The subject matter disclosed herein relates to fire suppression systems and, more specifically, to automatically deployed mechanical fire suppression systems.
Fire suppression systems typically include sprinklers positioned within an area where fire protection is desired. Such sprinklers may be operated individually such as by a self-contained thermally sensitive element, or as part of a deluge system in which fire retardant fluid flows through a number of open sprinklers. Fire retardant fluids may include water or appropriate mixtures of water and one or more additives to enhance firefighting properties of a fire suppression system.
However, some sprinklers may include parts that project into the area where fire protection is desired, which may be undesirable. For example, the projecting parts may be aesthetically displeasing when present in living spaces. Accordingly, it is desirable to provide a fire suppression system with concealed sprinklers.
WO 2014/084954 describes a fire suppression sprinkler assembly having a cover plate mounted adjacent the first end of a separate sprinkler.
In one aspect, a fire suppression sprinkler assembly (10) is provided. The assembly includes a housing (20), and a sprinkler body (22) disposed at least partially within the housing and configured to supply a fluid to an area. The sprinkler body is movable between a first position where the sprinkler body is concealed within the housing and a second position where the sprinkler body extends from the housing to supply the fluid to the area heat responsive element (28) operatively associated with the sprinkler body and configured to facilitate preventing deployment of the sprinkler body from the first position to the second position until the heat responsive element senses a predetermined temperature.
In addition to one or more of the features described above, or as an alternative, further embodiments may include wherein the heat responsive element is a fluid containing heat bulb (80) exposed to the area; an undercut (76) is formed in an exposed surface (78) of the sprinkler body and wherein the heat responsive element is disposed at least partially within the undercut; a second undercut (48) is formed in an exposed surface (16) of the housing and wherein the heat responsive element is disposed at least partially within the second undercut; wherein the sprinkler body is rotatably coupled to the housing such that the sprinkler body rotates as it transitions from the first position to the second position, wherein the housing includes an inlet opening (40) configured to couple to a fluid supply line; wherein the inlet opening is configured to receive a fluid supply such that the sprinkler assembly is fluidly pressurized when the sprinkler body is in the first position; wherein the sprinkler body comprises a curved slot (54) formed in an outer surface of the sprinkler body; a steering pin (24) extending through at least a portion (46) of the housing and disposed at least partially within the curved slot; a standby plug (62) coupled to the housing and configured to extend into a main fluid channel (50) of the sprinkler body when the sprinkler body is in the first position; and/or wherein the sprinkler body comprises a main channel (50) and a plurality of nozzles (52) fluidly coupled to the main channel, wherein in the second position the sprinkler body main channel is configured to receive a fluid and supply the fluid to the nozzles for dispersion into the area.
In another aspect, a method of manufacturing a fire suppression sprinkler assembly (10) is provided. The method includes providing a housing (20), disposing a sprinkler body (22) at least partially within the housing such that the sprinkler body is movable between a first position where the sprinkler body is concealed within the housing and a second position where the sprinkler body extends from the housing to supply a fluid to an area, and operatively associating a heat responsive element (28) with the sprinkler body such that the heat responsive element facilitates preventing deployment of the sprinkler body from the first position to the second position until the heat responsive element senses a predetermined temperature.
In addition to one or more of the features described above, or as an alternative, further embodiments may include disposing the heat responsive element in an undercut (76) formed in an exposed surface (78) of the sprinkler body; disposing the heat responsive element in a second undercut (48) formed in an exposed surface (16) of the housing; rotatably coupling the sprinkler body to the housing such that the sprinkler body rotates as it transitions from the first position to the second position; providing the sprinkler body with a curved slot (54) formed in an outer surface of the sprinkler body; and/or disposing a steering pin (24) through at least a portion (46) of the housing and at least partially within the curved slot.
The subject matter which is regarded as the invention is particularly pointed out and distinctly claimed in the claims at the conclusion of the specification. The foregoing and other features, and advantages of the invention are apparent from the following detailed description taken in conjunction with the accompanying drawings in which:
In the exemplary embodiment, fire suppression sprinkler 14 generally includes a housing 20, a spindle or sprinkler body 22, a steering pin 24, a plug and strainer assembly 26, and a heat bulb assembly 28.
Housing 20 includes an upper portion 30, an intermediate portion 32, and a lower portion 34 (see also
In the exemplary embodiment, upper portion 30 defines a housing inlet end 40 and includes a cutout, thread, or recess 42 formed within inner wall 36 to define a shoulder 44 configured to support at least a portion of plug and strainer assembly 26. Intermediate portion includes a bore or opening 46 configured to receive steering pin 24 (see also
Sprinkler body 22 is rotatably disposed within housing 20 and generally includes a main channel 50, a plurality of nozzles 52, a curved slot 54, and a recess 56. Main channel 50 is formed in a top surface 58 of body 22 and extends substantially centrally therethrough along an axis ‘A’. Main channel 50 is fluidly coupled to nozzles 52 and is configured to supply a fire suppression fluid from housing inlet 40 to nozzles 52. Curved slot 54 is formed within sprinkler body 22 (see also
Steering pin 24 is disposed within and extends through housing opening 46 and sprinkler body curved slot 54. Due to fluid pressure acting on sprinkler body top surface 58, sprinkler body 22 is urged downward toward sprinkler bottom surface 16. As body 22 is urged downward, steering pin 24 acts against the inner wall of curved slot 54, which creates a twisting force or torque on body 22. In an inactive state, a structure or object is used to counteract that torque to prevent deployment of sprinkler body 22 from within housing 20 and ceiling 100. For example, in the exemplary embodiment, heat bulb assembly 28 is configured to counteract the torque of body 22, as is described herein in more detail. Alternatively, any suitable means may be used to prevent twisting of body 22 and subsequent deployment thereof.
Plug and strainer assembly 26 is disposed within housing upper portion 30 and generally includes a standby plug 62, a fluid supply regulator 64, and a fluid strainer 66. Standby plug 62 includes an O-ring or seal 68 and is configured to facilitate providing a fluid seal between standby plug 62 and sprinkler body 22 when plug 62 is at least partially disposed within main channel 50 and sprinkler 14 is in the inactive state (
Heat bulb assembly 28 is disposed within housing undercut 48 and within a body undercut 76 formed in a bottom surface 78 of sprinkler body 22, as further illustrated in
Heat bulb 80 is disposed within undercuts 48, 76 and retains sprinkler body 22 in the inactive position (
When experiencing an elevated temperature, such as in the presence of a fire for example, a fluid within heat bulb 80 expands, causing the bulb to break, and thereby allowing sprinkler body 22 to transition or deploy to an active, operating state where body 22 extends from housing 20 and ceiling 100 to expose nozzles 52 (
In operation, when sprinkler 14 is in the inactive state illustrated in
During a high temperature event (e.g., a fire), heat responsive element 80 breaks or is otherwise activated, which decreases or removes the counteracting torque. As such, the fluid pressure acting on sprinkler body top surface 58 forces sprinkler body 22 downward such that it is deployed and extends from housing 20 (
The systems and methods described herein provide a fire suppression sprinkler assembly that is concealed within a structure and mechanically deployed during a high temperature event. Accordingly, no electronics are needed to activate the sprinkler assembly, which may facilitate a shorter reaction time to the elevated temperatures. Further, the fluid supply line is pressurized in the inactive state, which prevents the need to fill the fluid supply line during activation. Moreover, the heat bulb is always exposed to the environment, so there is no need to wait until the heat bulb is heated after a deployment.
While the invention has been described in detail in connection with only a limited number of embodiments, it should be readily understood that the invention is not limited to such disclosed embodiments. Rather, the invention can be modified to incorporate any number of variations, alterations, substitutions or equivalent arrangements not heretofore described, but which are commensurate with the spirit and scope of the invention. Additionally, while various embodiments of the invention have been described, it is to be understood that aspects of the invention may include only some of the described embodiments. Accordingly, the invention is not to be seen as limited by the foregoing description, but is only limited by the scope of the appended claims.
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/FI2014/050921 | 11/27/2014 | WO | 00 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2016/083658 | 6/2/2016 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
3067823 | Kavanagh | Dec 1962 | A |
4015665 | Simons et al. | Apr 1977 | A |
4121665 | Woycheese | Oct 1978 | A |
4766961 | Macie | Aug 1988 | A |
4957169 | Polan | Sep 1990 | A |
5083616 | Polan | Jan 1992 | A |
5234059 | Eynon | Aug 1993 | A |
5494114 | Hoening et al. | Feb 1996 | A |
5609211 | Meyer et al. | Mar 1997 | A |
5967238 | Pepi et al. | Oct 1999 | A |
6308784 | Mears | Oct 2001 | B1 |
6868916 | Petersen | Mar 2005 | B2 |
8176988 | Fischer | May 2012 | B2 |
8544556 | Sundholm et al. | Oct 2013 | B2 |
20100212917 | Mehr | Aug 2010 | A1 |
20110186310 | Issartal | Aug 2011 | A1 |
20130020406 | Koiwa | Jan 2013 | A1 |
20140174768 | Bucher et al. | Jun 2014 | A1 |
Number | Date | Country |
---|---|---|
2643931 | Sep 2004 | CN |
201379932 | Jan 2010 | CN |
2013132152 | Sep 2013 | WO |
2014084954 | Jun 2014 | WO |
Entry |
---|
International Search Report and Written Opinion for application PCT/FI2014/050921, dated Nov. 9, 2015, 8pgs. |
Number | Date | Country | |
---|---|---|---|
20170259096 A1 | Sep 2017 | US |