The technology disclosed herein relates generally to showerheads, and more specifically to supporting structures, such as showerhead arms, for supporting fixed and handheld showerheads.
Many showerheads attach directly to a water supply pipe (e.g., J-pipe) provided within a shower or enclosure. Typically, showerheads may pivot about or near the connection of the head and the water supply pipe. Such pivoting allows the user to direct the water emitted from the head to a desirable or useful location. Other showerheads may be attached to a shower arm that extends from the water supply pipe. Shower arms allow the user to position a showerhead away from the support structure of the water supply pipe and/or otherwise position the showerhead as desired. However, connections directly to the water supply pipe and showerhead or a shower arm are often rather stiff, making pivoting of the showerhead difficult and require the user to manually activate a device, such as a wingnut, button, lever, or the like, to reposition the showerhead. The manual activation of a separate element may be difficult for a user especially in a wet environment, such as the shower area. Accordingly, there is a need for an improved shower arm that includes an automatically locking joint.
The information included in this Background section of the specification, including any references cited herein and any description or discussion thereof, is included for technical reference purposes only and is not to be regarded subject matter by which the scope of the invention is to be bound.
One of embodiment of the present disclosure includes a coupling for fluid pathways, such as for use in connecting showerheads to a fluid source. The coupling includes a fixed member, a movable member rotatably connected to the fixed member, and a locking assembly connected to the fixed member and received within the movable member. In response to a rotational force exceeding a predetermined threshold the locking assembly permits rotation of the movable member relative to the fixed member and when the rotational force drops below the predetermined threshold, the locking assembly prevents rotation of the movable member to the fixed member.
Another embodiment of the present disclosure includes an automatically locking joint for a shower arm. The locking joint includes a first body and a second body defining a locking cavity and movably connected to the first body. The locking joint further includes a locking assembly at least partially received within the locking cavity of the second body. The locking assembly includes a clutch slider connected to the second body and configured to rotate therewith and a clutch cap positioned adjacent to the clutch slider and fixedly connected to the first body. In this embodiment, rotation of the second body relative to the first body causes the clutch slider to selectively engage and disengage from the clutch cap.
Yet another embodiment of the present disclosure includes an automatically locking coupling. The coupling includes a first member, a second member, and a locking assembly. The locking assembly is connected to the second member and selectively permits rotation of the second member relative to the first member. The locking assembly includes a sliding member coupled to the second member and rotatable therewith and movable longitudinally relative to the first member and a cap anchored to the first member. The sliding member engages with the cap to retain the first member and the second member in fixed position relative to one another. Upon application of a rotational force to the second member, the sliding member is disengages from the cap and allows rotation of the second member relative to the first member.
This Summary is provided to introduce a selection of concepts in a simplified form that are further described below in the Detailed Description. This Summary is not intended to identify key features or essential features of the claimed subject matter, nor is it intended to be used to limit the scope of the claimed subject matter. A more extensive presentation of features, details, utilities, and advantages of the present invention as defined in the claims is provided in the following written description of various embodiments of the invention and illustrated in the accompanying drawings.
This disclosure is related to an automatically locking arm joint for a showerhead arm. The locking arm joint may be used with a variety of different types of shower arms for supporting substantially any type of showerhead, including fixed or wall mounted showerheads and handheld showerheads. The locking arm joint allows a user to pivot one showerhead or showerhead arm relative to a water supply pipe, another shower arm, and/or another showerhead. The locking arm joint does not require a release mechanism, such as a button, lever, or wingnut, and thus the user can manipulate the position of the shower arm without manually activating a separate release element. This allows a user to reposition the showerhead or arm with one hand in a single motion, which is not possible with conventional coupling members.
In one embodiment, the automatically locking arm joint may include a locking assembly connected to a first joint body. The locking arm joint includes a clutch slider, a clutch cap, and a biasing element. The clutch slider includes a plurality of engagement features on its outer end and is keyed to the first joint body so that the clutch slider will rotate with the first joint body. The clutch slider is also able to move longitudinally with the joint body along a portion of a length of the first joint body. The clutch cap is fixedly connected to a second joint body, which is rotatably connected to the first joint body. As the first joint body rotates relative to the clutch cap and second joint body, the clutch cap remains stationary. The clutch cap includes a plurality of engagement features on its interior end configured to selectively mesh with the engagement features on the clutch slider. The biasing element is seated within the first joint body and biases against the bottom end of the clutch slider to force the engagement features of the clutch slider towards the interior end of the clutch cap.
In a locked position, the engagement features of the clutch cap are aligned relative to the engagement features of the clutch slider so as to mesh together. The meshing of the engagement features causes the arm joint to lock. To move the arm, the user rotates one of the first joint body or the second joint body causing one of the clutch slider or the clutch cap to rotate relative to the other. The engagement features of the clutch slider move out of meshed engagement with the engagement features of the clutch cap, which allows the first or second joint body to rotate relative to the other. In one specific example, the engagement features may be formed as facial or crown gears and, during the rotation, the gears slip relative to one another.
As the arm joint rotates, the biasing force exerted by the biasing spring is overcome allowing the disengagement of the engagement features. However, when the rotational force is removed, the biasing spring exerts a biasing force against the clutch slider to move it laterally towards the clutch cap. Thus, as soon as the first or second joint body moves a predetermined amount, the biasing element causes the engagement features of the clutch slider to move back into a meshed engagement with the engagement features of the clutch cap, albeit at a different angular alignment, to again lock the arm joint. In this embodiment, the locking joint can be automatically locked and unlocked by rotating the first joint body and/or the second joint body.
In some embodiments, the locking joint assembly may also include a dampening element that exerts a frictional force to increase the drag between the first joint body and the second joint body to slow rotation of the first joint body. This feature helps to prevent a user from inadvertently rotating the first joint body farther than desired. The dampening element may also be configured to provide a desired haptic feel and/or response to the user, i.e., feedback, to the user, regarding the position of the first joint body. For example, the dampening element may be configured to provide a smooth and controlled feeling to the user during movement.
Turning to the figures, a coupling of the present disclosure will be discussed in more detail.
The first and second joint bodies 102, 104 may be somewhat similar and each may include one or more passageways for fluidly connecting a showerhead or other shower accessory (e.g., hose or tube) to one or more components. The terms first and second are arbitrary and used to distinguish the two bodies relative to each other. These terms may be used interchangeably depending on which body rotates to the other.
The second joint body 104 forms a fixed member of the coupling and may be a generally elliptically shaped hollow tube and may include a fixed connector 114 extending generally normal from a sidewall thereof. The fixed connector 114 is configured to connect to a J-pipe, showerhead, bracket, or the like, and may include a desired connection mechanism, such as threading, press-fit features, or the like, that allows the fixed connector 114 to be connected to the desired component. The location, position, orientation, and connection features of the fixed connector 114 may be varied as desired, based on the type of showerhead, water supply pipe, and/or other factors.
The first joint body 102 defines a movable member and may be somewhat similar to the second joint body 104 and may be generally an elliptically shaped, substantially hollow member. The first joint body 102 may include a showerhead connector 108 extending normally from a sidewall of the first joint body 102 with a plurality of securing features 110 (e.g., threads) configured to connect to various components, such as a showerhead, handheld showerhead bracket, or the like. An interior surface of the showerhead connector 108 may also be formed with keying features 112, for example, for assisting in the orientation of an attachment component. However, the first joint body 102 may also include a plurality of internal features that are used to house and activate various components of the locking assembly 120, as will be discussed in more detail below.
The locking bracket 190 defines a generally cylindrically shaped protrusion that extends within the passageway formed by the outer wall 188. In particular, the locking bracket 190 extends inwards from an interior surface of the outer wall 188 and generally longitudinally concentric with and along a length of the first joint body 102. The first joint body 102 may also include a cylindrical shaft duct 186 connected to the locking bracket 190 and may be oriented generally concentrically within the locking bracket 190. The locking bracket 190 and the shaft duct 186 are thus nested within the first joint body 102. The shaft duct 186 extends past a back end wall 189 of the locking bracket 190 and terminates before a top end or seat 202 of the locking bracket 190.
With reference to
A slide track 208 for the locking assembly 120 is defined on an interior surface of the sidewalls of the locking bracket 190. The slide track 208 may include one or ribs 196 and one or more grooves 198. The ribs 196 and grooves 198 both extend longitudinally along a portion of a length of the first joint body 102. Additionally, the slide track 208 may include one or more engagement ribs 200 that extend longer than the ribs 196 and grooves 198. As shown in
With reference to
With reference to
With reference again to
The locking assembly 120 for the joint assembly 100 will now be discussed in more detail. With reference to
With continued reference to
With continued reference to
The keyed end 156 of the pivot shaft 132 may be shaped to define a keying structure. For example, in one embodiment, the keyed end 156 may include a plurality of flat outer surfaces, whereas the rest of the body 150 of the shaft 132 may be generally circular.
The pivot shaft 132 may also include a fastening aperture 158 defined on a terminal end of the body on the keyed end 156 of the shaft 132. The fastening aperture 158 may extend through the keyed end 156 and into a portion of the circular shaped body 150 (see
With reference to
With continued reference to
Assembly of the joint assembly 100 will now be discussed in further detail. With reference to
Once the pivot shaft 132 is secured to the core 134, the first joint body 102 may be connected to the pivot shaft 132 and to the second joint body 104. In some embodiments, a trim ring 106 may be positioned between the outer face of the second end 210 of the first joint body 102 and the outer face of the first end of the second joint body 104. The trim ring 106 may provide an aesthetically pleasing feature for the joint assembly 100 and may also assist in connecting the two joint bodies 102, 104 together. After the trim ring 106 has been positioned, the shaft duct 186 may be placed around the pivot shaft 132 with the body 150 being received within the shaft duct 186 and the keyed end 156 extending longitudinally outwards past a terminal end of the shaft duct 186 into the locking cavity 194. Optionally, one or more O-rings or other sealing members 153 may be positioned into the annular grooves 152, 154 of the pivot shaft 132 before the shaft 132 is received into the shaft duct 186.
With reference to
With reference to
With reference to
With reference again to
With reference to
Operation of the automatically locking arm joint 100 will now be discussed in more detail.
To rotate the first joint body 102 relative to the second joint body 104, the user exerts a rotational force R on the first joint body 102 sufficient to overcome the biasing force exerted by the biasing member 130, i.e., exceeding the biasing threshold of the biasing member 130. As the first joint body 102 rotates due to the rotational force R, the clutch slider 128 rotates therewith due to the engagement of the ribs 136 within the grooves 198 of the slide track 208. When the clutch slider 128 rotates, the teeth 145 of the clutch slider 128 slip relative to the teeth 175 of the clutch cap 122. The clutch cap 122, which is anchored to the pivot shaft 132 by the fastener 126, does not rotate and so the slippage causes the teeth 175 of the clutch cap 122 to exert a force on the teeth 145 of the clutch slider 128. The clutch slider 128 is then forced to move longitudinally on the slide track 208 in the locking bracket 190 and moves in a first direction L1 towards the back end of the locking bracket 190.
With reference to
During the rotation of the first joint body 102, the dampener 124 introduces a drag and resists the rotational force R by virtue of its engagement with the interior wall of the first body 102 and connection to the engagement ribs 200. The dampener 124 increases the friction between the rotating clutch slider 128 and first joint body 102 and the stationary clutch cap 122. This slows down the rotation of the joint assembly 100, to allow a user to more easily choose a desired location without “overshooting” or having to readjust the position a number of times before a desired position is reached. Additionally, the dampener 124 may dampen the vibrations and noise that may be created during activation of the locking assembly 120.
In the above example, the first joint body 102 is movable relative to the second joint body 104, which remains stationary or fixed relative to the motion of the first joint body 102. However, in other embodiments, the first joint body 102 may remain fixed relative to the second joint body 104. For example, a user may apply the rotational force R to the second joint body 104, which will cause the joint core 134 and pivot shaft 132 (anchored thereto) to rotate with the second joint body 104. As the pivot shaft 132 rotates, the fastener 126 and the clutch cap 122 will rotate with the pivot shaft 132. However, the clutch slider 128, which is fixed due to the connection of the ribs 136 with the grooves 198 of the slide track 208 of the first joint body 102, will not rotate. As the rotational force R is applied, the rotation of the clutch cap 122 causes the teeth 175 to slip relative to the teeth 145 of the clutch slider 128 and forces the clutch slider 128 to move longitudinally in the first direction L1, disengaging the clutch cap 122 and the clutch slider 128.
Once the teeth 145, 175 are disengaged, the locking assembly 120 is in the unlocked position and the second joint body 104 can be rotated relative to the first joint body 102. Once the teeth 145, 175 realign, the biasing member 130 exerts a biasing force to cause the clutch cap 128 to move longitudinally in the second direction L2 and to engage or mesh with the teeth of the clutch cap 122 again, locking the arm joint 100.
As described above, the arm joint assembly 100 may be used to reposition the first joint body 102 relative to the second joint body 104 or vice versa. In each embodiment, one of the joint bodies 102, 104 remains relatively fixed or stationary while the locking assembly 120 allows the other of the joint bodies 102, 104 to rotate. Because the locking assembly 120 automatically engages into a locked position as the user rotates one of the joint bodies 102, 104, the position of the moving joint body relative to the fixed joint body can be selected by a user without having to activate a separate button, lever, or the like. Additionally, the user can simply grasp a respective one of the joint bodies 102, 104 and rotate the body 102, 104 to change its position without having to first unlock or activate the motion of the arm joint 100 by pressing a button, rotating a nut, or the like.
Conclusion
It should be noted that any of the features in the various examples and embodiments provided herein may be interchangeable and/or replaceable with any other example or embodiment. As such, the discussion of any component or element with respect to a particular example or embodiment is meant as illustrative only.
It should be noted that although the various examples discussed herein have been discussed with respect to showerheads, the devices and techniques may be applied in a variety of applications, such as, but not limited to, sink faucets, kitchen and bath accessories, lavages for debridement of wounds, car washes, lawn sprinklers, and/or toys.
All directional references (e.g., upper, lower, upward, downward, left, right, leftward, rightward, top, bottom, above, below, vertical, horizontal, clockwise, and counterclockwise) are only used for identification purposes to aid the reader's understanding of the examples of the invention, and do not create limitations, particularly as to the position, orientation, or use of the invention unless specifically set forth in the claims. Joinder references (e.g., attached, coupled, connected, joined and the like) are to be construed broadly and may include intermediate members between the connection of elements and relative movement between elements. As such, joinder references do not necessarily infer that two elements are directly connected and in fixed relation to each other.
In some instances, components are described by reference to “ends” having a particular characteristic and/or being connected with another part. However, those skilled in the art will recognize that the present invention is not limited to components which terminate immediately beyond their point of connection with other parts. Thus the term “end” should be broadly interpreted, in a manner that includes areas adjacent rearward, forward of or otherwise near the terminus of a particular element, link, component, part, member or the like. In methodologies directly or indirectly set forth herein, various steps and operations are described in one possible order of operation but those skilled in the art will recognize the steps and operation may be rearranged, replaced or eliminated without necessarily departing from the spirit and scope of the present invention. It is intended that all matter contained in the above description or shown in the accompanying drawings shall be interpreted as illustrative only and not limiting. Changes in detail or structure may be made without departing from the spirit of the invention as defined in the appended claims.
This application claims priority to U.S. provisional application No. 62/059,647 filed 3 Oct. 2014 and entitled “Automatically Locking Shower Arm Joint,” the disclosure of which is hereby incorporated by reference herein in its entirety.
Number | Name | Date | Kind |
---|---|---|---|
203094 | Wakeman | Apr 1878 | A |
428023 | Schoff | May 1890 | A |
445250 | Lawless | Jan 1891 | A |
486986 | Schinke | Nov 1892 | A |
566410 | Schinke | Aug 1896 | A |
570405 | Jerguson et al. | Oct 1896 | A |
800802 | Franquist | Oct 1905 | A |
832523 | Andersson | Oct 1906 | A |
854094 | Klein | May 1907 | A |
926929 | Dusseau | Jul 1909 | A |
1001842 | Greenfield | Aug 1911 | A |
1003037 | Crowe | Sep 1911 | A |
1018143 | Vissering | Feb 1912 | A |
1193302 | Seltner | Aug 1916 | A |
1207380 | Duffy | Dec 1916 | A |
1217254 | Winslow | Feb 1917 | A |
1218895 | Porter | Mar 1917 | A |
1255577 | Berry | Feb 1918 | A |
1260181 | Garnero | Mar 1918 | A |
1276117 | Riebe | Aug 1918 | A |
1284099 | Harris | Nov 1918 | A |
1327428 | Gregory | Jan 1920 | A |
1451800 | Agner | Apr 1923 | A |
1469528 | Owens | Oct 1923 | A |
1500921 | Bramson et al. | Jul 1924 | A |
1560789 | Johnson et al. | Nov 1925 | A |
1597477 | Panhorst | Aug 1926 | A |
1692394 | Sundh | Nov 1928 | A |
1695263 | Jacques | Dec 1928 | A |
1724147 | Russell | Aug 1929 | A |
1736160 | Jonsson | Nov 1929 | A |
1754127 | Srulowitz | Apr 1930 | A |
1758115 | Kelly | May 1930 | A |
1778658 | Baker | Oct 1930 | A |
1821274 | Plummer | Sep 1931 | A |
1906575 | Goeriz | May 1933 | A |
2011446 | Judell | Aug 1935 | A |
2024930 | Judell | Aug 1935 | A |
2044445 | Price et al. | Jun 1936 | A |
2117152 | Crosti | May 1938 | A |
2177152 | Crosti | May 1939 | A |
2196783 | Shook | Apr 1940 | A |
2197667 | Shook | Apr 1940 | A |
2268263 | Newell et al. | May 1941 | A |
2342757 | Roser | Feb 1944 | A |
D147258 | Becker | Aug 1947 | S |
D152584 | Becker | Feb 1949 | S |
2467954 | Becker | Apr 1949 | A |
2472030 | Thulin | May 1949 | A |
2546348 | Schuman | Mar 1951 | A |
2581129 | Muldoon | Jan 1952 | A |
D166073 | Dunkelberger | Mar 1952 | S |
2648762 | Dunkelberger | Aug 1953 | A |
2664271 | Arutunoff | Dec 1953 | A |
2676806 | Bachman | Apr 1954 | A |
2679575 | Haberstump | May 1954 | A |
2680358 | Zublin | Jun 1954 | A |
2721089 | Shames | Oct 1955 | A |
2759765 | Pawley | Aug 1956 | A |
2776168 | Schweda | Jan 1957 | A |
2825135 | Tilden | Mar 1958 | A |
2873999 | Webb | Feb 1959 | A |
2931672 | Merritt et al. | Apr 1960 | A |
2966311 | Davis | Dec 1960 | A |
D190295 | Becker | May 1961 | S |
D192935 | Becker | May 1962 | S |
3032357 | Shames et al. | May 1962 | A |
3034809 | Greenberg | May 1962 | A |
3064998 | Syverson | Nov 1962 | A |
3095892 | Laing et al. | Jul 1963 | A |
3103723 | Becker | Sep 1963 | A |
3111277 | Grimsley | Nov 1963 | A |
3121235 | Gellmann | Feb 1964 | A |
3143857 | Eaton | Aug 1964 | A |
3196463 | Farneth | Jul 1965 | A |
3231200 | Heald | Jan 1966 | A |
3266059 | Stelle | Aug 1966 | A |
3306634 | Groves et al. | Feb 1967 | A |
3329967 | Martinez et al. | Jul 1967 | A |
3389925 | Gottschald | Jun 1968 | A |
3393311 | Dahl | Jul 1968 | A |
3393312 | Dahl | Jul 1968 | A |
3402893 | Hindman | Sep 1968 | A |
3492029 | French et al. | Jan 1970 | A |
3546961 | Marton | Dec 1970 | A |
3556141 | Hind | Jan 1971 | A |
3565116 | Gabin | Feb 1971 | A |
3584822 | Oram | Jun 1971 | A |
3612577 | Pope | Oct 1971 | A |
3641333 | Gendron | Feb 1972 | A |
3663044 | Contreras et al. | May 1972 | A |
3669362 | Meyerhofer et al. | Jun 1972 | A |
3669470 | Deurloo | Jun 1972 | A |
3685745 | Peschcke-Koedt | Aug 1972 | A |
3731084 | Trevorrow | May 1973 | A |
3754779 | Peress | Aug 1973 | A |
3778610 | Wolf | Dec 1973 | A |
3860271 | Rodgers | Jan 1975 | A |
3861719 | Hand | Jan 1975 | A |
3869151 | Fletcher et al. | Mar 1975 | A |
3910277 | Zimmer | Oct 1975 | A |
D237708 | Grohe | Nov 1975 | S |
3929164 | Richter | Dec 1975 | A |
3931992 | Coel | Jan 1976 | A |
D240178 | Johansen | Jun 1976 | S |
D240322 | Staub | Jun 1976 | S |
3971074 | Yxfeldt | Jul 1976 | A |
4005880 | Anderson et al. | Feb 1977 | A |
4006920 | Sadler et al. | Feb 1977 | A |
4023782 | Eifer | May 1977 | A |
4045054 | Arnold | Aug 1977 | A |
D249356 | Nagy | Sep 1978 | S |
4162801 | Kresky et al. | Jul 1979 | A |
4174822 | Larsson | Nov 1979 | A |
4243253 | Rogers, Jr. | Jan 1981 | A |
4258414 | Sokol | Mar 1981 | A |
D259054 | Petersons | Apr 1981 | S |
4274400 | Baus | Jun 1981 | A |
4282612 | King | Aug 1981 | A |
D262353 | Kitson | Dec 1981 | S |
4358056 | Greenhut et al. | Nov 1982 | A |
D268442 | Darmon | Mar 1983 | S |
D268609 | Thompson | Apr 1983 | S |
4383554 | Merriman | May 1983 | A |
4396797 | Sakuragi et al. | Aug 1983 | A |
4425965 | Bayh, III et al. | Jan 1984 | A |
4465308 | Martini | Aug 1984 | A |
4479610 | Etheridge et al. | Oct 1984 | A |
4495550 | Visciano | Jan 1985 | A |
4540202 | Amphoux et al. | Sep 1985 | A |
4545081 | Nestor et al. | Oct 1985 | A |
4545535 | Knapp | Oct 1985 | A |
4553775 | Halling | Nov 1985 | A |
D281820 | Oba et al. | Dec 1985 | S |
4568216 | Mizusawa et al. | Feb 1986 | A |
4571003 | Roling et al. | Feb 1986 | A |
D283645 | Tanaka | Apr 1986 | S |
4643463 | Halling et al. | Feb 1987 | A |
4645244 | Curtis | Feb 1987 | A |
4651770 | Denham et al. | Mar 1987 | A |
4652025 | Conroy, Sr. | Mar 1987 | A |
4669757 | Bartholomew | Jun 1987 | A |
4683917 | Bartholomew | Aug 1987 | A |
4707770 | Van Duyn | Nov 1987 | A |
4717180 | Roman | Jan 1988 | A |
4722029 | Ahle et al. | Jan 1988 | A |
4733337 | Bieberstein | Mar 1988 | A |
4739801 | Kimura et al. | Apr 1988 | A |
4752975 | Tiernan | Jun 1988 | A |
4790294 | Allred, III et al. | Dec 1988 | A |
4809369 | Bowden | Mar 1989 | A |
4839599 | Fischer | Jun 1989 | A |
4842059 | Tomek | Jun 1989 | A |
D302325 | Charet et al. | Jul 1989 | S |
4850616 | Pava | Jul 1989 | A |
4856822 | Parker | Aug 1989 | A |
4863328 | Malek | Sep 1989 | A |
4865362 | Holden | Sep 1989 | A |
4871196 | Kingsford | Oct 1989 | A |
D306351 | Charet et al. | Feb 1990 | S |
4901765 | Poe | Feb 1990 | A |
4901927 | Valdivia | Feb 1990 | A |
4903178 | Englot et al. | Feb 1990 | A |
4907137 | Schladitz et al. | Mar 1990 | A |
4946202 | Perricone | Aug 1990 | A |
4951329 | Shaw | Aug 1990 | A |
4959758 | Filosa et al. | Sep 1990 | A |
4964573 | Lipski | Oct 1990 | A |
4972048 | Martin | Nov 1990 | A |
4975123 | Gray | Dec 1990 | A |
D314246 | Bache | Jan 1991 | S |
5004158 | Halem et al. | Apr 1991 | A |
5022103 | Faist | Jun 1991 | A |
5032015 | Christianson | Jul 1991 | A |
5033528 | Volcani | Jul 1991 | A |
5046764 | Kimura et al. | Sep 1991 | A |
D321062 | Bonbright | Oct 1991 | S |
D322681 | Yuen | Dec 1991 | S |
5071070 | Hardy | Dec 1991 | A |
5086878 | Swift | Feb 1992 | A |
D325769 | Haug et al. | Apr 1992 | S |
5103384 | Drohan | Apr 1992 | A |
5107406 | Sekido et al. | Apr 1992 | A |
5134251 | Martin | Jul 1992 | A |
5135173 | Cho | Aug 1992 | A |
D329504 | Yuen | Sep 1992 | S |
5143123 | Richards et al. | Sep 1992 | A |
5148556 | Bottoms, Jr. et al. | Sep 1992 | A |
5153976 | Benchaar et al. | Oct 1992 | A |
5154483 | Zeller | Oct 1992 | A |
5163752 | Copeland et al. | Nov 1992 | A |
5197767 | Kimura et al. | Mar 1993 | A |
5215338 | Kimura et al. | Jun 1993 | A |
5220697 | Birchfield | Jun 1993 | A |
D337839 | Zeller | Jul 1993 | S |
D338542 | Yuen | Aug 1993 | S |
5254809 | Martin | Oct 1993 | A |
D341220 | Eagan | Nov 1993 | S |
5263646 | McCauley | Nov 1993 | A |
5265833 | Heimann et al. | Nov 1993 | A |
5268826 | Greene | Dec 1993 | A |
5276596 | Krenzel | Jan 1994 | A |
5286071 | Storage | Feb 1994 | A |
5288110 | Allread | Feb 1994 | A |
D345811 | Van Deursen et al. | Apr 1994 | S |
5333787 | Smith et al. | Aug 1994 | A |
5333789 | Garneys | Aug 1994 | A |
5340165 | Sheppard | Aug 1994 | A |
5349987 | Shieh | Sep 1994 | A |
5356036 | Garnett | Oct 1994 | A |
5356076 | Bishop | Oct 1994 | A |
5368235 | Drozdoff et al. | Nov 1994 | A |
5369556 | Zeller | Nov 1994 | A |
5370427 | Hoelle et al. | Dec 1994 | A |
5385500 | Schmidt | Jan 1995 | A |
D356626 | Wang | Mar 1995 | S |
5398977 | Berger et al. | Mar 1995 | A |
D361399 | Carbone et al. | Aug 1995 | S |
5449206 | Lockwood | Sep 1995 | A |
D363360 | Santarsiero | Oct 1995 | S |
5468057 | Megerle et al. | Nov 1995 | A |
D364935 | deBlois | Dec 1995 | S |
D365625 | Bova | Dec 1995 | S |
D365646 | deBlois | Dec 1995 | S |
D366707 | Kaiser | Jan 1996 | S |
D366708 | Santarsiero | Jan 1996 | S |
D366709 | Szymanski | Jan 1996 | S |
D366710 | Szymanski | Jan 1996 | S |
5481765 | Wang | Jan 1996 | A |
D366948 | Carbone | Feb 1996 | S |
D367333 | Swyst | Feb 1996 | S |
D367934 | Carbone | Mar 1996 | S |
D368146 | Carbone | Mar 1996 | S |
D368317 | Swyst | Mar 1996 | S |
D368539 | Carbone et al. | Apr 1996 | S |
D368540 | Santarsiero | Apr 1996 | S |
D368541 | Kaiser et al. | Apr 1996 | S |
D368542 | deBlois et al. | Apr 1996 | S |
D369873 | deBlois et al. | May 1996 | S |
D369874 | Santarsiero | May 1996 | S |
D369875 | Carbone | May 1996 | S |
D370277 | Kaiser | May 1996 | S |
D370278 | Nolan | May 1996 | S |
D370279 | deBlois | May 1996 | S |
D370280 | Kaiser | May 1996 | S |
D370281 | Johnstone et al. | May 1996 | S |
5517392 | Rousso et al. | May 1996 | A |
5521803 | Eckert et al. | May 1996 | A |
D370542 | Santarsiero | Jun 1996 | S |
D370735 | DeBlois | Jun 1996 | S |
D370987 | Santarsiero | Jun 1996 | S |
D370988 | Santarsiero | Jun 1996 | S |
D371448 | Santarsiero | Jul 1996 | S |
D371618 | Nolan | Jul 1996 | S |
D371619 | Szymanski | Jul 1996 | S |
D371856 | Carbone | Jul 1996 | S |
D372318 | Szymanski | Jul 1996 | S |
D372319 | Carbone | Jul 1996 | S |
5531625 | Zhong | Jul 1996 | A |
D372548 | Carbone | Aug 1996 | S |
D372998 | Carbone | Aug 1996 | S |
D373210 | Santarsiero | Aug 1996 | S |
D373434 | Nolan | Sep 1996 | S |
D373435 | Nolan | Sep 1996 | S |
D373645 | Johnstone et al. | Sep 1996 | S |
D373646 | Szymanski et al. | Sep 1996 | S |
D373647 | Kaiser | Sep 1996 | S |
D373648 | Kaiser | Sep 1996 | S |
D373649 | Carbone | Sep 1996 | S |
D373651 | Szymanski | Sep 1996 | S |
D373652 | Kaiser | Sep 1996 | S |
D374297 | Kaiser | Oct 1996 | S |
D374298 | Swyst | Oct 1996 | S |
D374299 | Carbone | Oct 1996 | S |
D374493 | Szymanski | Oct 1996 | S |
D374494 | Santarsiero | Oct 1996 | S |
D374732 | Kaiser | Oct 1996 | S |
D374733 | Santarsiero | Oct 1996 | S |
5567115 | Carbone | Oct 1996 | A |
D376217 | Kaiser | Dec 1996 | S |
D376860 | Santarsiero | Dec 1996 | S |
D376861 | Johnstone et al. | Dec 1996 | S |
D376862 | Carbone | Dec 1996 | S |
5624074 | Parisi | Apr 1997 | A |
D379404 | Spelts | May 1997 | S |
D381405 | Waidele et al. | Jul 1997 | S |
5660079 | Friedrich | Aug 1997 | A |
5667146 | Pimentel et al. | Sep 1997 | A |
5692252 | Zwezdaryk | Dec 1997 | A |
5749602 | Delaney et al. | May 1998 | A |
5778939 | Hok-Yin | Jul 1998 | A |
D398370 | Purdy | Sep 1998 | S |
D401680 | Tiernan | Nov 1998 | S |
5865378 | Hollinshead et al. | Feb 1999 | A |
D406636 | Male et al. | Mar 1999 | S |
D413157 | Ratzlaff | Aug 1999 | S |
5997047 | Pimentel et al. | Dec 1999 | A |
6042155 | Lockwood | Mar 2000 | A |
6095801 | Spiewak | Aug 2000 | A |
D431072 | Milrud et al. | Sep 2000 | S |
6164569 | Hollinshead et al. | Dec 2000 | A |
6164570 | Smeltzer | Dec 2000 | A |
6199729 | Drzymkowski | Mar 2001 | B1 |
D440641 | Hollinshead et al. | Apr 2001 | S |
6227456 | Colman | May 2001 | B1 |
6276004 | Bertrand et al. | Aug 2001 | B1 |
6336764 | Liu | Jan 2002 | B1 |
6382531 | Tracy | May 2002 | B1 |
6425149 | Wang | Jul 2002 | B1 |
6450425 | Chen | Sep 2002 | B1 |
6464265 | Mikol | Oct 2002 | B1 |
D465553 | Singtoroj | Nov 2002 | S |
6511001 | Huang | Jan 2003 | B1 |
D470219 | Schweitzer | Feb 2003 | S |
6537455 | Farley | Mar 2003 | B2 |
6626210 | Luettgen et al. | Sep 2003 | B2 |
6629651 | Male et al. | Oct 2003 | B1 |
6643862 | Aitken | Nov 2003 | B2 |
6659117 | Gilmore | Dec 2003 | B2 |
6701953 | Agosta | Mar 2004 | B2 |
D496446 | Zwezdaryk | Sep 2004 | S |
6840353 | Arisaka | Jan 2005 | B2 |
D502761 | Zieger et al. | Mar 2005 | S |
6863227 | Wollenberg et al. | Mar 2005 | B2 |
6926212 | Glass | Aug 2005 | B1 |
D517669 | Zieger et al. | Mar 2006 | S |
D520105 | Kosasih | May 2006 | S |
7066411 | Male et al. | Jun 2006 | B2 |
7097122 | Farley | Aug 2006 | B1 |
D529151 | Macan | Sep 2006 | S |
D531259 | Hseih | Oct 2006 | S |
7147172 | Darling, III et al. | Dec 2006 | B2 |
7201331 | Bertrand | Apr 2007 | B2 |
7299510 | Tsai | Nov 2007 | B2 |
D557770 | Hoernig | Dec 2007 | S |
D559953 | Bickler et al. | Jan 2008 | S |
7533906 | Luettgen et al. | May 2009 | B2 |
D618766 | Whitaker et al. | Jun 2010 | S |
D627866 | Hanna | Nov 2010 | S |
7905429 | Somerfield et al. | Mar 2011 | B2 |
8024822 | Macan et al. | Sep 2011 | B2 |
D647603 | Andrew | Oct 2011 | S |
8070076 | Erickson et al. | Dec 2011 | B2 |
D668320 | Weihreter | Oct 2012 | S |
20020033424 | Rivera et al. | Mar 2002 | A1 |
20020070292 | Hazenfield | Jun 2002 | A1 |
20040163169 | Kollmann et al. | Aug 2004 | A1 |
20050283904 | Macan et al. | Dec 2005 | A1 |
20060151632 | Larsen | Jul 2006 | A1 |
20060208111 | Tracy et al. | Sep 2006 | A1 |
20060231648 | Male et al. | Oct 2006 | A1 |
20070251590 | Weinstein | Nov 2007 | A1 |
20070272312 | Chang | Nov 2007 | A1 |
20080083844 | Leber et al. | Apr 2008 | A1 |
20080121293 | Leber et al. | May 2008 | A1 |
20080271240 | Leber et al. | Nov 2008 | A1 |
20100065657 | Lee | Mar 2010 | A1 |
20110139900 | Somerfield et al. | Jun 2011 | A1 |
20140360614 | Leber et al. | Dec 2014 | A1 |
Number | Date | Country |
---|---|---|
687527 | Nov 1996 | AU |
659510 | Mar 1963 | CA |
2150317 | Nov 1995 | CA |
2538810 | Sep 2006 | CA |
352813 | May 1922 | DE |
854100 | Oct 1952 | DE |
2360534 | Jun 1974 | DE |
2806093 | Aug 1979 | DE |
3246327 | Dec 1982 | DE |
4034695 | May 1991 | DE |
4142198 | Apr 1993 | DE |
19608085 | Mar 1998 | DE |
0167063 | Jun 1985 | EP |
0683354 | Nov 1995 | EP |
0687851 | Dec 1995 | EP |
0695907 | Feb 1996 | EP |
0721082 | Jul 1996 | EP |
538538 | Jun 1922 | FR |
1098836 | Aug 1955 | FR |
2596492 | Oct 1987 | FR |
2695452 | Mar 1994 | FR |
10086 | May 1893 | GB |
3314 | Dec 1914 | GB |
129812 | Jul 1919 | GB |
204600 | Oct 1923 | GB |
634483 | Mar 1950 | GB |
971866 | Oct 1964 | GB |
2156932 | Oct 1985 | GB |
2298595 | Sep 1996 | GB |
327400 | Jul 1936 | IT |
350359 | Jul 1937 | IT |
S63-181459 | Nov 1988 | JP |
H2-78660 | Jun 1990 | JP |
8902957 | Jun 1991 | NL |
WO9312894 | Jul 1993 | WO |
WO9325839 | Dec 1993 | WO |
WO9623999 | Aug 1996 | WO |
WO9830336 | Jul 1998 | WO |
Entry |
---|
“Showermaster 2” advertisement, Showermaster, P.O. Box 5311, Coeur d'Alene, ID 83814, as early as Jan. 1997. |
Number | Date | Country | |
---|---|---|---|
20160097476 A1 | Apr 2016 | US |
Number | Date | Country | |
---|---|---|---|
62059647 | Oct 2014 | US |