1. Field of the Invention
The present invention relates to hinge assemblies and, particularly, to an automatically opening hinge assembly for foldable devices such as portable telephones, portable computers, and so on.
2. Discussion of the Related Art
At present, perhaps the most popular mobile phone in the marketplace is the foldable mobile phone, which generally includes a cover section and a body section. The cover section and the body section are rotatably interconnected through a hinge assembly, for switching the telephone between an in-use position and a closed position.
Typically, the hinge assembly employs a cam and a follower, which allows the cover section to fold outwards from the body section and then hold in an open position. The hinge assembly typically includes a cam having a concave portion, a follower having a convex portion, a shaft having a fixing end, and a spring. The cam and the follower are placed around the shaft. The spring resists the follower allowing the concave portion to tightly contact with the convex portion. The cam, the follower, the shaft and the spring are received in a housing. A cover rotates about a main body of the mobile phone by overcoming the force of the spring, thus allowing the concave portion to rotate about the convex portion. However, a user must open the mobile phone using both hands. This makes the mobile phone inconvenient to use in situations when the user has only one hand free.
Therefore, a new hinge mechanism is desired in order to overcome the above-described problems.
Many aspects of the hinge assembly can be better understood with reference to the following drawings. The components in the drawings are not necessarily to scale, the emphasis instead being placed upon clearly illustrating the principles of the present hinge assembly. Moreover, in the drawings, like reference numerals designate corresponding parts throughout the several views.
Referring to
The securing structure 10 includes a washer 101 and an anti-friction element 103. The washer 101 and the anti-friction element 103 are substantially disk-shaped. The washer 101 defines a square hole 1011 in a central area thereof. The anti-friction element 103 defines a circular/round hole 1031 in a central area thereof.
The sleeve 11 is substantially a hollow cylinder having an outer wall 111 and an inner wall 112. Two troughs 114 are defined in an inner wall 112 of the sleeve 11 along a longitudinal direction thereof. Two sleeve blocks 113 formed on the outer wall 111 correspond to the troughs 114. The sleeve blocks 113 engage the cover section 52 of the mobile phone 50 so that the sleeve 11 and the cover section 52 cannot rotate relative to each other. The sleeve 11 includes an open end and a partially-closed end. The partially-closed end of the sleeve 11 defines a through-hole 115 at a central area thereof.
The first spring 12 is a cylindrical helical spring (i.e., occupying a cylindrical volume). The first spring 12 is sized to be received in the sleeve 11.
The shaft 13 sequentially includes a shaft portion 132, a screw portion 131 and an end portion 133. The end portion 133 is sized to extend through the through-hole 115. The end portion 133 has a retaining end 134 at a distal end thereof. The washer 101 and the anti-frictional element 103 of securing structure 10 may be placed around the retaining end 134. A sectional configuration of the retaining end 134 corresponds with the square hole 1011, in which, the retaining end 134 may be locked into the square hole 1011 of the washer 101. The screw portion 131 is located between the end portion 133 and the shaft portion 132. The screw portion 131 is substantially cylindrical, and partially defines a thread 1311 thereon. The thread 1311 is a raised helical or spiral rib/ridge defined on the surface of shaft 13. A diameter of the shaft portion 132 is smaller than that of the first spring 12. The shaft portion 132 is cylindrical in shape, and has a flat surface at a free end thereof forming a flat portion 135.
Referring to
Referring to
The second spring 16 is substantially cylindrical and sized to be placed around the shaft 13.
The control member 17 has a disk-shaped body portion 171. Two opposite wedge walls 172 extend from a peripheral wall of the body 171, thereby forming two opposite second reverse slots 173 at one side thereof. Each wedge wall 172 may be received in a corresponding first revere slot 159 of the follower 15, and each extending wall 154 of the follower 15 may be received in a corresponding second reverse slot 173. A central hole 174 is defined in the body portion 171 so that the shaft portion 132 may pass through the central hole 174 of the control member 17.
Referring to
The return spring 19 is substantially cylindrical. One end of the return spring 19 resists the step 1852 of the connecting portion 185, and the other end resists the pressing element 20.
The pressing element 20 includes a disk-shaped body 201, and two opposite arms 203 extending from the body 201 along a longitudinal direction thereof. Two guide portions 204 extend from the body 201 along an axial direction thereof. Each guide portion 204 includes a clasp 2041 at a distal end thereof. The clasps 2041 may clamp to the rib 187 of the fixing seat 18 to prevent the pressing element 20 from separating from the fixing seat 18. The arms 203 and the guide portions 204 cooperatively form a cylindrical receiving space 202. The receiving space 202 is sized for receiving the return spring 19 therein.
In assembly, referring to
The follower 15 passes over the shaft portion 132 of the shaft 13, with the latching cam surface 152 of the follower 15 engaging with the cam surface 146 of the cam 14. The second spring 16 is placed around the shaft 13, with one end of the second spring 16 resisting with one end of the follower 15. Then, the central hole 174 of the control member 17 is placed around the shaft portion 132. The wedge walls 172 of the control member 17 engage in the first reverse slots 159 of the follower 15 between the extending walls 154, and the extending walls 154 of the follower 15 are then inserted into the second reverse slots 173 of the control member 17 to lock the control member 17 with the follower 15.
The fixing seat 18 is then placed around the control member 17. The flat portion 135 of the shaft portion 132 of the shaft 13 extends out from the deformed hole 1851 of the fixing seat 18. The arcuate blocks 184 of the fixing seat 18 engage in the second reverse slots 173 of the control member 17, thereby limiting the rotation of the control member 17 relative to the fixing seat 18.
The return spring 19 is received in the receiving space 202. Then, the pressing element 20 with the return spring 19 is disposed in the fixing seat 18. The return spring 19 resists the step 1852 of the fixing seat 18. At the same time, the guide portions 204 are pressed and inserted into the guide cutouts 189. Accordingly, the arms 203 are received in the inserted hole 186 of the fixing seat 18. After the guide portions 204 are released, the clasps 2041 clamp the ribs 187 of the fixing seat 18. The return spring 19 has a predetermined elastic force. Accordingly, the above elements are fixed to the shaft 13.
The first spring 12 is placed around the screw portion 131 of the shaft 13. The above-mentioned assembled elements are received into the sleeve 11 along one end of the assembled elements with the first spring 12. The latching blocks 144 of the cam 14 engage in the trough 114 of the sleeve 11, and the retaining end 134 extends out from the partially-closed end of the sleeve 11. Finally, the anti-friction element 103 is placed around the retaining end 134 of the shaft 13, and the washer 101 is tightly locked on the retaining end 134. The hinge assembly 100 is thus completely assembled.
To incorporate the self-contained component into a mobile phone during manufacturing, the sleeve 11 engages in a cavity (not shown) of the cover section 52 of the mobile phone 50, and the fixing seat 18 connects with the body section 54 of the mobile phone 50. When the cover section 52 of the mobile phone 50 is in a fully open position, the peaks 1461 of the cam 14 resist the valleys 1524 of the follower 15. The protrusion 142 engages in the thread 1311. The first spring 12 exerts a predetermined pressure on the cam 14 so that the cam 14 should rotate relative to the outer screw thread 1320 of the shaft 13. However, the follower 15 and the control member 17 prevent the cam 14 from rotating.
In use, when the cover section 52 of the mobile phone 50 is being closed, the cover section 52 can be closed by hand by pushing the sleeve 11 to rotate relative to the body section 54. The sleeve 11 further brings the cam 14 to rotate along the thread 1311 of the shaft 13. Due to the control member 17 being locked into the arcuate blocks 184 of the fixing seat 18, the control member 17 cannot rotate relative to the fixing seat 18. Accordingly, the follower 14 does not rotate relative to the fixing seat 18. When the cam 14 rotates, the protrusion 142 of the cam 14 break away from the thread 1311 of the shaft. The cam surface 146 of the cam 14 slides and rotates relative to the latching cam surface of the follower 15. The cam 15 is then pushed towards the button 20. When the peaks 1461 of the cam 14 slide to passes over the peaks 1521 of the follower 15 and stay on the buffering surface 1523, the first spring 12 accumulates elastic potential energy. At that time, the cover section 52 becomes closed relative to the body section 54 of the mobile phone 50. The protrusion 142 is spaced from the thread 1311 of the shaft 13.
When a user wants to open the cover section 52 of the mobile phone 50 automatically, he/she may only hold the mobile phone 50 and press the pressing element 20 by one hand. In this process, the pressing element 20 moves along an axial direction of the shaft 13, the arms 204 of the pressing element 20 then push the control member 17 to move away from the pressing element 20 in the axial direction of the shaft 13. The control member 17 moves axially, compressing the second spring 16 towards the cam 14. When the wedge walls 172 of the control member 17 break away from the limitation of the arcuate blocks 184 of the fixing seat 18, the cam 14 then rotates relative to the shaft 13 along the thread 1311 under elastic energy of the first spring 12. After the pressing element 20 is released, the return spring 19 allows the pressing element 20 return to an original state.
When the cam 14 rotates, the peaks 1461 of the cam surface 146 slide downward from the buffering surface 1523 of the follower 15 until the peaks 1461 contact with the valleys 1524 of the follower 15. The gap between the protrusion 142 and the thread 1311 is eliminated. Accordingly, the protrusion 142 is engaged with the thread 1311 of the shaft 13. When the cam 14 rotates and slides relative to the shaft 13, the follower 15, the second spring 16 and the control member 17 together move and rotate. Furthermore, the sleeve 11 rotates with the cam 14 so that the cover section 52 of the mobile phone 50 is opened. Whilst the sleeve 11 rotates relative to the shaft 13, the anti-friction element 103 directly contacts the washer 101. The anti-friction element 102 may greatly decrease the abrasion between the sleeve 11 and the washer 101.
The cam 14 stops rotating when the cover section 52 of the mobile phone 50 is completely opened. The elastic potential energy of the second spring 16 then pushes the control member 17 to move toward the pressing element 20. Accordingly, the wedge walls 172 of the control member 17 are locked between the blocks 184 of the fixing seat 18. The hinge assembly 100 may be opened manually. The principles of the manual opening process are basically the same as the manual closing process.
In an alternative embodiment, the first spring 12, the second spring 16 and the return spring 19 may be replaced by other elastic elements such as an elastic sponge.
Understandably, the thread number of the shaft may be more than two. Accordingly, the number of the protrusion in the cam corresponds to the thread number. If the thread of the screw portion is a single thread, the protrusion of the cam may be two. The axial and radial distance between the protrusions, beneficially, corresponds to the thread distance of the shaft so that the two protrusions may engage in the thread of the shaft.
As described above, the present embodiment provides a hinge assembly 100 for use with various portable devices, beyond the mobile phone illustrated, and/or with other devices needing a hinge assembly that selectably facilitates the achievement of fully open and fully closed positions.
It is believed that the present embodiments and their advantages will be understood from the foregoing description, and it will be apparent that various changes may be made thereto without departing from the spirit and scope of the invention or sacrificing all of its material advantages, the examples hereinbefore described merely being preferred or exemplary embodiments of the invention.
Number | Date | Country | Kind |
---|---|---|---|
2007 1 0203549 | Dec 2007 | CN | national |
Number | Name | Date | Kind |
---|---|---|---|
6952860 | Kawamoto | Oct 2005 | B2 |
7100239 | Duan et al. | Sep 2006 | B2 |
7117562 | Zuo et al. | Oct 2006 | B2 |
7117563 | Chen et al. | Oct 2006 | B2 |
7124472 | Duan et al. | Oct 2006 | B2 |
7353568 | Duan et al. | Apr 2008 | B2 |
7383616 | Duan et al. | Jun 2008 | B2 |
20040181909 | Kawamoto | Sep 2004 | A1 |
20050172454 | Chen et al. | Aug 2005 | A1 |
20050188504 | Duan et al. | Sep 2005 | A1 |
20060096063 | Duan et al. | May 2006 | A1 |
20060174443 | Takagi et al. | Aug 2006 | A1 |
20060200945 | Lu et al. | Sep 2006 | A1 |
20060242795 | Duan et al. | Nov 2006 | A1 |
20060242796 | Duan et al. | Nov 2006 | A1 |
20060254026 | Duan et al. | Nov 2006 | A1 |
20080201900 | Kubota | Aug 2008 | A1 |
Number | Date | Country | |
---|---|---|---|
20090165250 A1 | Jul 2009 | US |