The subject matter of the present disclosure is related to the content of U.S. Pat. No. 8,096,342 issued Jan. 17, 2012, the entirety of which is incorporated herein by reference.
The present application is directed to an automatically actuated lock or latch system used in connection with sliding or telescoping door panels that permits multiple door panels both to slide relative to each other in typical operating fashion and swing or pivot in combination increasing the doorway opening capability. While a primary end use for embodiments of the present application are patient room doorways in hospitals, including intensive care unit rooms, aspects of the present disclosure may be used in many other end use applications. In one embodiment, the system utilizes interacting magnets to couple and decouple door latching assemblies.
Sliding or telescoping door systems have many applications. When the individual panels of a door system or door package are in a fully retracted position, the panels are typically aligned in an adjacent and parallel orientation at a position adjacent to either the left or right door jamb and the doorway is deemed open for normal ingress and egress, although the panels continue to block a portion of the doorway. When the individual panels are in a fully extended position, the panels extend across the doorway, marginally overlapping along adjacent ends, and the doorway is closed. In some situations, including but not limited to hospital environments and, more particularly, intensive care units, occasionally the need arises to increase the size of the doorway opening and to do so in as quick and efficient manner as possible and to do so in a manner that reduces the potential spread of germs.
U.S. Pat. No. 8,096,342 discloses a door package system that eliminates a floor-based track system for sliding and telescoping door panel packages minimizing the collection of bacteria and other types of debris and thereby providing a cleaner environment. The door package system is also capable of full breakout meaning, when the individual door panels are retracted, the door panels may pivot or swing in unison about the ends adjacent the door jamb to further enlarge the opening of the doorway. An enlarged opening permits greater access to the room, facilitates ingress and egress of patient beds, other large equipment and/or hospital staff. However, this system also involves manual actuation of a sliding door lock to decouple the door panels from the overhead sliding track and from each other to allow the panels to pivot or swing open. More specifically, lock rod 512 extending to the bottom of the door panel must be manually removed from hole 514 in the swing arm 210 to permit the swing arm 210 to separate. A companion lock rod, not shown in U.S. Pat. No. 8,096,342, typically extending vertically to the top of the door panel also would need to be repositioned to decouple the door panels from the top portion of the door frame including the overhead sliding mechanism. The manual actuation of these latch mechanisms increases the risk of spreading germs, requires personnel to know where the manual latch mechanisms are located and how to operate them, and increases the time to move the door package into a full breakout position.
According to aspects of the present disclosure, a door lock system is disclosed for use with door packages having sliding or telescoping door panels. The door lock system may include one or both of a lower latch assembly and an upper latch assembly. The lower and upper latch assemblies are magnetically actuated such that the latch assemblies automatically unlock or decouple when the door panels are in a fully retracted position and automatically lock or engage or couple when the door panels are at least partially extended from a fully retracted position. With an automated actuation system, a person handling the door panels may move the panels from a fully retracted position to a fully broken open position without having to manually unlock or disconnect any locking mechanism, thereby saving time and potentially saving lives. Eliminating the manual actuation of a latching system also reduces the potential for spreading germs. In the fully broken open position, the door panels are essentially perpendicular to the plane of the doorway opening. In the case of a hospital room the additional opening space enhances access and the ability to move patient beds and equipment in and out of the room quickly and efficiently. Automatic decoupling of any latch mechanism saves time and, by eliminating a manual coupling, eliminates a location where germs may be spread.
A two-panel door panel assembly where one of the panels slides and the other remains stationary is sometimes referred to as a single-slide package, and a door panel assembly comprising three or more panels where one panel remains stationary and the other panels slide is sometimes referred to as a telescoping package. The present application relates to both single slide and telescoping door packages, as well as variations of these, including bi-part door packages. The door panels can be made of glass to be transparent or translucent, or may be made of any other suitable material, including metal, composites, plastic, wood and/or combinations of these materials, and need not be translucent or transparent. The door panels may also be of various sizes in height, width and thickness.
A door package also typically includes a frame, including a top portion and two side portions. The side portions attach to the left and right door jambs and may be optional. When the panels are in a fully retracted position the panels are adjacent to a first side portion or first door jamb and the doorway is considered open. When the panels are in a fully extended position, the panel that extends the farthest is adjacent to the opposite side portion or door jamb and the doorway is considered closed. The door panel that extends the farthest from the retracted position may also include a door handle and a latching mechanism that secures the door panel to the side portion of the frame or to the door jamb. Depending upon the number of door panels and the type of door package, at least one track is positioned in the top portion of the frame for at least one door panel to slide back and forth across the opening of the doorway, such as in the case of a single-slide package. Multiple tracks may be included in a telescoping package and a bi-part package. A trolley or carriage interconnects each sliding panel to the track positioned in the top portion of the frame.
According to aspects of the present disclosure, an automatically actuated upper latch assembly may include a pivoting latch arm that moves between a first position and a second position, wherein in one position the latch arm interacts with a catch member and in the other position the latch arm is retracted and cannot interact with the catch member. In one embodiment, the catch member is part of a carriage and the latch arm is associated with a door panel. When the latch member is in the extended position, the interaction between the latch member and the catch member maintains alignment of the door panel and the carriage, allowing the door panel and carriage to slide relative to a track in the top frame of the door package, and prevents the door panel from pivoting relative to the carriage and out of the plane of the doorway. The upper latch assembly may be positioned adjacent to or along the upper edge of a first door panel and the catch member may be positioned at any location on or in association with the carriage that allows the latch member to interact with the catch member. The positions of the latch member and catch member may be reversed. When the latch member is in a retracted position it does not interface or interact with the catch member. As a result, the panel can pivot relative to the carriage and out of the plane of the doorway into a fully broken out position.
According to aspects of the present disclosure, in one embodiment, the upper latch assembly further includes a first magnet associated with the latch member and a second magnet disposed in an adjacent door panel. The first and second magnets have associated magnetic characteristics including strength and flux pattern. The flux pattern includes the size, shape and orientation of the magnetic field of the magnet. When the adjacent door panels are in a fully retracted position, the first and second magnets will be positioned sufficiently near or proximate each other that the interaction of the magnetic fields of the two magnets causes the latch arm to move from the first position to the second position. Conversely, when the first and second magnets are not sufficiently proximate to each other, i.e., when one door panel slides away from the adjacent door panel, the interaction of the respective magnetic fields is lost or weakened such that the latch arm returns to its first position. The latch arm may be weighted in a manner that causes the latch arm to change positions once the strength of the interacting magnetic fields is reduced below a threshold value. Alternatively, a biasing member may be included to influence the return of the latch arm to its first position. Any type of biasing member known to those of skill in the art could be used for this purpose and each such biasing member is deemed within the scope of the present disclosure.
According to aspects of the present disclosure, an automatically actuated lower latch assembly may also be part of the door lock system. The lower latch assembly may include a pivoting lock arm that moves between a first position and a second position, wherein in one position the latch arm securely engages a lock post and in the other position the lock arm is decoupled from the lock post. In one embodiment, the lock arm is positioned on a fixed plate located at the bottom of a first door panel and the lock post is positioned on a swing arm that pivots relative to the fixed plate. A guide post is also positioned on the swing arm and engages a track or guide channel in the bottom of a second door panel adjacent to the first panel. When the lock member engages the lock post, the swing arm is fixed in its position relative to the fixed plate and the guide post maintains the position of the second door panel a predetermined distance from the first panel. As a result, the second panel may slide relative to the first panel in the absence of a floor mounted track. When the lock member disengages or decouples from the lock post, the swing arm can pivot relative to the fixed plate. This, in turn, allows the two panels to separate from each other when moved into a fully broken open position and also accommodates a door handle affixed to the second panel, if present. It should be appreciated that the fixed plate and lock arm alternatively could be positioned opposite from that described above, i.e., in the second door panel, and the guide post and second magnet could be positioned in the first door panel.
According to aspects of the present disclosure, the lower latch assembly further includes a first magnet associated with the lock arm and a second magnet disposed in the adjacent second door panel. The first and second magnets of the lower latch assembly also have associated magnetic characteristics. When the adjacent door panels are in a fully retracted position, the first and second magnets will be positioned sufficiently near or proximate each other that the interaction of the magnetic fields of the two magnets causes the lock arm to move from the first position to the second position. Conversely, when the first and second magnets are not sufficiently proximate to each other, i.e., when one door panel slides away from the adjacent door panel, the interaction of the respective magnetic fields is lost or weakened such that the lock arm returns to its first position. The lock arm may be weighted in a manner that causes it to change positions once the strength of the interacting magnetic fields is reduced below a threshold value. Alternatively, a biasing member may be included to influence the return of the lock arm to its first position. Any type of biasing member known to those of skill in the art could be used for this purpose and is deemed within the scope of the present disclosure.
Environmental factors can influence the operation the magnets in both the upper and lower latch assemblies including the materials from which the door panels, latch assemblies and surrounding structures (e.g., door frame and carriage) are constructed (e.g., wood, metal, plastic, etc.), the location and orientation of the magnet within the door panels and the location of the magnet on the latch member (effecting the orientation of the flux pattern of the magnet), the shape of the magnet and the shape of the flux pattern of the magnet.
In one embodiment, a door package comprises an upper frame portion having one or more tracks, wherein each track is configured to slideably engage with a door panel; a door assembly comprising two or more door panels, wherein at least a first door panel slideably engages a first track and slides between a first extended position and a second retracted position; a first latch assembly disposed in an upper portion of the first door panel, the first latch assembly having a first catch member, a first latch member and a first magnet associated with the first latch member, the first magnet having a first magnetic field, wherein the first latch member is movable between a first position and a second position, the first latch member is biased to the first position, and wherein when the first latch member is in the first position the first catch member prevents movement of the first door panel away from the first track, and when the first latch member is in the second position the first catch member does not prevent the first door panel moving away from the first track; a second magnet disposed within an upper portion of the second door panel, the second magnet having a second magnetic field; wherein, when the first door panel is in the first extended position, the first and second magnetic fields do not overlap and the first latch member is in the first position, and when the first and second magnetic fields overlap, the first latch member moves to the second position and the first latch assembly does not prevent the first and second door panels from pivoting relative to the at least one or more tracks.
In a second embodiment, a door system comprises an upper frame, the frame including a sliding track configured to receive at least one sliding door panel; a first door panel having a first vertical end and a second vertical end and a top and a bottom, the first door panel pivotally interconnected to the upper frame proximate the first end; a second door panel having a first vertical end and a second vertical end, the second door panel slideably engaged with the sliding track and interconnected to the first door panel, the second door panel movable between a first position substantially alongside the first door panel and a second position extending beyond the first door panel, the second door panel having a top portion and a body portion and wherein the body portion is pivotally interconnected to the top portion proximate the first vertical end of the second panel; a first latch assembly comprising a catch, a latch tongue, a first magnet associated with the latch tongue and a second magnet, the latch tongue biased to a first position wherein the latch tongue engages the catch and a second position wherein the latch tongue does not engage the catch, the catch disposed in one of the top portion or the body portion of the second door panel, the latch tongue disposed in other of the top portion and body portion of the second door; and a second magnet disposed in the first door panel proximate the second end of the first door panel; wherein when the second door panel is substantially alongside the first door panel, the magnetic field of the second magnet interacts with the magnetic field of the first magnet to move the latch tongue to the second position, and when the second door panel is not substantially alongside the first door panel, the magnetic fields of the first and second magnets do not interact to cause the latch tongue to move out of the first position.
In a third embodiment, a door package comprises a door frame having a top portion, a first jamb connected to a first end of the top portion, and a second jamb connected to a second end of the top portion, the top portion including one or more tracks operable to slideably engage with at least one door panel of a door assembly; a door assembly comprising two or more door panels, wherein at least a first door panel of the two or more door panels is slideably engaged with the top portion of the door frame, and wherein a second door panel has a first vertical edge and a second vertical edge, and the first vertical edge is positioned proximate the first doorjamb; a pivot plate configured to connect to a floor at a position proximate the first door jamb and to pivotally engage with the two or more door panels and to allow the door assembly to pivot away from the plane of the door frame when the two or more door panels are in the open position; a first latch assembly associated with the first door panel, the first latch assembly having a first catch member and a first latch member, wherein the first latch member is movable between a first position and a second position, and when the first latch member is in the first position the first catch member prevents pivoting movement of the first door panel, and when the first latch member is in the second position the first catch member does not prevent pivoting movement of the first door panel; an actuator comprising a first member associated with the first latch member and a second member associated with the second door panel, wherein when the door assembly is in the open position, the location of the second member relative to the first member causes the first latch member to move to the second position and the door assembly is operable to pivot to a broken open position that is substantially perpendicular to the plane of the door frame, thereby providing an entrance opening having substantially the same width as the distance between the first and second jambs of the door frame.
The foregoing descriptions of the latch arm of the upper latch assembly and the lock arm of the lower latch assembly disclose arms that move in a pivoting or toggling motion about a pivot pin to engage a post, catch or other member complementary to the shape of the latch arm or lock arm. Those of ordinary skill in the art will appreciate upon review of the present disclosure that one alternative would be a slide window shutter style latch. In addition, other types of movement could be substituted for the pivoting motion and are deemed to be within the scope of the present disclosure. For example, rather than pivoting, the latch arm and/or the lock arm could move linearly between a first position and a second position such as a pin and hole latch. The pin may be actuated under the influence of one or more magnets, a cam or other mechanical actuator, or may be electronically controlled such as by a motor or electromagnetic device. In addition, the foregoing descriptions describe upper and lower latch assemblies in which the magnetic fields of two magnets interact. It should be appreciated that more than two magnets may be utilized as an actuator. For example, multiple magnets may be associated with the latch arm and/or lock arm and a single magnet is associated with the adjacent door panel, a single magnet may be associated with the latch arm and/or lock arm and multiple magnets may be associated with the adjacent door panel, or multiple magnets may be associated with the latch arm and/or lock arm and the adjacent door panel. Alternatively, the latch arm and/or lock arm may be constructed of ferrous material and one or more magnets positioned in the adjacent door panel such that when the magnet is sufficiently proximate or close to the latch arm and/or lock arm, the latch arm and/or lock arm is caused to move or be actuated due to the interaction of the magnet (or multiple magnets) on the ferrous material. Further still, the latch arm and/or lock arm may have one or more associated magnets that are attracted to a ferrous component in an adjacent door panel, causing the desired actuation or movement. These alternatives, as well as those that occur to persons of ordinary skill in the art upon review of this disclosure, are deemed to be within the scope of the present disclosure.
The Summary of the Invention is neither intended nor should it be construed as being representative of the full extent and scope of the present invention. Moreover, reference made herein to “the present invention” or aspects thereof should be understood to mean certain embodiments of the present invention and should not necessarily be construed as limiting all embodiments to a particular description. The present invention is set forth in various levels of detail in the Summary of the Invention as well as in the attached drawings and the Detailed Description of the Invention and no limitation as to the scope of the present invention is intended by either the inclusion or non-inclusion of elements, components, etc. in this Summary of the Invention.
The accompanying drawings, which are incorporated in and constitute a part of the specification, illustrate embodiments of the invention and together with the general description of the invention given above and the detailed description of the drawings given below, explain the principles of these inventions.
It should be understood that the drawings are not necessarily to scale. In certain instances, details that are not necessary for an understanding of the invention or that render other details difficult to perceive may have been omitted. It should be understood, of course, that the invention is not necessarily limited to the particular embodiments illustrated herein.
A second magnet 60, located in the same adjacent door panel, interacts with the magnet 48 associated with the lock arm 40 to actuate or move the lock arm 40 between a first position and a second position depending upon the proximity of the second magnet 60 relative to the lock arm magnet 48. More specifically, magnetic flux patterns associated with the magnets 48 and 60 interact when the magnets 48 and 60 are proximate each other to cause the lock arm 40 to move from the first position and the second position. In the first position, the upper portion of the lock post 54 is captured by the channel 50 of the lock arm 40. In the second position, the lock arm 40 has pivoted upwardly such that the channel 50 has disengaged the lock post 52. A biasing member (not shown) may optionally be included to bias the lock arm 40 into its first position where it engages the lock post 52. Alternatively, the lock arm 40 may be weighted in such a way as to bias it into the first position. The purpose of the lock arm 40 and lock post 52 is to prevent lateral movement of the swing arm 14 away from the fixed plate 12. Those of ordinary skill in the art, upon review of the present disclosure, will recognize that the interconnection between the fixed plate 12 and swing arm 14 may be accomplished in many other ways, all of which are deemed within the scope of the present disclosure. It will also be appreciated by those of ordinary skill in the art, upon review of the present disclosure, that the second magnet 60 may be positioned at different locations within the adjacent door panel depending upon the strength of the magnetic fields and flux patterns of the magnets 48 and 60, and also considering possible interference from the structure of the door panels and any surrounding structure.
It should also be appreciated that the second magnet 60 may comprise multiple magnets rather than a single magnet. Further still, it should be appreciated that actuation of the lower latch assembly does not require the first magnet 48 and the second magnet 60. In one alternative embodiment, one of the first magnet 48 and second magnet 60 may be replaced by a member made of ferrous material. For example, the lock arm 40 could be a first member made of a ferrous material and the magnet 60 can be a second member. Together, the first and second members comprise an embodiment of an actuator. When the magnet 60 is proximate the lock arm 40, the interaction between the magnet 60 and the ferrous lock arm 40 will cause the lock arm 40 to move from the first position to the second position. As a further alternative, a ferrous member could be substituted for the first magnet 48 and mounted on the lock arm 40. In yet a further alternative, one or more ferrous members could substitute for the second magnet 60 and a first magnet 48 remains associated with the lock arm 40.
In contrast,
It should be appreciated that the door panels as shown in the present disclosure may be of most any size in width, height and thickness. This is represented, for example, in
In
It should also be appreciated that the second magnet 86 may comprise multiple magnets rather than a single magnet. Further still, it should be appreciated that actuation of the upper latch assembly does not require the first magnet 100 and the second magnet 86. In one alternative embodiment, one of the first magnet 100 and second magnet 86 may be replaced by a member made of ferrous material. For example, the latch arm 84 could be a first member made of a ferrous material and the magnet 86 can be a second member. Together, the first and second members comprise one embodiment of an actuator. When the magnet 86 is proximate the latch arm 84, the interaction between the magnet 86 and the ferrous latch arm 84 will cause the latch arm 84 to move from the first position to the second position. As a further alternative, a ferrous member could be substituted for the first magnet 100 and mounted on the latch arm 84. In yet a further alternative, one or more ferrous members could substitute for the second magnet 86 and a first magnet 100 remains associated with the latch arm 84.
Panels P1 and P2 also include a pivot post 140 that extends between and interconnects the panel P1 to its carriage 136 and panel P2 to its carriage 136. The pivot post 140 is located proximate the trailing edge of the panels P1 and P2, for example as shown in
A lower latch assembly 10 is also illustrated in
Turning to
In
In
While various embodiments of the present invention have been described in detail, it is apparent that modifications and alterations of those embodiments will occur to those skilled in the art. It is to be expressly understood that such modifications and alterations are within the scope and spirit of the present invention, as set forth in the following claims. For example, the lower and upper latch assemblies 10 and 80 may be used with different door packages, including a two-panel bi-part door package as shown in
Other modifications or uses for the present invention will also occur to those of skill in the art after reading the present disclosure. Such modifications or uses are deemed to be within the scope of the present invention.
Number | Name | Date | Kind |
---|---|---|---|
1852608 | Grable | Apr 1932 | A |
2833346 | Preston | May 1958 | A |
2895183 | Dumbolton | Jul 1959 | A |
3348603 | Ford | Oct 1967 | A |
3750737 | Woodward | Aug 1973 | A |
3911991 | Malferrari | Oct 1975 | A |
4305227 | Georgelin | Dec 1981 | A |
4484761 | Knabel | Nov 1984 | A |
4619074 | Leung | Oct 1986 | A |
4635699 | Kauffman | Jan 1987 | A |
4648638 | McKnight | Mar 1987 | A |
5109910 | Tortorella | May 1992 | A |
5832980 | Cianciolo | Nov 1998 | A |
6039516 | Diels | Mar 2000 | A |
6161334 | Goodin | Dec 2000 | A |
6170195 | Lim | Jan 2001 | B1 |
6422287 | Wilke | Jul 2002 | B1 |
6526695 | Nguyen | Mar 2003 | B1 |
6892783 | Comeau | May 2005 | B1 |
6990771 | Pfaff | Jan 2006 | B2 |
7174944 | Clark | Feb 2007 | B1 |
7299852 | Chuang | Nov 2007 | B1 |
7451802 | Cianciolo | Nov 2008 | B2 |
7458410 | Bronner | Dec 2008 | B1 |
7533502 | Siegel | May 2009 | B2 |
7861475 | Sprague | Jan 2011 | B2 |
7950439 | Anderson | May 2011 | B2 |
7958926 | Colson | Jun 2011 | B2 |
8096342 | Scruggs | Jan 2012 | B2 |
8261500 | Sprague | Sep 2012 | B2 |
8387541 | Losito | Mar 2013 | B2 |
8800206 | Vaknin | Aug 2014 | B2 |
8806807 | Rees | Aug 2014 | B2 |
8993898 | Weibler | Mar 2015 | B2 |
9032588 | Chen | May 2015 | B2 |
9038240 | Chen | May 2015 | B2 |
9371680 | Finke | Jun 2016 | B2 |
9376849 | Lim | Jun 2016 | B2 |
9422747 | Rodan | Aug 2016 | B2 |
9532659 | Tsui | Jan 2017 | B2 |
9562371 | McCaslin | Feb 2017 | B2 |
10111538 | Weiss | Oct 2018 | B2 |
20050241781 | Johnson | Nov 2005 | A1 |
20080054648 | Baragano Gonzalez | Mar 2008 | A1 |
20090241445 | Sprague | Oct 2009 | A1 |
20090250176 | Ryan | Oct 2009 | A1 |
20100242366 | Liebscher | Sep 2010 | A1 |
20120031001 | Dorr | Feb 2012 | A1 |
20120085502 | Berry | Apr 2012 | A1 |
20120192493 | Wolfe | Aug 2012 | A1 |
20140068853 | Opwald | Mar 2014 | A1 |
20140352220 | Rees | Dec 2014 | A1 |
20150284949 | Hilliaho | Oct 2015 | A1 |
20150330126 | Ma | Nov 2015 | A1 |
20160312515 | Rodan | Oct 2016 | A1 |
20160376821 | Ward | Dec 2016 | A1 |
Number | Date | Country | |
---|---|---|---|
20180223573 A1 | Aug 2018 | US |