The present invention is related to an automatic zeroing system and electronic level adjustment of pressure transducer applied to vital signs monitors, deployed in hospitals or in other applications where patient monitoring is required.
As is known to those skilled in the art, the monitoring of some vital signs is made invasively in order to check and control the hemodynamic condition of patients admitted either to Intensive Care Unit (ICU) or when they were undergone to high complexity surgeries. Such control includes, but is not limited to, continuous and real time monitoring of patient's intravascular pressures, being also possible the monitoring of internal pressure in heart chambers and principal veins and arteries, such as atriums, ventricles, pulmonary artery, vena cava, and aortic artery.
To deploy the monitoring of intravascular pressure in conventional fashion several components are required to compose the check and control system.
The current monitors consist of a mainframe or console, where CPU, display and user interface are contained, still containing dedicated circuits related to each parameter to be monitored in addition to integrate the connectors and cables required for connection to the respective sensors.
As it is noted from the
Procedures required in deployment of patient invasive pressure monitoring include artery or vein puncture, and the suited catheter insertion, what should be done by a physician; circuit installation of pressure transducer, and the circuit “priming”, its mounting in the support and connection to the monitor; monitor zeroing, and transducer leveling with patient's medium axillary line, what is usually done by nursing.
In monitor zeroing of the prior art, a circuit requiring pressure transducer zeroing before initiating the patient's monitoring is used. When the pressure transducer is zeroed, it is exposed to atmospheric pressure, and a command is triggered in the monitor to inform that the pressure being measured is the atmospheric pressure. This procedure is required since general pressure transducers are usually “Wheatstone” bridge type, as shown in
The most of analogic to digital converters available in market, responsible for the conversion of analogical value of voltage in number to be processed by the microprocessor for calculating the pressure, only accepts positive voltage values, and, to solve this problem, the most of circuits used by those monitors uses a tool known as “virtual ground”, changing the reference of ground circuit to a positive values, usually +Vcc/2, equal to voltage at pressure sensor output in condition of zero pressure; however, due to pressure sensor characteristics and components used in the circuit, it is difficult to exactly ensure what voltage is equivalent to “virtual ground”.
With the aim of overcoming this problem, the zeroing system of pressure transducer was created according to the present invention. It is worth to emphasize that although the zeroing procedure of transducer is considered required and normal for the most users, in fact, it is a big inconvenient since in addition to being crucial its execution before initiating the monitoring, it should be repeated at least every 8 hours, due to the occurrence of a phenomenon known as “zero drift” or zero deviation, common to the most pressure sensors; moreover, this procedure should be only executed after the “warm-up time” of sensor, because if it is executed before that time, it has no utility due to the deviation occurring after the mentioned time interval.
The features of the prior art mentioned above represent big troubles to patients, else in urgency procedures, such as transportation procedures, because the pressure monitoring should be initiated as soon as possible in those situations, and every lost second of time is crucial for maintaining the patient safety. Other key factor is that the invasive and vascular access systems are increasingly become closed systems to avoid patient contamination due to exposure to environment air, however, during the zeroing, it is required to open the system and expose the transducer to atmospheric pressure, and it is usually executed by opening a three-way stopcock to environment air, therefore exposing the patient to contamination; in addition, the leaking of saline solution by the three-way stopcock connector is common, which may affect the pressure transducer connector, leading to its malfunctioning.
Other key concern related to the pressure monitoring is the transducer leveling against the patient medium axillary line, which is required because, since the circuit connecting the pressure transducer to catheter is full with saline solution, and since it is desired to measure the patient pressure against heart, if there is a level difference between the three-way stopcock of transducer and the patient heart, there will be pressure reading error equal to the level difference in units of cmH2O and, insofar the pressure is measured in mmHg, for every positive centimeter of level difference, there will be an error of approximately 0.7 mmHg, obligating the transducer be mounted in the height of patient medium axillary line. This requirement imposes that the transducer is also leveled every time the patient change his/her position for avoiding reading errors.
Thus, in the light of previously mentioned major problems, the object of the present invention is to provide a zeroing system and electronic level adjustment of pressure transducer applied to vital signs monitor, aiming to overcome such problems, and also other consequent ones not mentioned herein.
The present invention consists of a circuit able to monitor a patient pressure, comprising the automatic zeroing and electronic level adjustment of pressure transducer in relation to patient, achieving the crucial features to best address its purposes.
Automatic zeroing system and electronic level adjustment of pressure transducer in relation to patient, according to the present invention, will be best understood from the attached illustrative figures, which represents in a schematic and non-limitative way of its scope:
Thus, the present invention provides the automatic zeroing and electronic level adjustment of pressure transducer in relation to patient, in order to provide the assemble with no requirement of running the pressure sensor zeroing, either in initiation as well as every 8 hours, and to connect the pressure transducer to the monitor and initiating the pressure monitoring is the only requirement.
In block diagram of
+Out=(((+Sig)−(−Sig))×gain)+Vcc/2
where:
If value of +Vcc/2 fluctuate, the output voltage will also fluctuate, even if the pressure is the same, and, therefore, the zeroing every 8 hours is required, and constitutes the trouble of pressure monitors of the prior art.
In automatic zeroing provided by the present invention, the solution for avoiding the reference fluctuating trouble (+Vcc/2) consists of removing the reference from the pressure calculation, what should be done with circuit of
Out1=((+Sig)−(−Sig))×gain+Vcc/2
Out2=((−Sig)−(+Sig))×gain+Vcc/2
where:
Applying these voltages to analogic to digital converter inputs, the following values are achieved:
ValueCH1=value(((+Sig)−(−Sig))×gain)+value(Vcc/2)
ValueCH2=value(((−Sig)−(+Sig))×gain)+value(Vcc/2)
where:
As can be seen from the block diagram of
Pressure=(ValueCH1−ValueCH2)×Scaleadjustment
where:
Therefore, using software suitable for calculating the equations above, a circuit able to measure pressures both positive and negative can be achieved, without requiring to run the zeroing, which results in great advantages, such as, e.g., the prompt start of monitoring, just by connecting the pressure transducer to monitor for initiating it, dispensing the requirement of waiting the “warm-up time”, for measurements effect, disregarding the voltage fluctuations of virtual ground; the no requirement for opening the system to expose the transducer to atmospheric pressure which eliminates the contamination risk and damage to electrical connections due to serum leakage during the zeroing; circuit immune from noises due to the fact that both amplification as well as pressure calculation are performed in a differential way.
The electronic level adjustment of transducer in relation to patient may be performed by deploying the following equation in software:
Pressure=(ValueCH1−ValueCH2)×Scaleadjustment+Leveladjustment
where:
This value is positive when the transducer is higher than patient, and negative when the transducer is lower than patient, and the level difference value should be measured by the user and informed to the monitor through its interface, and, therefore, the transducer may be positioned anywhere, with no requirement that it stays in support close to patient; further, if patient change from position, or in case of transportation, it is enough to inform the height difference between transducer and patient at the monitor, and the level difference will be automatically corrected. Other observed advantage is the possibility for measuring the patient pressure against other points of body, besides the heart.
The skilled in the art will understand that the features shown herein are not limited to monitoring of parameters disclosed herein as example, but also to other ones no mentioned herein.
Number | Date | Country | Kind |
---|---|---|---|
102016022714-3 | Sep 2016 | BR | national |
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/BR2017/050293 | 9/29/2017 | WO | 00 |