lemke Nov 2017 A1
20170367678 Sirtori et al. Dec 2017 A1
20180015256 Southard et al. Jan 2018 A1
20180116723 Hettrick et al. May 2018 A1
20180125450 Blackbourne et al. May 2018 A1
20180161502 Nanan et al. Jun 2018 A1
20180199914 Ramachandran et al. Jul 2018 A1
20180214119 Mehrmohammadi et al. Aug 2018 A1
20180228465 Southard et al. Aug 2018 A1
20180235649 Elkadi Aug 2018 A1
20180235709 Donhowe et al. Aug 2018 A1
20180289927 Messerly Oct 2018 A1
20180296185 Cox et al. Oct 2018 A1
20180310955 Lindekugel et al. Nov 2018 A1
20180344293 Raju et al. Dec 2018 A1
20190060001 Kohli et al. Feb 2019 A1
20190060014 Hazelton et al. Feb 2019 A1
20190090855 Kobayashi et al. Mar 2019 A1
20190125210 Govari et al. May 2019 A1
20190200951 Meier Jul 2019 A1
20190239848 Bedi et al. Aug 2019 A1
20190307419 Durfee Oct 2019 A1
20190307515 Naito et al. Oct 2019 A1
20190365347 Abe Dec 2019 A1
20190365348 Toume et al. Dec 2019 A1
20190365354 Du Dec 2019 A1
20200069929 Mason et al. Mar 2020 A1
20200113540 Gijsbers et al. Apr 2020 A1
20200163654 Satir et al. May 2020 A1
20200200900 Asami et al. Jun 2020 A1
20200229795 Tadross et al. Jul 2020 A1
20200230391 Burkholz et al. Jul 2020 A1
20200237403 Southard et al. Jul 2020 A1
20200281563 Muller et al. Sep 2020 A1
20200359990 Poland et al. Nov 2020 A1
20200390416 Swan et al. Dec 2020 A1
20210059639 Howell Mar 2021 A1
20210077058 Mashood et al. Mar 2021 A1
20210137492 Imai May 2021 A1
20210161510 Sasaki et al. Jun 2021 A1
20210186467 Urabe et al. Jun 2021 A1
20210212668 Li et al. Jul 2021 A1
20210267570 Ulman et al. Sep 2021 A1
20210295048 Buras et al. Sep 2021 A1
20210315538 Brandl et al. Oct 2021 A1
20210378627 Yarmush et al. Dec 2021 A1
20220039777 Durfee Feb 2022 A1
20220039829 Zijlstra et al. Feb 2022 A1
20220071593 Tran Mar 2022 A1
20220096053 Sethuraman et al. Mar 2022 A1
20220096797 Prince Mar 2022 A1
20220104791 Matsumoto Apr 2022 A1
20220104886 Blanchard et al. Apr 2022 A1
20220117582 McLaughlin et al. Apr 2022 A1
20220160434 Messerly et al. May 2022 A1
20220168050 Sowards et al. Jun 2022 A1
20220172354 Misener et al. Jun 2022 A1
20220296303 McLeod et al. Sep 2022 A1
20220330922 Sowards et al. Oct 2022 A1
20220334251 Sowards et al. Oct 2022 A1
20220361840 Matsumoto et al. Nov 2022 A1
20230107629 Sowards et al. Apr 2023 A1
20230132148 Sowards et al. Apr 2023 A1
20230135562 Misener et al. May 2023 A1
20230138970 Sowards et al. May 2023 A1
20230148872 Sowards et al. May 2023 A1
20230201539 Howell Jun 2023 A1
20230277153 Sowards et al. Sep 2023 A1
20230277154 Sowards et al. Sep 2023 A1
20230293143 Sowards et al. Sep 2023 A1
20230338010 Sturm Oct 2023 A1
20230371928 Rajguru et al. Nov 2023 A1
20240065673 Sowards et al. Feb 2024 A1
Foreign Referenced Citations (48)
Number Date Country
102871645 Jan 2013 CN
105107067 May 2018 CN
0933063 Aug 1999 EP
1504713 Feb 2005 EP
1591074 May 2008 EP
2823766 Jan 2015 EP
3181083 Jun 2017 EP
3870059 Sep 2021 EP
2000271136 Oct 2000 JP
2007222291 Sep 2007 JP
2014150928 Aug 2014 JP
2018175547 Nov 2018 JP
20180070878 Jun 2018 KR
102176196 Nov 2020 KR
2010029521 Mar 2010 WO
2010076808 Jul 2010 WO
2013059714 Apr 2013 WO
2014115150 Jul 2014 WO
2015017270 Feb 2015 WO
2016081023 May 2016 WO
2017096487 Jun 2017 WO
2017214428 Dec 2017 WO
2018026878 Feb 2018 WO
2018134726 Jul 2018 WO
2019232451 Dec 2019 WO
2020002620 Jan 2020 WO
2020016018 Jan 2020 WO
2019232454 Feb 2020 WO
2020044769 Mar 2020 WO
2020067897 Apr 2020 WO
2020083660 Apr 2020 WO
2020186198 Sep 2020 WO
2021198226 Oct 2021 WO
2022072727 Apr 2022 WO
2022081904 Apr 2022 WO
2022115479 Jun 2022 WO
2022119853 Jun 2022 WO
2022119856 Jun 2022 WO
2022221703 Oct 2022 WO
2022221714 Oct 2022 WO
2023059512 Apr 2023 WO
2023076268 May 2023 WO
2023081220 May 2023 WO
2023081223 May 2023 WO
2023091424 May 2023 WO
2023167866 Sep 2023 WO
2023177718 Sep 2023 WO
2024044277 Feb 2024 WO
Non-Patent Literature Citations (68)
Entry
EP 20866520.8 filed Apr. 5, 2022 Extended European Search Report dated Aug. 22, 2023.
PCT/US2022/025097 filed Apr. 15, 2021 International Preliminary Report on Patentability dated Oct. 26, 2023.
PCT/US2023/030970 filed Aug. 23, 2023 International Search Report and Written Opinion dated Oct. 30, 2023.
U.S. Appl. No. 17/468,318, filed Sep. 7, 2021 Advisory Action dated Nov. 6, 2023.
U.S. Appl. No. 17/468,318, filed Sep. 7, 2021 Final Office Action dated Sep. 8, 2023.
U.S. Appl. No. 17/471,015, filed Sep. 9, 2021 Final Office Action dated Oct. 12, 2023.
U.S. Appl. No. 17/534,099, filed Nov. 23, 2021 Final Office Action dated Sep. 29, 2023.
U.S. Appl. No. 17/538,911, filed Nov. 30, 2021 Advisory Action dated Nov. 22, 2023.
U.S. Appl. No. 17/538,911, filed Nov. 30, 2021 Final Office Action dated Sep. 13, 2023.
U.S. Appl. No. 17/722,151, filed Apr. 15, 2022 Final Office Action dated Nov. 6, 2023.
U.S. Appl. No. 17/722,151, filed Apr. 15, 2022 Non-Final Office Action dated Sep. 7, 2023.
U.S. Appl. No. 17/894,460, filed Aug. 24, 2022 Non-Final Office Action dated Nov. 6, 2023.
U.S. Appl. No. 17/468,318, filed Sep. 7, 2021 Notice of Allowance dated Jan. 18, 2024.
U.S. Appl. No. 17/471,015, filed Sep. 9, 2021 Advisory Action dated Feb. 2, 2024.
U.S. Appl. No. 17/534,099, filed Nov. 23, 2021 Advisory Action dated Dec. 8, 2023.
U.S. Appl. No. 17/538,943, filed Nov. 30, 2021 Non-Final Office Action dated Jan. 30, 2024.
U.S. Appl. No. 17/684,180, filed Mar. 1, 2022 Final Office Action dated Jan. 18, 2024.
U.S. 17/722,111, filed Apr. 15, 2022 Non-Final Office Action dated Dec. 22, 2023.
U.S. Appl. No. 17/722,151, filed Apr. 15, 2022 Advisory Action dated Jan. 2, 2024.
U.S. Appl. No. 17/894,460, filed Aug. 24, 2022 Final Office Action dated Jan. 31, 2024.
Lu Zhenyu et al “Recent advances in 5 robot-assisted echography combining perception control and cognition.” Cognitive Computation and Systems the Institution of Engineering and Technology, Michael Faraday House, Six Hills Way, Stevenage Herts. SG1 2AY UK vol. 2 No. 3 Sep. 2, 2020 (Sep. 2, 2020).
Pagoulatos, N. et al. “New spatial localizer based on fiber optics with applications in 3D ultrasound imaging” Proceeding of Spie, vol. 3976 (Apr. 18, 2000; Apr. 18, 2000).
PCT/US2021/049294 filed Sep. 7, 2021 International Search Report and Written Opinion dated Dec. 8, 2021.
PCT/US2021/049712 filed Sep. 9, 2021 International Search Report and Written Opinion dated Dec. 14, 2021.
PCT/US2021/060622 filed Nov. 23, 2021 International Search Report and Written Opinion dated Mar. 3, 2022.
PCT/US2021/061267 filed Nov. 30, 2021 International Search Report and Written Opinion dated Mar. 9, 2022.
PCT/US2021/061276 filed Nov. 30, 2021 International Search Report and Written Opinion dated Mar. 9, 2022.
PCT/US2022/025082 filed Apr. 15, 2022 International Search Report and Written Opinion dated Jul. 11, 2022.
PCT/US2022/025097 filed Apr. 15, 2022 International Search Report and Written Opinion dated Jul. 8, 2022.
PCT/US2022/048716 filed Nov. 2, 2022 International Search Report and Written Opinion dated Feb. 24, 2023.
PCT/US2022/048722 filed Nov. 2, 2022 International Search Report and Written Opinion dated Feb. 24, 2023.
PCT/US2022/049983 filed Nov. 15, 2022 International Search Report and Written Opinion dated Mar. 29, 2023.
PCT/US2022047727 filed Oct. 25, 2022 International Search Report and Written Opinion dated Jan. 25, 2023.
PCT/US2023/014143 filed Feb. 28, 2023 International Search Report and Written Opinion dated Jun. 12, 2023.
PCT/US2023/015266 filed Mar. 15, 2023 International Search Report and Written Opinion dated May 25, 2023.
Saxena Ashish et al Thermographic venous blood flow characterization with external cooling stimulation Infrared Physics and Technology Elsevier Science GB vol. 90 Feb. 9, 2018 Feb. 9, 2018 pp. 8-19 XP085378852.
Sebastian Vogt: “Real-Time Augmented Reality for Image-Guided Interventions”, Oct. 5, 2009, XPO55354720, Retrieved from the Internet: URL: https://opus4.kobv.de/opus4-fau/frontdoor/deliver/index/docld/1235/file/SebastianVogtDissertation.pdf.
U.S. Appl. No. 15/650,474, filed Jul. 14, 2017 Final Office Action dated Jun. 2, 2020.
U.S. Appl. No. 15/650,474, filed Jul. 14, 2017 Non-Final Office Action dated Dec. 16, 2019.
U.S. Appl. No. 15/650,474, filed Jul. 14, 2017 Notice of Allowance dated Dec. 11, 2020.
U.S. Appl. No. 15/650,474, filed Jul. 14, 2017 Notice of Allowance dated Mar. 1, 2021.
U.S. Appl. No. 17/020,476, filed Sep. 14, 2020 Advisory Action dated Aug. 19, 2022.
U.S. Appl. No. 17/020,476, filed Sep. 14, 2020 Final Office Action dated Jan. 5, 2023.
U.S. Appl. No. 17/020,476, filed Sep. 14, 2020 Final Office Action dated Jun. 9, 2022.
U.S. Appl. No. 17/020,476, filed Sep. 14, 2020 Non-Final Office Action dated Feb. 9, 2022.
U.S. Appl. No. 17/020,476, filed Sep. 14, 2020 Non-Final Office Action dated Sep. 23, 2022.
U.S. Appl. No. 17/020,476, filed Sep. 14, 2020 Notice of Allowance dated Apr. 28, 2022.
U.S. Appl. No. 17/468,318, filed Sep. 7, 2021 Non-Final Office Action dated Apr. 12, 2023.
U.S. Appl. No. 17/471,015, filed Sep. 9, 2021 Non-Final Office Action dated Aug. 16, 2022.
U.S. Appl. No. 17/471,015, filed Sep. 9, 2021 Non-Final Office Action dated Mar. 30, 2023.
U.S. Appl. No. 17/534,099, filed Nov. 23, 2021 Non-Final Office Action dated Mar. 31, 2023.
U.S. Appl. No. 17/538,911, filed Nov. 30, 2021 Non-Final Office Action dated Mar. 2, 2023.
U.S. Appl. No. 17/684,180, filed Mar. 1, 2022 Non-Final Office Action dated Jul. 28, 2023.
U.S. Appl. No. 17/684,180, filed Mar. 1, 2022 Restriction Requirement dated May 19, 2023.
William F Garrett et al: “Real-time incremental visualization of dynamic ultrasound volumes using parallel BSP trees”, Visualization '96. Proceedings, IEEE, NE, Oct. 27, 1996, pp. 235-ff, XPO58399771, ISBN: 978-0-89791-864-0 abstract, figures 1-7, pp. 236-240.
M. Ikhsan, K. K. Tan, AS. Putra, C. F. Kong, et al., “Automatic identification of blood vessel cross-section for central venous catheter placement using a cascading classifier,” 39th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC).pp. 1489-1492 (Year: 2017).
U.S. Appl. No. 17/471,015, filed Sep. 9, 2021 Non-Final Office Action dated Mar. 28, 2024.
U.S. Appl. No. 17/534,099, filed Nov. 23, 2021 Non-Final Office Action dated Mar. 14, 2024.
U.S. Appl. No. 17/538,911, filed Nov. 30, 2021 Notice of Allowance dated Mar. 14, 2024.
U.S. Appl. No. 17/684,180, filed Mar. 1, 2022 Advisory Action dated Apr. 4, 2024.
U.S. Appl. No. 17/684,180, filed Mar. 1, 2022 Non-Final Office Action dated May 8, 2024.
U.S. Appl. No. 17/722,151, filed Apr. 15, 2022 Non-Final Office Action dated Mar. 25, 2024.
U.S. Appl. No. 17/894,460, filed Aug. 24, 2022 Advisory Action dated Apr. 4, 2024.
U.S. Appl. No. 17/979,564, filed Nov. 2, 2022 Non-Final Office Action dated Jun. 5, 2024.
U.S. Appl. No. 17/538,943, filed Nov. 30, 2021 Notice of Allowance dated Aug. 14, 2024.
U.S. Appl. No. 17/722,111 filed Apr. 15, 2022 Final Office Action dated Jul. 12, 2024.
U.S. Appl. No. 17/957,562, filed Sep. 30, 2022 Non-Final Office Action dated Jun. 20, 2024.
U.S. Appl. No. 17/979,601, filed Nov. 2, 2022 Non-Final Office Action dated Aug. 20, 2024.
Related Publications (1)
Number Date Country
20230397900 A1 Dec 2023 US
Provisional Applications (1)
Number Date Country
62903545 Sep 2019 US
Continuations (1)
Number Date Country
Parent 17020476 Sep 2020 US
Child 18238281 US