This application relates to the general field of computer aided design of monolithic three-dimensional integrated circuits.
Use of computer programs for automating the design of electronic circuits, and particularly for assisting in the design of semiconductor integrated circuits, has been known for at least forty years. This field of Computer-Aided Design (CAD) encompasses the spectrum of engineering activities from early capture of the design idea, through its various refinements (both automatic and manual), modeling, simulations, down to its mapping to physical objects, partitioning and floor-planning, placement and routing, rule-checking and mask-making. The first part of these activities occurs in the logical domain, before mapping to physical objects (macros and cells) occurs, and is known as logic design. The part of the process after mapping the logical design to physical objects is known as physical design.
The rapid shrinking of manufacturable transistor dimensions on semiconductor wafers gave rise to a corresponding explosion of the design sizes that CAD tools need to handle. Modern designs routinely exceed tens and hundreds of millions of transistors and require massive and elaborate CAD tools to handle them.
A typical physical design process is illustrated in
Traditionally CAD tools operate with the understanding that the underlying transistors are arranged in a single planar layer. In recent years some tools have expanded to consider transistors arranged on multiple stacked layers, where the layers may be connected through relatively large Through-Silicon Vias (TSV) such as described in Xie, Y., Cong, J., Sapatnekar, S. “Three-Dimensional Integrated Circuit Design,” Springer, 2010. The focus of this expansion, however, is benefitting from the three-dimensional stacking while minimizing the use of the very large and expensive TSVs.
The current invention extends CAD tool functionality to operate with a monolithic three-dimensional (3D) manufacturing process. The key difference between a monolithic 3D process and a stacked-layer process where the layers are connected using TSVs is in the size of the inter-layer connection. TSVs are very large relative to advanced lithography feature size, and TSV scaling is not related to lithography but rather to the ability to etch and fill holes at very extreme aspect ratio, and the ability to handle extremely thin wafers. Today best etching and filling aspect ratio is roughly 10:1 and consequently the thinnest wafer that could be properly handled are roughly 50 micron thick with TSV diameter of roughly 5 micron. In contrast inter-layer connections of a monolithic 3D process scales with semiconductor scaling and is already below 100 nm, and will keep on scaling down as the industry continues with dimensional scaling.
Monolithic 3D technology: With this approach, multiple layers of transistors and wires can be monolithically constructed. Some monolithic 3D and 3DIC approaches are described in U.S. Pat. Nos. 8,273,610, 8,298,875, 8,362,482, 8,378,715, 8,379,458, 8,450,804, 8,557,632, 8,574,929, 8,581,349, 8,642,416, 8,669,778, 8,674,470, 8,687,399, 8,742,476, 8,803,206, 8,836,073, 8,902,663, 8,994,404, 9,023,688, 9,029,173, 9,030,858, 9,117,749, 9,142,553, 9,219,005, 9,385,058, 9,509,313, 9,640,531, 9,691,760, 9,711,407, 9,721,927, 9,871,034, 9,953,870, 9,953,994, 10,014,292, 10,014,318; and pending U.S. patent application Publications and application Ser. Nos. 15/173,686, 62/562,457, 62/645,794, 62/651,722; 62/681,249, 62/713,345; and PCT Applications: PCT/US2010/052093, PCT/US2011/042071, PCT/US2016/52726, PCT/US2017/052359, PCT/US2018/016759. The entire contents of the foregoing patents, publications, and applications are incorporated herein by reference.
The implication of the abovementioned difference is that optimization processes of CAD tools for TSV-based processes should focus on minimizing the number of TSVs. In contrast, in monolithic 3D the inter-layer connectivity is much denser and CAD tools should focus on leveraging that large inter-layer connectivity to optimally place objects on different layers based on the layers' potentially disparate characteristics, and to increase the physical proximity of objects in 3D space as compared to a 2D plane. The current invention describes embodiments such as optimizations of CAD tools for monolithic 3D technology.
In one aspect, a method of designing a 3D Integrated Circuit, the method comprising: performing placement using a 2D placer, performing placement for at least a first strata and a second strata, and then performing routing and completing the physical design of said 3D Integrated Circuit.
In another aspect, a method of designing a 3D Integrated Circuit, the method comprising: performing partitioning to at least a first strata and a second strata, then performing placement using a 2D placer, and then performing routing and completing the physical design of said 3D Integrated Circuit.
In another aspect, a method of designing a 3D Integrated Circuit, the method comprising: performing placement using a 2D placer, splitting the placed cells into at least a first group and a second group of similar total area, using said 2D placer to place said second group on a second strata, using said 2D placer to place said first group on a first strata, and then performing routing and completing the physical design of said 3D Integrated Circuit.
In another aspect, a method of designing a 3D Integrated Circuit, the method comprising: performing partitioning to at least a first strata and a second strata; then performing a first placement of said first strata using a 2D placer executed by a computer, wherein said 2D placer is a Computer Aided Design (CAD) tool currently used in the industry for two-dimensional devices; and performing a second placement of said second strata based on said first placement, wherein said partitioning comprises a partition between logic and memory, and wherein said logic comprises at least one decoder representation for said memory.
In another aspect, a method of designing a 3D Integrated Circuit, the method comprising: performing partitioning to at least a first strata and a second strata; then performing a first placement of said first strata using a 2D placer executed by a computer, wherein said 2D placer is a Computer Aided Design (CAD) tool currently used in the industry for two-dimensional devices; and performing a second placement of said second strata based on said first placement, wherein said partitioning comprises a partition between logic and memory, and wherein said logic comprises at least one decoder for said memory.
In another aspect, a method of designing a 3D Integrated Circuit, the method comprising: performing partitioning to at least a first strata and a second strata; then performing a first placement of said first strata using a 2D placer executed by a computer, wherein said 2D placer is a Computer Aided Design (CAD) tool currently used in the industry for two-dimensional devices; and performing a second placement of said second strata based on said first placement, wherein said partitioning comprises splitting a plurality of cells into a high performance group to said first strata and a low performance group to said second strata.
In another aspect, a method of designing a 3D Integrated Circuit, the method comprising: performing partitioning to at least a logic strata comprising logic and a memory strata comprising memory; then performing a first placement of said logic strata using a 2D placer executed by a computer, wherein said 2D placer is a Computer Aided Design (CAD) tool for two-dimensional devices; wherein said 3D Integrated Circuit comprises through silicon vias for connection between said logic strata and said memory strata; and performing a second placement of said memory strata based on said first placement, wherein said logic comprises at least one decoder representation for said memory, wherein said at least one decoder representation has a virtual size with width of contacts for said through silicon vias, and wherein said performing a first placement comprises using said decoder representation instead of an actual memory decoder.
In another aspect, a method of designing a 3D Integrated Circuit, the method comprising: performing partitioning to at least a logic strata comprising logic and a memory strata comprising memory; then performing a first placement of said logic strata using a 2D placer executed by a computer, wherein said 2D placer is a Computer Aided Design (CAD) tool for two-dimensional devices; and performing a second placement of said memory strata based on said first placement, wherein said logic comprises at least one decoder for said memory, and wherein said memory comprises at least a first memory and a second memory, wherein said first memory comprises first memory decoders and said second memory comprises second memory decoders, wherein said 2D placer is set so said second memory decoders are not placed within a rectangle defined by the placement of said first memory decoders.
In another aspect, a method of designing a 3D Integrated Circuit, the method comprising: performing partitioning to at least a logic strata comprising logic and a memory strata comprising memory; then performing a first placement of said logic strata using a 2D placer executed by a computer, wherein said 2D placer is a Computer Aided Design (CAD) tool for two-dimensional devices; and performing a second placement of said memory strata based on said first placement, wherein said partitioning comprises a step of assigning at least one memory block to said logic strata for improved balancing of said logic strata area and said memory strata area.
Various embodiments of the invention will be understood and appreciated more fully from the following detailed description, taken in conjunction with the drawings in which:
Embodiments of the present invention are described herein with reference to the drawing figures. Persons of ordinary skill in the art will appreciate that the description and figures illustrate rather than limit the invention and that in general the figures are not drawn to scale for clarity of presentation. Such skilled persons will also realize that many more embodiments are possible by applying the inventive principles contained herein and that such embodiments fall within the scope of the invention which is not to be limited except by the appended claims.
There are multiple known ways to partition a design, but the essential approach described in Metis (Karypis, G., Kumar, V., “METIS—Unstructured Graph Partitioning and Sparse Matrix Ordering,” 1995) subsumes most of them in modern CAD tools. It may consist of three phases: graph coarsening through clustering, followed by partitioning of the smaller resulting graph, followed by an uncoarsening phase. Most partitioners will include additional design constraints, such as timing slack of nets, in the optimization costs during the coarsening and uncoarsening phases, in addition to minimizing the number of nets crossing the partition boundary (the cut). The current invention suggests including disparate technology characteristics as an additional constraint to optimize.
More specifically, different active logic layers in a stacked monolithic 3D IC can differ in their lithography feature sizes, the more aggressive ones being faster but more expensive to manufacture. In a 3D IC device every stratum may be fabricated in its own process with, for example, its own set of design rules, unlike 2D IC wherein all transistors exist on the same stratum and will be processed together with the same process. Accordingly the 3D IC partitioning of device circuits to individual strata could be based on which types of circuits would be efficient to process together. Such decision could be based on a criterion, for example, such as the type of lithography requirements. In a modern IC the cost of lithography dominates the end-device cost. Consequently it may be effective to maximize the number of strata that utilize lower cost lithography processes and minimizing the number of strata that might require the most aggressive and expensive lithography, for example, containing high speed circuits. Yet other strata may include repetitive memory circuits that might use a spacer-based lithography scheme which may lower costs even further. The slower logic of a device circuit might be partitioned to use older process node circuits with much lower cost lithography. Yet other strata could be dedicated to I/O circuits that might also use lower cost lithography. Strata can differ in their number of metal routing layers, the larger number of such offering more connectivity and hence denser area utilization, albeit at a higher manufacturing cost. Strata can differ in the power dissipation and leakage of the transistors, for example, lower power consumption portions may be grouped on a strata and/or slower speed of operation portions, and/or lower leakage portions. Such differences can be translated into a “cost” of the cut under optimization and create new dimensions of optimization of monolithic 3D structures. Strata can differ in the process design rules utilized to form the devices and circuits in each stratum, for example, a first stratum may have a set of design rules that is one or more process nodes more advanced than a second stratum set of design rules.
An additional embodiment of the invention is the partitioning of memories into different memory layers in a stacked monolithic 3D IC. For example, the layers can differ by their suitability to types of memory they can implement, such as volatile versus non-volatile, or dynamic versus static. In this case the affinity of the memory type used in the design to the available memory layer characteristics may be translated into either a hard affinity attribute (if the object must be placed on a given layer type) or into a “cost” attribute and may be included in the partitioner. Hard affinity attributes may force the partitioner to cluster only objects with compatible attributes.
An additional embodiment of the invention is partitioning between various analog functions, including input and output functions, and the rest of the logic and memory of the design, where the analog elements may be mapped onto one or more potentially disparate analog layers in a stacked monolithic 3D IC. The analog layers can vary in their lithography processes, or in their semiconductor material bases such as Silicon, Germanium, or composite III-V semiconductors, for example, Gallium-Arsenide or Indium-Phosphide. Similar to the case of memory described above, the affinity of the analog object type used in the design to the available analog layer characteristics may be translated either into a hard affinity or into a “cost” function and may be included in the partitioner. As before, hard affinity attributes may force the partitioner to cluster only objects with compatible attributes.
Another criterion for partition could be the thickness of the silicon layer. For high speed logic it might be desirable to use fully depleted transistors, such as, for example, FinFet or planar fully depleted SOI transistors, that may require a relatively thin silicon layer, for example, as thin as 25 nm, 10 nm or 5 nm. I/O (Input/Output), Analog, high voltage circuits such as charge pumps, and RF (Radio Frequency) circuits might benefit from a thicker semiconductor material base in that strata, for example mono-crystalline silicon of for example 50 nm, 100 nm or 200 nm, and accordingly it might be preferred to have those circuits on different strata than the fully depleted devices and circuits.
An additional embodiment of the invention is partitioning a design that includes a feasible combination of objects described previously. More specifically, partitioning of designs may include a combination of logic elements, memory elements, and analog elements, into multiple layers of disparate characteristics of each kind.
An additional embodiment of the invention includes partitioning of a memory block into its core bit-cell array that is targeted for a memory layer, and some or all of its decoding and driving logic that is targeted for a logic layer. It is the rich vertical connectivity available in a monolithic 3D process that allows such partitioning to be considered in the partitioner.
An additional embodiment of the invention includes partitioning of a design into elements that span a single layer versus those that span multiple adjacent vertical layers. Similar to other specialized partitions, this characteristic can be translated into a “cost” or it can be used to drive a hard partitioning in the partitioner. Further, if both multi-layer and single-layer variants of an object are present, the partitioner can select the best-fitting variant based on global design considerations together with the overall system cost.
The partitioned design will typically be followed by a floor planning stage and afterward, the design will typically move to a placement step, wherein the objects within each floor-planned block will be assigned a location within that block's boundary.
Of unique concern during the 3D floor-planning and the placement stage may be instances where the core bit-cell array of a memory block has been separated from its decoding and driving logic, the former being placed on a memory layer and the latter on a logic layer. In particular, the floor-planning of these blocks should allow for sufficient direct vertical overlap so that a symmetrical arrangement of vertical connections between the two parts of the memory block can be guaranteed. Further, the placer may use this overlap to place both parts of the memory block centered one above the other to achieve maximal symmetry. This is to facilitate relative uniformity of delays that such interconnect typically requires.
Persons of ordinary skill in the art will appreciate that the illustrations in
An additional advantage of partitioning based on manufacturing consideration is that with proper set up and support utilities, existing 2D Place & Route design tools could be used for 3D IC design as outlined in the following sections.
If the area required for the bit-cells is far smaller than the area for logic and the memory decoders, then a similar algorithm can offer the choice to selectively add memory decoders, or other compatible, typically analog, circuitry to the memory stratum to better balance the utilization of the two strata. In such case, however, both strata will need to support both memory and logic and the advantage of tuning the memory stratum process and design to memory only will be mostly negated.
Typically the memory used in designs is assumed to be a static RAM (“SRAM”) with each SRAM cell made of more than one, for example six, or even eight, transistors. In a 3D IC environment it could be feasible to use a one transistor memory cell instead. For example, the use of a DRAM cell might be possible with the memory stratum optimized accordingly to DRAM process and design, and may use either a stack capacitor or a trench capacitor based memory cell, typically stack capacitors if it is a top stratum or trench capacitors if it is the bottom stratum. Other types of memories could also be considered, such as, for example, Spin-Transfer Torque RAM (STT-RAM) or Zeno Semiconductor's floating body RAM with two stable states. Having a stratum dedicated to memory bit-cells makes it easier to use a special memory process flow that may be required for such stratum.
Once the allocation of structures to the bit-cells strata and the logic and memory decoder strata has been done, the next step is to place and route each strata and the connection between them.
This could be done using 2D tools in the following exemplary manner. First, the memory decoders may be introduced to the Placer as specialized L-shaped cells such that other logic, but no other memory decoder, is allowed in the empty space in the rectangle defined by its L-shape.
In the next step the 2D Placer may perform the placement on the logic stratum.
Then the bit-cell arrays may be placed in the memory stratum according to the placement of their respective memory decoders on the logic stratum.
Finally, the logic stratum may be routed, with the vertical connections between memory decoders and their bit-cell arrays occurring automatically as a part of the strata abutment.
If the utilization of memory stratum is low, non-memory circuitry may be added to that memory stratum that shares some of its characteristics. Examples of such are input and output cells (“IO”) and analog functions such as Phase Lock Loop (“PLL”).
The place and route flow could be similar to the one above. First a 2D-Placer could be used to place the logic stratum, then the bit-cell arrays may be placed on the memory stratum according to the placement of their respective memory decoders, and then a 2D-Placer could be used to place the other elements in the memory stratum. In such case the inter-strata nets are defined as virtual IOs for each stratum 2D place and route process.
The location of such inter-strata net virtual 10 point can be defined as a location as directly as possible above or below, depending on the direction of the inter-strata crossing, of the source terminal of the inter-strata net. Another possible option is for this virtual IO be defined in the proximity, above or below as necessary, of the center-of-gravity of the inter-strata net on the stratum that is placed first.
When the bit-cell area is too small, the decoders may be placed at the bit-cell strata. This could be done also to reduce the number of connections between the strata as the decoder function is to expand the address from n lines of address lines to twice 2**(n/2) lines memory select lines. A simple option is to use a similar flow as has been presented before but represent the decoders not with the actual layout size but with virtual size with width of contacts for Through Layer Vias. But keep the keep out zone for other decoders the same as before. In this way the 2D Placer can place the logic cell properly for the logic strata, and the memory strata which could include the bit-cells and the decoder would be defined according to the placed logic strata.
Another type of partition to two strata could be between high speed logic and low power logic or alternatively lower speed logic using older process node.
In both cases a 2D-Placer could be used first to place the high speed logic, and then place the other, low power or lower speed logic, stratum with a 2D Placer using the placement of the high speed stratum to drive the placement on the second stratum similar to the flow described above.
Additional advantage of the 3D IC technology is in its ease of use for a platform-based design. One or more strata could be designed, and even pre-manufactured, as a platform for multiple applications with platform's connections brought up to the top routing layer. Then, additional strata can be designed and customized for each application and placed on top of the pre-designed platform. In such process the platform strata would first be placed and routed using the 2D Placer and Router as described previously. Then the custom stratum could be placed and routed using a 2D Placer and Router with connections to the predefined contacts on the top level of the underlying platform design.
A 2D Placer could be used also for multiple strata placement of cells that are not partitioned first by some of the methods presented here. One option is to use a 2D partitioner such as Metis to partition the design into K partitions, each corresponding to one of K strata.
After loading the netlist 505 and resizing the dimensions of the cells by 0.71 in each direction 510, a 2D placement 515 is performed. A seed for the placement is picked from the center of the design and assigned to the first (red) partition 520. Based on the relative size of both partitions 530 the next cell is added to either the first (red) or the second (blue) partition. When the blue partition is smaller, between the cells that are currently placed in a close proximity to a Red Cell select the one with minimum connection to the red partition and add it to the blue partition 535. Similarly, when the red partition is smaller, between the cells that are currently placed in a close proximity to a Blue Cell select the one with minimum connection to the red partition and add it to the red partition 540. Once the process leaves no unassigned cells 525 it moves to the next step 545. Centers-of-gravity (“COG”) of all inter-strata nets are calculated based on the original 2D placement 515 and used to create virtual IOs crossing the strata boundary at that location. Library cells are restored to their original sizes and 2D placement is performed on the first stratum with the first partition. The COGs (and virtual IOs) are adjusted based on the new placement, and the second partition placed in 2D on the second stratum. Optionally the COG and virtual IOs are readjusted again based on the final placement of both strata, and a 2D router is run on each stratum separately 550, after which the place and route process terminates 555 and the physical design of the 3DIC may be competed.
The flow of
It will also be appreciated by persons of ordinary skill in the art that the invention is not limited to what has been particularly shown and described hereinabove. For example, drawings or illustrations may not show all device possibilities for clarity in illustration. Rather, the scope of the invention includes both combinations and sub-combinations of the various features described herein above as well as modifications and variations which would occur to such skilled persons upon reading the foregoing description. Thus the invention is to be limited only by the appended claims.
This application is a continuation-in-part application of U.S. patent application Ser. No. 14/672,202, which was filed on Mar. 29, 2015, which is a continuation application of U.S. patent application Ser. No. 13/862,537, which was filed on Apr. 15, 2013 (now U.S. Pat. No. 9,021,414 issued on Apr. 28, 2015), the entire contents of the foregoing are incorporated herein by reference.
Number | Name | Date | Kind |
---|---|---|---|
3007090 | Rutz | Oct 1961 | A |
3819959 | Chang et al. | Jun 1974 | A |
4009483 | Clark | Feb 1977 | A |
4197555 | Uehara et al. | Apr 1980 | A |
4213139 | Rao et al. | Jul 1980 | A |
4400715 | Barbee et al. | Aug 1983 | A |
4487635 | Kugimiya et al. | Dec 1984 | A |
4510670 | Schwabe | Apr 1985 | A |
4522657 | Rohatgi et al. | Jun 1985 | A |
4612083 | Yasumoto et al. | Sep 1986 | A |
4643950 | Ogura et al. | Feb 1987 | A |
4704785 | Curran | Nov 1987 | A |
4711858 | Harder et al. | Dec 1987 | A |
4721885 | Brodie | Jan 1988 | A |
4732312 | Kennedy et al. | Mar 1988 | A |
4733288 | Sato | Mar 1988 | A |
4829018 | Wahlstrom | May 1989 | A |
4854986 | Raby | Aug 1989 | A |
4866304 | Yu | Sep 1989 | A |
4939568 | Kato et al. | Jul 1990 | A |
4956307 | Pollack et al. | Sep 1990 | A |
5012153 | Atkinson et al. | Apr 1991 | A |
5032007 | Silverstein et al. | Jul 1991 | A |
5047979 | Leung | Sep 1991 | A |
5087585 | Hayashi | Feb 1992 | A |
5093704 | Sato et al. | Mar 1992 | A |
5106775 | Kaga et al. | Apr 1992 | A |
5152857 | Ito et al. | Oct 1992 | A |
5162879 | Gill | Nov 1992 | A |
5189500 | Kusunoki | Feb 1993 | A |
5217916 | Anderson et al. | Jun 1993 | A |
5250460 | Yamagata et al. | Oct 1993 | A |
5258643 | Cohen | Nov 1993 | A |
5265047 | Leung et al. | Nov 1993 | A |
5266511 | Takao | Nov 1993 | A |
5277748 | Sakaguchi et al. | Jan 1994 | A |
5286670 | Kang et al. | Feb 1994 | A |
5294556 | Kawamura | Mar 1994 | A |
5308782 | Mazure et al. | May 1994 | A |
5312771 | Yonehara | May 1994 | A |
5317236 | Zavracky et al. | May 1994 | A |
5324980 | Kusunoki | Jun 1994 | A |
5355022 | Sugahara et al. | Oct 1994 | A |
5371037 | Yonehara | Dec 1994 | A |
5374564 | Bruel | Dec 1994 | A |
5374581 | Ichikawa et al. | Dec 1994 | A |
5424560 | Norman et al. | Jun 1995 | A |
5475280 | Jones et al. | Dec 1995 | A |
5478762 | Chao | Dec 1995 | A |
5485031 | Zhang et al. | Jan 1996 | A |
5498978 | Takahashi et al. | Mar 1996 | A |
5527423 | Neville et al. | Jun 1996 | A |
5535342 | Taylor | Jul 1996 | A |
5554870 | Fitch et al. | Sep 1996 | A |
5563084 | Ramm et al. | Oct 1996 | A |
5583349 | Norman et al. | Dec 1996 | A |
5583350 | Norman et al. | Dec 1996 | A |
5586291 | Lasker | Dec 1996 | A |
5594563 | Larson | Jan 1997 | A |
5604137 | Yamazaki et al. | Feb 1997 | A |
5617991 | Pramanick et al. | Apr 1997 | A |
5627106 | Hsu | May 1997 | A |
5656548 | Zavracky et al. | Aug 1997 | A |
5656553 | Leas et al. | Aug 1997 | A |
5659194 | Iwamatsu | Aug 1997 | A |
5670411 | Yonehara | Sep 1997 | A |
5681756 | Norman et al. | Oct 1997 | A |
5695557 | Yamagata et al. | Dec 1997 | A |
5701027 | Gordon et al. | Dec 1997 | A |
5707745 | Forrest et al. | Jan 1998 | A |
5714395 | Bruel | Feb 1998 | A |
5721160 | Forrest et al. | Feb 1998 | A |
5737748 | Shigeeda | Apr 1998 | A |
5739552 | Kimura et al. | Apr 1998 | A |
5744979 | Goetting | Apr 1998 | A |
5748161 | Lebby et al. | May 1998 | A |
5757026 | Forrest et al. | May 1998 | A |
5770483 | Kadosh | Jun 1998 | A |
5770881 | Pelella et al. | Jun 1998 | A |
5781031 | Bertin et al. | Jul 1998 | A |
5817574 | Gardner | Oct 1998 | A |
5829026 | Leung et al. | Oct 1998 | A |
5835396 | Zhang | Nov 1998 | A |
5854123 | Sato et al. | Dec 1998 | A |
5861929 | Spitzer | Jan 1999 | A |
5877034 | Ramm | Mar 1999 | A |
5877070 | Goesele et al. | Mar 1999 | A |
5882987 | Srikrishnan | Mar 1999 | A |
5883525 | Tavana et al. | Mar 1999 | A |
5889903 | Rao | Mar 1999 | A |
5893721 | Huang et al. | Apr 1999 | A |
5915167 | Leedy | Jun 1999 | A |
5920788 | Reinberg | Jul 1999 | A |
5937312 | Iyer et al. | Aug 1999 | A |
5943574 | Tehrani et al. | Aug 1999 | A |
5952680 | Strite | Sep 1999 | A |
5952681 | Chen | Sep 1999 | A |
5965875 | Merrill | Oct 1999 | A |
5977579 | Noble | Nov 1999 | A |
5977961 | Rindal | Nov 1999 | A |
5980633 | Yamagata et al. | Nov 1999 | A |
5985742 | Henley et al. | Nov 1999 | A |
5994746 | Reisinger | Nov 1999 | A |
5998808 | Matsushita | Dec 1999 | A |
6001693 | Yeouchung et al. | Dec 1999 | A |
6009496 | Tsai | Dec 1999 | A |
6020252 | Aspar et al. | Feb 2000 | A |
6020263 | Shih et al. | Feb 2000 | A |
6027958 | Vu et al. | Feb 2000 | A |
6030700 | Forrest et al. | Feb 2000 | A |
6052498 | Paniccia | Apr 2000 | A |
6054370 | Doyle | Apr 2000 | A |
6057212 | Chan et al. | May 2000 | A |
6071795 | Cheung et al. | Jun 2000 | A |
6075268 | Gardner et al. | Jun 2000 | A |
6103597 | Aspar et al. | Aug 2000 | A |
6111260 | Dawson et al. | Aug 2000 | A |
6125217 | Paniccia et al. | Sep 2000 | A |
6153495 | Kub et al. | Nov 2000 | A |
6191007 | Matsui et al. | Feb 2001 | B1 |
6200878 | Yamagata | Mar 2001 | B1 |
6222203 | Ishibashi et al. | Apr 2001 | B1 |
6226197 | Nishimura | May 2001 | B1 |
6229161 | Nemati et al. | May 2001 | B1 |
6242324 | Kub et al. | Jun 2001 | B1 |
6242778 | Marmillion et al. | Jun 2001 | B1 |
6252465 | Katoh | Jun 2001 | B1 |
6259623 | Takahashi | Jul 2001 | B1 |
6261935 | See et al. | Jul 2001 | B1 |
6264805 | Forrest et al. | Jul 2001 | B1 |
6281102 | Cao et al. | Aug 2001 | B1 |
6294018 | Hamm et al. | Sep 2001 | B1 |
6306705 | Parekh et al. | Oct 2001 | B1 |
6321134 | Henley et al. | Nov 2001 | B1 |
6322903 | Siniaguine et al. | Nov 2001 | B1 |
6331468 | Aronowitz et al. | Dec 2001 | B1 |
6331790 | Or-Bach et al. | Dec 2001 | B1 |
6331943 | Naji et al. | Dec 2001 | B1 |
6353492 | McClelland et al. | Mar 2002 | B2 |
6355501 | Fung et al. | Mar 2002 | B1 |
6355976 | Faris | Mar 2002 | B1 |
6358631 | Forrest et al. | Mar 2002 | B1 |
6365270 | Forrest et al. | Apr 2002 | B2 |
6376337 | Wang et al. | Apr 2002 | B1 |
6377504 | Hilbert | Apr 2002 | B1 |
6380046 | Yamazaki | Apr 2002 | B1 |
6392253 | Saxena | May 2002 | B1 |
6404043 | Isaak | Jun 2002 | B1 |
6417108 | Akino et al. | Jul 2002 | B1 |
6420215 | Knall et al. | Jul 2002 | B1 |
6423614 | Doyle | Jul 2002 | B1 |
6429481 | Mo et al. | Aug 2002 | B1 |
6429484 | Yu | Aug 2002 | B1 |
6430734 | Zahar | Aug 2002 | B1 |
6448615 | Forbes | Sep 2002 | B1 |
6475869 | Yu | Nov 2002 | B1 |
6476493 | Or-Bach et al. | Nov 2002 | B2 |
6479821 | Hawryluk et al. | Nov 2002 | B1 |
6483707 | Freuler et al. | Nov 2002 | B1 |
6507115 | Hofstee | Jan 2003 | B1 |
6515334 | Yamazaki et al. | Feb 2003 | B2 |
6515511 | Sugibayashi et al. | Feb 2003 | B2 |
6526559 | Schiefele et al. | Feb 2003 | B2 |
6528391 | Henley et al. | Mar 2003 | B1 |
6534352 | Kim | Mar 2003 | B1 |
6534382 | Sakaguchi et al. | Mar 2003 | B1 |
6544837 | Divakauni et al. | Apr 2003 | B1 |
6545314 | Forbes et al. | Apr 2003 | B2 |
6555901 | Yoshihara et al. | Apr 2003 | B1 |
6563139 | Hen | May 2003 | B2 |
6580124 | Cleeves | Jun 2003 | B1 |
6580289 | Cox | Jun 2003 | B2 |
6600173 | Tiwari | Jul 2003 | B2 |
6617694 | Kodaira et al. | Sep 2003 | B2 |
6620659 | Emmma et al. | Sep 2003 | B2 |
6624046 | Zavracky et al. | Sep 2003 | B1 |
6627518 | Inoue et al. | Sep 2003 | B1 |
6627985 | Huppenthal et al. | Sep 2003 | B2 |
6630713 | Geusic | Oct 2003 | B2 |
6635552 | Gonzalez | Oct 2003 | B1 |
6635588 | Hawryluk et al. | Oct 2003 | B1 |
6638834 | Gonzalez | Oct 2003 | B2 |
6642744 | Or-Bach et al. | Nov 2003 | B2 |
6653209 | Yamagata | Nov 2003 | B1 |
6653712 | Knall et al. | Nov 2003 | B2 |
6661085 | Kellar et al. | Dec 2003 | B2 |
6677204 | Cleeves et al. | Jan 2004 | B2 |
6686253 | Or-Bach | Feb 2004 | B2 |
6689660 | Noble | Feb 2004 | B1 |
6701071 | Wada et al. | Mar 2004 | B2 |
6703328 | Tanaka et al. | Mar 2004 | B2 |
6756633 | Wang et al. | Jun 2004 | B2 |
6756811 | Or-Bach | Jun 2004 | B2 |
6759282 | Campbell et al. | Jul 2004 | B2 |
6762076 | Kim et al. | Jul 2004 | B2 |
6774010 | Chu et al. | Aug 2004 | B2 |
6805979 | Ogura et al. | Oct 2004 | B2 |
6806171 | Ulyashin et al. | Oct 2004 | B1 |
6809009 | Aspar et al. | Oct 2004 | B2 |
6815781 | Vyvoda et al. | Nov 2004 | B2 |
6819136 | Or-Bach | Nov 2004 | B2 |
6821826 | Chan et al. | Nov 2004 | B1 |
6841813 | Walker et al. | Jan 2005 | B2 |
6844243 | Gonzalez | Jan 2005 | B1 |
6864534 | Ipposhi et al. | Mar 2005 | B2 |
6875671 | Faris | Apr 2005 | B2 |
6882572 | Wang et al. | Apr 2005 | B2 |
6888375 | Feng et al. | May 2005 | B2 |
6917219 | New | Jul 2005 | B2 |
6927431 | Gonzalez | Aug 2005 | B2 |
6930511 | Or-Bach | Aug 2005 | B2 |
6943067 | Greenlaw | Sep 2005 | B2 |
6943407 | Ouyang et al. | Sep 2005 | B2 |
6949421 | Padmanabhan et al. | Sep 2005 | B1 |
6953956 | Or-Bach et al. | Oct 2005 | B2 |
6967149 | Meyer et al. | Nov 2005 | B2 |
6985012 | Or-Bach | Jan 2006 | B2 |
6989687 | Or-Bach | Jan 2006 | B2 |
6995430 | Langdo et al. | Feb 2006 | B2 |
6995456 | Nowak | Feb 2006 | B2 |
7015719 | Feng et al. | Mar 2006 | B1 |
7016569 | Mule et al. | Mar 2006 | B2 |
7018875 | Madurawe | Mar 2006 | B2 |
7019557 | Madurawe | Mar 2006 | B2 |
7043106 | West et al. | May 2006 | B2 |
7052941 | Lee | May 2006 | B2 |
7064579 | Madurawe | Jun 2006 | B2 |
7067396 | Aspar et al. | Jun 2006 | B2 |
7067909 | Reif et al. | Jun 2006 | B2 |
7068070 | Or-Bach | Jun 2006 | B2 |
7068072 | New et al. | Jun 2006 | B2 |
7078739 | Nemati et al. | Jul 2006 | B1 |
7094667 | Bower | Aug 2006 | B1 |
7098691 | Or-Bach et al. | Aug 2006 | B2 |
7105390 | Brask et al. | Sep 2006 | B2 |
7105871 | Or-Bach et al. | Sep 2006 | B2 |
7109092 | Tong | Sep 2006 | B2 |
7110629 | Bjorkman et al. | Sep 2006 | B2 |
7111149 | Eilert | Sep 2006 | B2 |
7112815 | Prall | Sep 2006 | B2 |
7115945 | Lee et al. | Oct 2006 | B2 |
7115966 | Ido et al. | Oct 2006 | B2 |
7141853 | Campbell et al. | Nov 2006 | B2 |
7148119 | Sakaguchi et al. | Dec 2006 | B1 |
7157787 | Kim et al. | Jan 2007 | B2 |
7157937 | Apostol et al. | Jan 2007 | B2 |
7166520 | Henley | Jan 2007 | B1 |
7170807 | Fazan et al. | Jan 2007 | B2 |
7173369 | Forrest et al. | Feb 2007 | B2 |
7180091 | Yamazaki et al. | Feb 2007 | B2 |
7180379 | Hopper et al. | Feb 2007 | B1 |
7183611 | Bhattacharyya | Feb 2007 | B2 |
7189489 | Kunimoto et al. | Mar 2007 | B2 |
7205204 | Ogawa et al. | Apr 2007 | B2 |
7209384 | Kim | Apr 2007 | B1 |
7217636 | Atanackovic | May 2007 | B1 |
7223612 | Sarma | May 2007 | B2 |
7242012 | Leedy | Jul 2007 | B2 |
7245002 | Akino et al. | Jul 2007 | B2 |
7256104 | Ito et al. | Aug 2007 | B2 |
7259091 | Schuehrer et al. | Aug 2007 | B2 |
7265421 | Madurawe | Sep 2007 | B2 |
7271420 | Cao | Sep 2007 | B2 |
7274207 | Sugawara et al. | Sep 2007 | B2 |
7282951 | Huppenthal et al. | Oct 2007 | B2 |
7284226 | Kondapalli | Oct 2007 | B1 |
7296201 | Abramovici | Nov 2007 | B2 |
7304355 | Zhang | Dec 2007 | B2 |
7312109 | Madurawe | Dec 2007 | B2 |
7312487 | Alam et al. | Dec 2007 | B2 |
7314788 | Shaw | Jan 2008 | B2 |
7335573 | Takayama et al. | Feb 2008 | B2 |
7337425 | Kirk | Feb 2008 | B2 |
7338884 | Shimoto et al. | Mar 2008 | B2 |
7342415 | Teig et al. | Mar 2008 | B2 |
7351644 | Henley | Apr 2008 | B2 |
7358601 | Plants et al. | Apr 2008 | B1 |
7362133 | Madurawe | Apr 2008 | B2 |
7369435 | Forbes | May 2008 | B2 |
7371660 | Henley et al. | May 2008 | B2 |
7378702 | Lee | May 2008 | B2 |
7381989 | Kim | Jun 2008 | B2 |
7385283 | Wu | Jun 2008 | B2 |
7393722 | Issaq et al. | Jul 2008 | B1 |
7402483 | Yu et al. | Jul 2008 | B2 |
7402897 | Leedy | Jul 2008 | B2 |
7419844 | Lee et al. | Sep 2008 | B2 |
7432185 | Kim | Oct 2008 | B2 |
7436027 | Ogawa et al. | Oct 2008 | B2 |
7439773 | Or-Bach et al. | Oct 2008 | B2 |
7446563 | Madurawe | Nov 2008 | B2 |
7459752 | Doris et al. | Dec 2008 | B2 |
7459763 | Issaq et al. | Dec 2008 | B1 |
7459772 | Speers | Dec 2008 | B2 |
7463062 | Or-Bach et al. | Dec 2008 | B2 |
7463502 | Stipe | Dec 2008 | B2 |
7470142 | Lee | Dec 2008 | B2 |
7470598 | Lee | Dec 2008 | B2 |
7476939 | Okhonin et al. | Jan 2009 | B2 |
7477540 | Okhonin et al. | Jan 2009 | B2 |
7485968 | Enquist et al. | Feb 2009 | B2 |
7486563 | Waller et al. | Feb 2009 | B2 |
7488980 | Takafuji et al. | Feb 2009 | B2 |
7492632 | Carman | Feb 2009 | B2 |
7495473 | McCollum et al. | Feb 2009 | B2 |
7498675 | Farnworth et al. | Mar 2009 | B2 |
7499352 | Singh | Mar 2009 | B2 |
7499358 | Bauser | Mar 2009 | B2 |
7508034 | Takafuji et al. | Mar 2009 | B2 |
7514748 | Fazan et al. | Apr 2009 | B2 |
7521806 | Trezza | Apr 2009 | B2 |
7525186 | Kim et al. | Apr 2009 | B2 |
7535089 | Fitzgerald | May 2009 | B2 |
7541616 | Fazan et al. | Jun 2009 | B2 |
7547589 | Iriguchi | Jun 2009 | B2 |
7553745 | Lim | Jun 2009 | B2 |
7557367 | Rogers et al. | Jul 2009 | B2 |
7558141 | Katsumata et al. | Jul 2009 | B2 |
7563659 | Kwon et al. | Jul 2009 | B2 |
7566855 | Olsen et al. | Jul 2009 | B2 |
7566974 | Konevecki | Jul 2009 | B2 |
7586778 | Ho et al. | Sep 2009 | B2 |
7589375 | Jang et al. | Sep 2009 | B2 |
7608848 | Ho et al. | Oct 2009 | B2 |
7612411 | Walker | Nov 2009 | B2 |
7622367 | Nuzzo et al. | Nov 2009 | B1 |
7632738 | Lee | Dec 2009 | B2 |
7633162 | Lee | Dec 2009 | B2 |
7666723 | Frank et al. | Feb 2010 | B2 |
7670912 | Yeo | Mar 2010 | B2 |
7671371 | Lee | Mar 2010 | B2 |
7671460 | Lauxtermann et al. | Mar 2010 | B2 |
7674687 | Henley | Mar 2010 | B2 |
7687372 | Jain | Mar 2010 | B2 |
7687872 | Cazaux | Mar 2010 | B2 |
7688619 | Lung et al. | Mar 2010 | B2 |
7692202 | Bensch | Apr 2010 | B2 |
7692448 | Solomon | Apr 2010 | B2 |
7692944 | Bernstein et al. | Apr 2010 | B2 |
7697316 | Lai et al. | Apr 2010 | B2 |
7709932 | Nemoto et al. | May 2010 | B2 |
7718508 | Lee | May 2010 | B2 |
7719876 | Chevallier | May 2010 | B2 |
7723207 | Alam et al. | May 2010 | B2 |
7728326 | Yamazaki et al. | Jun 2010 | B2 |
7732301 | Pinnington et al. | Jun 2010 | B1 |
7741673 | Tak et al. | Jun 2010 | B2 |
7742331 | Watanabe | Jun 2010 | B2 |
7745250 | Han | Jun 2010 | B2 |
7749884 | Mathew et al. | Jul 2010 | B2 |
7750669 | Spangaro | Jul 2010 | B2 |
7755622 | Yvon | Jul 2010 | B2 |
7759043 | Tanabe et al. | Jul 2010 | B2 |
7768115 | Lee et al. | Aug 2010 | B2 |
7772039 | Kerber | Aug 2010 | B2 |
7772096 | DeSouza et al. | Aug 2010 | B2 |
7774735 | Sood | Aug 2010 | B1 |
7776715 | Wells et al. | Aug 2010 | B2 |
7777330 | Pelley et al. | Aug 2010 | B2 |
7786460 | Lung et al. | Aug 2010 | B2 |
7786535 | Abou-Khalil et al. | Aug 2010 | B2 |
7790524 | Abadeer et al. | Sep 2010 | B2 |
7795619 | Hara | Sep 2010 | B2 |
7799675 | Lee | Sep 2010 | B2 |
7800099 | Yamazaki et al. | Sep 2010 | B2 |
7800148 | Lee et al. | Sep 2010 | B2 |
7800163 | Izumi et al. | Sep 2010 | B2 |
7800199 | Oh et al. | Sep 2010 | B2 |
7816721 | Yamazaki | Oct 2010 | B2 |
7843718 | Koh et al. | Nov 2010 | B2 |
7846814 | Lee | Dec 2010 | B2 |
7863095 | Sasaki et al. | Jan 2011 | B2 |
7864568 | Fujisaki et al. | Jan 2011 | B2 |
7867822 | Lee | Jan 2011 | B2 |
7888764 | Lee | Feb 2011 | B2 |
7910432 | Tanaka et al. | Mar 2011 | B2 |
7915164 | Konevecki et al. | Mar 2011 | B2 |
7919845 | Karp | Apr 2011 | B2 |
7965102 | Bauer et al. | Jun 2011 | B1 |
7968965 | Kim | Jun 2011 | B2 |
7969193 | Wu et al. | Jun 2011 | B1 |
7973314 | Yang | Jul 2011 | B2 |
7982250 | Yamazaki et al. | Jul 2011 | B2 |
8008732 | Kiyotoshi | Aug 2011 | B2 |
8013399 | Thomas et al. | Sep 2011 | B2 |
8014166 | Yazdani | Sep 2011 | B2 |
8014195 | Okhonin et al. | Sep 2011 | B2 |
8022493 | Bang | Sep 2011 | B2 |
8030780 | Kirby et al. | Oct 2011 | B2 |
8031544 | Kim et al. | Oct 2011 | B2 |
8032857 | McIlrath | Oct 2011 | B2 |
8044448 | Kamigaichi et al. | Oct 2011 | B2 |
8044464 | Yamazaki et al. | Oct 2011 | B2 |
8068364 | Maejima | Nov 2011 | B2 |
8106520 | Keeth et al. | Jan 2012 | B2 |
8107276 | Breitwisch et al. | Jan 2012 | B2 |
8129256 | Farooq et al. | Mar 2012 | B2 |
8129258 | Hosier et al. | Mar 2012 | B2 |
8130547 | Widjaja et al. | Mar 2012 | B2 |
8136071 | Solomon | Mar 2012 | B2 |
8138502 | Nakamura et al. | Mar 2012 | B2 |
8153520 | Chandrashekar | Apr 2012 | B1 |
8158515 | Farooq et al. | Apr 2012 | B2 |
8183630 | Batude et al. | May 2012 | B2 |
8184463 | Saen et al. | May 2012 | B2 |
8185685 | Selinger | May 2012 | B2 |
8203187 | Lung et al. | Jun 2012 | B2 |
8208279 | Lue | Jun 2012 | B2 |
8209649 | McIlrath | Jun 2012 | B2 |
8228684 | Losavio et al. | Jul 2012 | B2 |
8266560 | McIlrath | Aug 2012 | B2 |
8264065 | Su et al. | Sep 2012 | B2 |
8288816 | Komori et al. | Oct 2012 | B2 |
8324680 | Izumi et al. | Dec 2012 | B2 |
8338882 | Tanaka et al. | Dec 2012 | B2 |
8343851 | Kim et al. | Jan 2013 | B2 |
8354308 | Kang et al. | Jan 2013 | B2 |
8355273 | Liu | Jan 2013 | B2 |
8374033 | Kito et al. | Feb 2013 | B2 |
8432719 | Lue | Apr 2013 | B2 |
8432751 | Hafez | Apr 2013 | B2 |
8470689 | Desplobain et al. | Jun 2013 | B2 |
8497512 | Nakamura et al. | Jul 2013 | B2 |
8501564 | Suzawa | Aug 2013 | B2 |
8508994 | Okhonin | Aug 2013 | B2 |
8513725 | Sakuma et al. | Aug 2013 | B2 |
8514623 | Widjaja et al. | Aug 2013 | B2 |
8516408 | Dell | Aug 2013 | B2 |
8566762 | Morimoto et al. | Aug 2013 | B2 |
8525342 | Chandrasekaran | Oct 2013 | B2 |
8546956 | Nguyen | Oct 2013 | B2 |
8603888 | Liu | Dec 2013 | B2 |
8619490 | Yu | Dec 2013 | B2 |
8643162 | Madurawe | Feb 2014 | B2 |
8650516 | McIlrath | Feb 2014 | B2 |
8679861 | Bose | Mar 2014 | B2 |
8773562 | Fan | Jul 2014 | B1 |
8775998 | Morimoto | Jul 2014 | B2 |
8841777 | Farooq | Sep 2014 | B2 |
8853785 | Augendre | Oct 2014 | B2 |
8896054 | Sakuma et al. | Nov 2014 | B2 |
8928119 | Leedy | Jan 2015 | B2 |
8971114 | Kang | Mar 2015 | B2 |
9172008 | Hwang | Oct 2015 | B2 |
9227456 | Chien | Jan 2016 | B2 |
9230973 | Pachamuthu et al. | Jan 2016 | B2 |
9334582 | See | May 2016 | B2 |
9564450 | Sakuma et al. | Feb 2017 | B2 |
9570683 | Jo | Feb 2017 | B1 |
9589982 | Cheng et al. | Mar 2017 | B1 |
9595530 | Zhou | Mar 2017 | B1 |
9673257 | Takaki | Jun 2017 | B1 |
9997530 | Yon et al. | Jun 2018 | B2 |
20010000005 | Forrest et al. | Mar 2001 | A1 |
20010014391 | Forrest et al. | Aug 2001 | A1 |
20010028059 | Emma et al. | Oct 2001 | A1 |
20020024140 | Nakajima et al. | Feb 2002 | A1 |
20020025604 | Tiwari | Feb 2002 | A1 |
20020074668 | Hofstee et al. | Jun 2002 | A1 |
20020081823 | Cheung et al. | Jun 2002 | A1 |
20020090758 | Henley et al. | Jul 2002 | A1 |
20020096681 | Yamazaki et al. | Jul 2002 | A1 |
20020113289 | Cordes et al. | Aug 2002 | A1 |
20020132465 | Leedy | Sep 2002 | A1 |
20020140091 | Callahan | Oct 2002 | A1 |
20020141233 | Hosotani et al. | Oct 2002 | A1 |
20020153243 | Forrest et al. | Oct 2002 | A1 |
20020153569 | Katayama | Oct 2002 | A1 |
20020175401 | Huang et al. | Nov 2002 | A1 |
20020180069 | Houston | Dec 2002 | A1 |
20020190232 | Chason | Dec 2002 | A1 |
20020199110 | Kean | Dec 2002 | A1 |
20030015713 | Yoo | Jan 2003 | A1 |
20030032262 | Dennison et al. | Feb 2003 | A1 |
20030059999 | Gonzalez | Mar 2003 | A1 |
20030060034 | Beyne et al. | Mar 2003 | A1 |
20030061555 | Kamei | Mar 2003 | A1 |
20030067043 | Zhang | Apr 2003 | A1 |
20030076706 | Andoh | Apr 2003 | A1 |
20030102079 | Kalvesten et al. | Jun 2003 | A1 |
20030107117 | Antonelli et al. | Jun 2003 | A1 |
20030113963 | Wurzer | Jun 2003 | A1 |
20030119279 | Enquist | Jun 2003 | A1 |
20030139011 | Cleeves et al. | Jul 2003 | A1 |
20030153163 | Letertre | Aug 2003 | A1 |
20030157748 | Kim et al. | Aug 2003 | A1 |
20030160888 | Yoshikawa | Aug 2003 | A1 |
20030173631 | Murakami | Sep 2003 | A1 |
20030206036 | Or-Bach | Nov 2003 | A1 |
20030213967 | Forrest et al. | Nov 2003 | A1 |
20030224582 | Shimoda et al. | Dec 2003 | A1 |
20030224596 | Marxsen et al. | Dec 2003 | A1 |
20040007376 | Urdahl et al. | Jan 2004 | A1 |
20040014299 | Moriceau et al. | Jan 2004 | A1 |
20040033676 | Coronel et al. | Feb 2004 | A1 |
20040036126 | Chau et al. | Feb 2004 | A1 |
20040047539 | Okubora et al. | Mar 2004 | A1 |
20040061176 | Takafuji et al. | Apr 2004 | A1 |
20040113207 | Hsu et al. | Jun 2004 | A1 |
20040143797 | Nguyen | Jul 2004 | A1 |
20040150068 | Leedy | Aug 2004 | A1 |
20040150070 | Okada | Aug 2004 | A1 |
20040152272 | Fladre et al. | Aug 2004 | A1 |
20040155301 | Zhang | Aug 2004 | A1 |
20040156172 | Lin et al. | Aug 2004 | A1 |
20040156233 | Bhattacharyya | Aug 2004 | A1 |
20040164425 | Urakawa | Aug 2004 | A1 |
20040166649 | Bressot et al. | Aug 2004 | A1 |
20040174732 | Morimoto | Sep 2004 | A1 |
20040175902 | Rayssac et al. | Sep 2004 | A1 |
20040178819 | New | Sep 2004 | A1 |
20040195572 | Kato et al. | Oct 2004 | A1 |
20040219765 | Reif et al. | Nov 2004 | A1 |
20040229444 | Couillard | Nov 2004 | A1 |
20040259312 | Schlosser et al. | Dec 2004 | A1 |
20040262635 | Lee | Dec 2004 | A1 |
20040262772 | Ramanathan et al. | Dec 2004 | A1 |
20050003592 | Jones | Jan 2005 | A1 |
20050010725 | Eilert | Jan 2005 | A1 |
20050023656 | Leedy | Feb 2005 | A1 |
20050045919 | Kaeriyama et al. | Mar 2005 | A1 |
20050067620 | Chan et al. | Mar 2005 | A1 |
20050067625 | Hata | Mar 2005 | A1 |
20050073060 | Datta et al. | Apr 2005 | A1 |
20050082526 | Bedell et al. | Apr 2005 | A1 |
20050098822 | Mathew | May 2005 | A1 |
20050110041 | Boutros et al. | May 2005 | A1 |
20050121676 | Fried et al. | Jun 2005 | A1 |
20050121789 | Madurawe | Jun 2005 | A1 |
20050130351 | Leedy | Jun 2005 | A1 |
20050130429 | Rayssac et al. | Jun 2005 | A1 |
20050148137 | Brask et al. | Jul 2005 | A1 |
20050176174 | Leedy | Aug 2005 | A1 |
20050218521 | Lee | Oct 2005 | A1 |
20050225237 | Winters | Oct 2005 | A1 |
20050266659 | Ghyselen et al. | Dec 2005 | A1 |
20050273749 | Kirk | Dec 2005 | A1 |
20050280061 | Lee | Dec 2005 | A1 |
20050280090 | Anderson et al. | Dec 2005 | A1 |
20050280154 | Lee | Dec 2005 | A1 |
20050280155 | Lee | Dec 2005 | A1 |
20050280156 | Lee | Dec 2005 | A1 |
20050282019 | Fukushima et al. | Dec 2005 | A1 |
20060014331 | Tang et al. | Jan 2006 | A1 |
20060024923 | Sarma et al. | Feb 2006 | A1 |
20060033110 | Alam et al. | Feb 2006 | A1 |
20060033124 | Or-Bach et al. | Feb 2006 | A1 |
20060043367 | Chang et al. | Feb 2006 | A1 |
20060049449 | Iino | Mar 2006 | A1 |
20060065953 | Kim et al. | Mar 2006 | A1 |
20060067122 | Verhoeven | Mar 2006 | A1 |
20060071322 | Kitamura | Apr 2006 | A1 |
20060071332 | Speers | Apr 2006 | A1 |
20060083280 | Tauzin et al. | Apr 2006 | A1 |
20060108613 | Song | May 2006 | A1 |
20060113522 | Lee et al. | Jun 2006 | A1 |
20060118935 | Kamiyama et al. | Jun 2006 | A1 |
20060121690 | Pogge et al. | Jun 2006 | A1 |
20060150137 | Madurawe | Jul 2006 | A1 |
20060158511 | Harrold | Jul 2006 | A1 |
20060170046 | Hara | Aug 2006 | A1 |
20060179417 | Madurawe | Aug 2006 | A1 |
20060181202 | Liao et al. | Aug 2006 | A1 |
20060189095 | Ghyselen et al. | Aug 2006 | A1 |
20060194401 | Hu et al. | Aug 2006 | A1 |
20060195729 | Huppenthal et al. | Aug 2006 | A1 |
20060207087 | Jafri et al. | Sep 2006 | A1 |
20060224814 | Kim et al. | Oct 2006 | A1 |
20060237777 | Choi | Oct 2006 | A1 |
20060249859 | Eiles et al. | Nov 2006 | A1 |
20060275962 | Lee | Dec 2006 | A1 |
20070004150 | Huang | Jan 2007 | A1 |
20070014508 | Chen et al. | Jan 2007 | A1 |
20070035329 | Madurawe | Feb 2007 | A1 |
20070063259 | Derderian et al. | Mar 2007 | A1 |
20070072391 | Pocas et al. | Mar 2007 | A1 |
20070076509 | Zhang | Apr 2007 | A1 |
20070077694 | Lee | Apr 2007 | A1 |
20070077743 | Rao et al. | Apr 2007 | A1 |
20070090416 | Doyle et al. | Apr 2007 | A1 |
20070102737 | Kashiwabara et al. | May 2007 | A1 |
20070103191 | Sugawara et al. | May 2007 | A1 |
20070108523 | Ogawa et al. | May 2007 | A1 |
20070109831 | RaghuRam | May 2007 | A1 |
20070111386 | Kim et al. | May 2007 | A1 |
20070111406 | Joshi et al. | May 2007 | A1 |
20070132049 | Stipe | Jun 2007 | A1 |
20070132369 | Forrest et al. | Jun 2007 | A1 |
20070135013 | Faris | Jun 2007 | A1 |
20070141781 | Park | Jun 2007 | A1 |
20070158659 | Bensce | Jul 2007 | A1 |
20070158831 | Cha et al. | Jul 2007 | A1 |
20070187775 | Okhonin et al. | Aug 2007 | A1 |
20070190746 | Ito et al. | Aug 2007 | A1 |
20070194453 | Chakraborty et al. | Aug 2007 | A1 |
20070206408 | Schwerin | Sep 2007 | A1 |
20070210336 | Madurawe | Sep 2007 | A1 |
20070211535 | Kim | Sep 2007 | A1 |
20070215903 | Sakamoto et al. | Sep 2007 | A1 |
20070218622 | Lee et al. | Sep 2007 | A1 |
20070228383 | Bernstein et al. | Oct 2007 | A1 |
20070252201 | Kito et al. | Nov 2007 | A1 |
20070252203 | Zhu et al. | Nov 2007 | A1 |
20070262457 | Lin | Nov 2007 | A1 |
20070275520 | Suzuki | Nov 2007 | A1 |
20070281439 | Bedell et al. | Dec 2007 | A1 |
20070283298 | Bernstein et al. | Dec 2007 | A1 |
20070287224 | Alam et al. | Dec 2007 | A1 |
20070296073 | Wu | Dec 2007 | A1 |
20070297232 | Iwata | Dec 2007 | A1 |
20080001204 | Lee | Jan 2008 | A1 |
20080003818 | Seidel et al. | Jan 2008 | A1 |
20080030228 | Amarilio | Feb 2008 | A1 |
20080032463 | Lee | Feb 2008 | A1 |
20080038902 | Lee | Feb 2008 | A1 |
20080048239 | Huo | Feb 2008 | A1 |
20080048327 | Lee | Feb 2008 | A1 |
20080054359 | Yang et al. | Mar 2008 | A1 |
20080067573 | Jang et al. | Mar 2008 | A1 |
20080070340 | Borrelli et al. | Mar 2008 | A1 |
20080072182 | He et al. | Mar 2008 | A1 |
20080099780 | Tran | May 2008 | A1 |
20080099819 | Kito et al. | May 2008 | A1 |
20080108171 | Rogers et al. | May 2008 | A1 |
20080124845 | Yu et al. | May 2008 | A1 |
20080128745 | Mastro et al. | Jun 2008 | A1 |
20080128780 | Nishihara | Jun 2008 | A1 |
20080135949 | Lo et al. | Jun 2008 | A1 |
20080136455 | Diamant et al. | Jun 2008 | A1 |
20080142937 | Chen et al. | Jun 2008 | A1 |
20080142959 | DeMulder et al. | Jun 2008 | A1 |
20080143379 | Norman | Jun 2008 | A1 |
20080150579 | Madurawe | Jun 2008 | A1 |
20080160431 | Scott et al. | Jul 2008 | A1 |
20080160726 | Lim et al. | Jul 2008 | A1 |
20080165521 | Bernstein et al. | Jul 2008 | A1 |
20080175032 | Tanaka et al. | Jul 2008 | A1 |
20080179678 | Dyer et al. | Jul 2008 | A1 |
20080180132 | Ishikawa | Jul 2008 | A1 |
20080185648 | Jeong | Aug 2008 | A1 |
20080191247 | Yin et al. | Aug 2008 | A1 |
20080191312 | Oh et al. | Aug 2008 | A1 |
20080194068 | Temmler et al. | Aug 2008 | A1 |
20080203452 | Moon et al. | Aug 2008 | A1 |
20080213982 | Park et al. | Sep 2008 | A1 |
20080220558 | Zehavi et al. | Sep 2008 | A1 |
20080220565 | Hsu et al. | Sep 2008 | A1 |
20080224260 | Schmit et al. | Sep 2008 | A1 |
20080237591 | Leedy | Oct 2008 | A1 |
20080239818 | Mokhlesi | Oct 2008 | A1 |
20080242028 | Mokhlesi | Oct 2008 | A1 |
20080248618 | Ahn et al. | Oct 2008 | A1 |
20080251862 | Fonash et al. | Oct 2008 | A1 |
20080254561 | Yoo | Oct 2008 | A2 |
20080254572 | Leedy | Oct 2008 | A1 |
20080254623 | Chan | Oct 2008 | A1 |
20080261378 | Yao et al. | Oct 2008 | A1 |
20080266960 | Kuo | Oct 2008 | A1 |
20080272492 | Tsang | Nov 2008 | A1 |
20080277778 | Furman et al. | Nov 2008 | A1 |
20080283873 | Yang | Nov 2008 | A1 |
20080283875 | Mukasa et al. | Nov 2008 | A1 |
20080284611 | Leedy | Nov 2008 | A1 |
20080296681 | Georgakos et al. | Dec 2008 | A1 |
20080315253 | Yuan | Dec 2008 | A1 |
20080315351 | Kakehata | Dec 2008 | A1 |
20090001469 | Yoshida et al. | Jan 2009 | A1 |
20090001504 | Takei et al. | Jan 2009 | A1 |
20090016716 | Ishida | Jan 2009 | A1 |
20090026541 | Chung | Jan 2009 | A1 |
20090026618 | Kim | Jan 2009 | A1 |
20090032899 | Irie | Feb 2009 | A1 |
20090032951 | Andry et al. | Feb 2009 | A1 |
20090039918 | Madurawe | Feb 2009 | A1 |
20090052827 | Durfee et al. | Feb 2009 | A1 |
20090055789 | McIlrath | Feb 2009 | A1 |
20090057879 | Garrou et al. | Mar 2009 | A1 |
20090061572 | Hareland et al. | Mar 2009 | A1 |
20090064058 | McIlrath | Mar 2009 | A1 |
20090065827 | Hwang | Mar 2009 | A1 |
20090066365 | Solomon | Mar 2009 | A1 |
20090066366 | Solomon | Mar 2009 | A1 |
20090070721 | Solomon | Mar 2009 | A1 |
20090070727 | Solomon | Mar 2009 | A1 |
20090078970 | Yamazaki | Mar 2009 | A1 |
20090079000 | Yamazaki et al. | Mar 2009 | A1 |
20090081848 | Erokhin | Mar 2009 | A1 |
20090087759 | Matsumoto et al. | Apr 2009 | A1 |
20090096009 | Dong et al. | Apr 2009 | A1 |
20090096024 | Shingu et al. | Apr 2009 | A1 |
20090108318 | Yoon et al. | Apr 2009 | A1 |
20090115042 | Koyanagi | May 2009 | A1 |
20090128189 | Madurawe et al. | May 2009 | A1 |
20090134397 | Yokoi et al. | May 2009 | A1 |
20090144669 | Bose et al. | Jun 2009 | A1 |
20090144678 | Bose et al. | Jun 2009 | A1 |
20090146172 | Pumyea | Jun 2009 | A1 |
20090159870 | Lin et al. | Jun 2009 | A1 |
20090160482 | Karp et al. | Jun 2009 | A1 |
20090161401 | Bigler et al. | Jun 2009 | A1 |
20090162993 | Yui et al. | Jun 2009 | A1 |
20090166627 | Han | Jul 2009 | A1 |
20090174018 | Dungan | Jul 2009 | A1 |
20090179268 | Abou-Khalil et al. | Jul 2009 | A1 |
20090185407 | Park | Jul 2009 | A1 |
20090194152 | Liu et al. | Aug 2009 | A1 |
20090194768 | Leedy | Aug 2009 | A1 |
20090194829 | Chung | Aug 2009 | A1 |
20090194836 | Kim | Aug 2009 | A1 |
20090204933 | Rezgui | Aug 2009 | A1 |
20090212317 | Kolodin et al. | Aug 2009 | A1 |
20090218627 | Zhu | Sep 2009 | A1 |
20090221110 | Lee et al. | Sep 2009 | A1 |
20090224330 | Hong | Sep 2009 | A1 |
20090224364 | Oh et al. | Sep 2009 | A1 |
20090230462 | Tanaka et al. | Sep 2009 | A1 |
20090234331 | Langereis et al. | Sep 2009 | A1 |
20090236749 | Otemba et al. | Sep 2009 | A1 |
20090242893 | Tomiyasu | Oct 2009 | A1 |
20090242935 | Fitzgerald | Oct 2009 | A1 |
20090250686 | Sato et al. | Oct 2009 | A1 |
20090262572 | Krusin-Elbaum | Oct 2009 | A1 |
20090262583 | Lue | Oct 2009 | A1 |
20090263942 | Ohnuma et al. | Oct 2009 | A1 |
20090267233 | Lee | Oct 2009 | A1 |
20090268983 | Stone et al. | Oct 2009 | A1 |
20090272989 | Shum et al. | Nov 2009 | A1 |
20090290434 | Kurjanowicz | Nov 2009 | A1 |
20090294822 | Batude et al. | Dec 2009 | A1 |
20090294836 | Kiyotoshi | Dec 2009 | A1 |
20090294861 | Thomas et al. | Dec 2009 | A1 |
20090302294 | Kim | Dec 2009 | A1 |
20090302387 | Joshi et al. | Dec 2009 | A1 |
20090302394 | Fujita | Dec 2009 | A1 |
20090309152 | Knoefler et al. | Dec 2009 | A1 |
20090315095 | Kim | Dec 2009 | A1 |
20090317950 | Okihara | Dec 2009 | A1 |
20090321830 | Maly | Dec 2009 | A1 |
20090321853 | Cheng | Dec 2009 | A1 |
20090321948 | Wang et al. | Dec 2009 | A1 |
20090325343 | Lee | Dec 2009 | A1 |
20100001282 | Mieno | Jan 2010 | A1 |
20100013049 | Tanaka | Jan 2010 | A1 |
20100025766 | Nuttinck et al. | Feb 2010 | A1 |
20100025825 | DeGraw et al. | Feb 2010 | A1 |
20100031217 | Sinha et al. | Feb 2010 | A1 |
20100032635 | Schwerin | Feb 2010 | A1 |
20100038699 | Katsumata et al. | Feb 2010 | A1 |
20100038743 | Lee | Feb 2010 | A1 |
20100045849 | Yamasaki | Feb 2010 | A1 |
20100052134 | Werner et al. | Mar 2010 | A1 |
20100058580 | Yazdani | Mar 2010 | A1 |
20100059796 | Scheuerlein | Mar 2010 | A1 |
20100078770 | Purushothaman et al. | Apr 2010 | A1 |
20100081232 | Furman et al. | Apr 2010 | A1 |
20100089627 | Huang et al. | Apr 2010 | A1 |
20100090188 | Fatasuyama | Apr 2010 | A1 |
20100112753 | Lee | May 2010 | A1 |
20100112810 | Lee et al. | May 2010 | A1 |
20100117048 | Lung et al. | May 2010 | A1 |
20100123202 | Hofmann | May 2010 | A1 |
20100123480 | Kitada et al. | May 2010 | A1 |
20100133695 | Lee | Jun 2010 | A1 |
20100133704 | Marimuthu et al. | Jun 2010 | A1 |
20100137143 | Rothberg et al. | Jun 2010 | A1 |
20100139836 | Horikoshi | Jun 2010 | A1 |
20100140790 | Setiadi et al. | Jun 2010 | A1 |
20100155932 | Gambino | Jun 2010 | A1 |
20100157117 | Wang | Jun 2010 | A1 |
20100159650 | Song | Jun 2010 | A1 |
20100181600 | Law | Jul 2010 | A1 |
20100190334 | Lee | Jul 2010 | A1 |
20100193884 | Park et al. | Aug 2010 | A1 |
20100193964 | Farooq et al. | Aug 2010 | A1 |
20100219392 | Awaya | Sep 2010 | A1 |
20100221867 | Bedell et al. | Sep 2010 | A1 |
20100224876 | Zhu | Sep 2010 | A1 |
20100224915 | Kawashima et al. | Sep 2010 | A1 |
20100225002 | Law et al. | Sep 2010 | A1 |
20100232200 | Shepard | Sep 2010 | A1 |
20100252934 | Law | Oct 2010 | A1 |
20100264551 | Farooq | Oct 2010 | A1 |
20100276662 | Colinge | Nov 2010 | A1 |
20100289144 | Farooq | Nov 2010 | A1 |
20100297844 | Yelehanka | Nov 2010 | A1 |
20100307572 | Bedell et al. | Dec 2010 | A1 |
20100308211 | Cho et al. | Dec 2010 | A1 |
20100308863 | Gliese et al. | Dec 2010 | A1 |
20100320514 | Tredwell | Dec 2010 | A1 |
20100320526 | Kidoh et al. | Dec 2010 | A1 |
20100330728 | McCarten | Dec 2010 | A1 |
20100330752 | Jeong | Dec 2010 | A1 |
20110001172 | Lee | Jan 2011 | A1 |
20110003438 | Lee | Jan 2011 | A1 |
20110024724 | Frolov et al. | Feb 2011 | A1 |
20110026263 | Xu | Feb 2011 | A1 |
20110027967 | Beyne | Feb 2011 | A1 |
20110037052 | Schmidt et al. | Feb 2011 | A1 |
20110042696 | Smith et al. | Feb 2011 | A1 |
20110049336 | Matsunuma | Mar 2011 | A1 |
20110050125 | Medendorp et al. | Mar 2011 | A1 |
20110053332 | Lee | Mar 2011 | A1 |
20110101537 | Barth et al. | May 2011 | A1 |
20110102014 | Madurawe | May 2011 | A1 |
20110111560 | Purushothaman | May 2011 | A1 |
20110115023 | Cheng | May 2011 | A1 |
20110128777 | Yamazaki | Jun 2011 | A1 |
20110134683 | Yamazaki | Jun 2011 | A1 |
20110143506 | Lee | Jun 2011 | A1 |
20110147791 | Norman et al. | Jun 2011 | A1 |
20110147849 | Augendre et al. | Jun 2011 | A1 |
20110159635 | Doan et al. | Jun 2011 | A1 |
20110170331 | Oh | Jul 2011 | A1 |
20110204917 | O'Neill | Aug 2011 | A1 |
20110221022 | Toda | Sep 2011 | A1 |
20110222356 | Banna | Sep 2011 | A1 |
20110227158 | Zhu | Sep 2011 | A1 |
20110241082 | Bernstein et al. | Oct 2011 | A1 |
20110284946 | Kiyotoshi | Nov 2011 | A1 |
20110284992 | Zhu | Nov 2011 | A1 |
20110286283 | Lung et al. | Nov 2011 | A1 |
20110304765 | Yogo et al. | Dec 2011 | A1 |
20110309432 | Ishihara et al. | Dec 2011 | A1 |
20110314437 | McIlrath | Dec 2011 | A1 |
20120001184 | Ha et al. | Jan 2012 | A1 |
20120003815 | Lee | Jan 2012 | A1 |
20120013013 | Sadaka et al. | Jan 2012 | A1 |
20120025388 | Law et al. | Feb 2012 | A1 |
20120032250 | Son et al. | Feb 2012 | A1 |
20120034759 | Sakaguchi et al. | Feb 2012 | A1 |
20120063090 | Hsiao et al. | Mar 2012 | A1 |
20120074466 | Setiadi et al. | Mar 2012 | A1 |
20120086100 | Andry | Apr 2012 | A1 |
20120126197 | Chung | May 2012 | A1 |
20120161310 | Brindle et al. | Jun 2012 | A1 |
20120169319 | Dennard | Jul 2012 | A1 |
20120178211 | Hebert | Jul 2012 | A1 |
20120181654 | Lue | Jul 2012 | A1 |
20120182801 | Lue | Jul 2012 | A1 |
20120187444 | Oh | Jul 2012 | A1 |
20120193785 | Lin | Aug 2012 | A1 |
20120241919 | Mitani | Sep 2012 | A1 |
20120286822 | Madurawe | Nov 2012 | A1 |
20120304142 | Morimoto | Nov 2012 | A1 |
20120317528 | McIlrath | Dec 2012 | A1 |
20120319728 | Madurawe | Dec 2012 | A1 |
20130026663 | Radu et al. | Jan 2013 | A1 |
20130037802 | England | Feb 2013 | A1 |
20130049796 | Pang | Feb 2013 | A1 |
20130070506 | Kajigaya | Mar 2013 | A1 |
20130082235 | Gu et al. | Apr 2013 | A1 |
20130097574 | Balabanov et al. | Apr 2013 | A1 |
20130100743 | Lue | Apr 2013 | A1 |
20130128666 | Avila | May 2013 | A1 |
20130187720 | Ishii | Jul 2013 | A1 |
20130193550 | Sklenard et al. | Aug 2013 | A1 |
20130196500 | Batude et al. | Aug 2013 | A1 |
20130203248 | Ernst et al. | Aug 2013 | A1 |
20130263393 | Mazumder | Oct 2013 | A1 |
20130337601 | Kapur | Dec 2013 | A1 |
20140015136 | Gan et al. | Jan 2014 | A1 |
20140035616 | Oda et al. | Feb 2014 | A1 |
20140048867 | Toh | Feb 2014 | A1 |
20140099761 | Kim et al. | Apr 2014 | A1 |
20140103959 | Andreev | Apr 2014 | A1 |
20140117413 | Madurawe | May 2014 | A1 |
20140120695 | Ohtsuki | May 2014 | A1 |
20140131885 | Samadi et al. | May 2014 | A1 |
20140137061 | McIlrath | May 2014 | A1 |
20140145347 | Samadi et al. | May 2014 | A1 |
20140146630 | Xie et al. | May 2014 | A1 |
20140149958 | Samadi et al. | May 2014 | A1 |
20140151774 | Rhie | Jun 2014 | A1 |
20140191357 | Lee | Jul 2014 | A1 |
20140225218 | Du | Aug 2014 | A1 |
20140225235 | Du | Aug 2014 | A1 |
20140252306 | Du | Sep 2014 | A1 |
20140253196 | Du et al. | Sep 2014 | A1 |
20140264228 | Toh | Sep 2014 | A1 |
20140357054 | Son et al. | Dec 2014 | A1 |
20150034898 | Wang | Feb 2015 | A1 |
20150243887 | Saitoh | Aug 2015 | A1 |
20150255418 | Gowda | Sep 2015 | A1 |
20150340369 | Lue | Nov 2015 | A1 |
20160049201 | Lue | Feb 2016 | A1 |
20160104780 | Mauder | Apr 2016 | A1 |
20160133603 | Ahn | May 2016 | A1 |
20160141299 | Hong | May 2016 | A1 |
20160141334 | Takaki | May 2016 | A1 |
20160307952 | Huang | Oct 2016 | A1 |
20160343687 | Vadhavkar | Nov 2016 | A1 |
20170069601 | Park | Mar 2017 | A1 |
20170092371 | Harari | Mar 2017 | A1 |
20170098596 | Lin | Apr 2017 | A1 |
20170148517 | Harari | May 2017 | A1 |
20170179146 | Park | Jun 2017 | A1 |
20170221900 | Widjaja | Aug 2017 | A1 |
20180090368 | Eun-Jeong et al. | Mar 2018 | A1 |
20180108416 | Harari | Apr 2018 | A1 |
20180294284 | Tarakji | Oct 2018 | A1 |
Number | Date | Country |
---|---|---|
1267594 | Dec 2002 | EP |
2008063483 | May 2008 | WO |
Entry |
---|
Colinge, J. P., et al., “Nanowire transistors without Junctions”, Nature Nanotechnology, Feb. 21, 2010, pp. 1-5. |
Kim, J.Y., et al., “The breakthrough in data retention time of DRAM using Recess-Channel-Array Transistor (RCAT) for 88 nm feature size and beyond,” 2003 Symposium on VLSI Technology Digest of Technical Papers, pp. 11-12, Jun. 10-12, 2003. |
Kim, J.Y., et al., “The excellent scalability of the RCAT (recess-channel-array-transistor) technology for sub-70nm DRAM feature size and beyond,” 2005 IEEE VLSI-TSA International Symposium, pp. 33-34, Apr. 25-27, 2005. |
Abramovici, Breuer and Friedman, Digital Systems Testing and Testable Design, Computer Science Press, 1990, pp. 432-447. |
Yonehara, T., et al., “ELTRAN: SOI-Epi Wafer by Epitaxial Layer transfer from porous Silicon”, the 198th Electrochemical Society Meeting, abstract No. 438 (2000). |
Yonehara, T. et al., “Eltran®, Novel SOI Wafer Technology,” JSAP International, Jul. 2001, pp. 10-16, No. 4. |
Suk, S. D., et al., “High performance 5 nm radius twin silicon nanowire MOSFET(TSNWFET): Fabrication on bulk Si wafer, characteristics, and reliability,” in Proc. IEDM Tech. Dig., 2005, pp. 717-720. |
Bangsaruntip, S., et al., “High performance and highly uniform gate-all-around silicon nanowire MOSFETs with wire size dependent scaling,” Electron Devices Meeting (IEDM), 2009 IEEE International, pp. 297-300, Dec. 7-9, 2009. |
Burr, G. W., et al., “Overview of candidate device technologies for storage-class memory,” IBM Journal of Research and Development , vol. 52, No. 4.5, pp. 449-464, Jul. 2008. |
Bez, R., et al., “Introduction to Flash memory,” Proceedings IEEE, 91(4), 489-502 (2003). |
Auth, C., et al., “45nm High-k + Metal Gate Strain-Enchanced Transistors,” Symposium on VLSI Technology Digest of Technical Papers, 2008, pp. 128-129. |
Jan, C. H., et al., “A 32nm SoC Platform Technology with 2nd Generation High-k/Metal Gate Transistors Optimized for Ultra Low Power, High Performance, and High Density Product Applications,” IEEE International Electronic Devices Meeting (IEDM), Dec. 7-9, 2009, pp. 1-4. |
Mistry, K., “A 45nm Logic Technology With High-K+Metal Gate Transistors, Strained Silicon, 9 Cu Interconnect Layers, 193nm Dry Patterning, and 100% Pb-Free Packaging,” Electron Devices Meeting, 2007, IEDM 2007, IEEE International, Dec. 10-12, 2007, p. 247. |
Ragnarsson, L., et al., “Ultralow-EOT (5 Å) Gate-First and Gate-Last High Performance CMOS Achieved by Gate-Electrode Optimization,” IEDM Tech. Dig., pp. 663-666, 2009. |
Sen, P & Kim, C.J., “A Fast Liquid-Metal Droplet Microswitch Using EWOD-Driven Contact-Line Sliding”, Journal of Microelectromechanical Systems, vol. 18, No. 1, Feb. 2009, pp. 174-185. |
Iwai, H., et.al., “NiSi Salicide Technology for Scaled CMOS,” Microelectronic Engineering, 60 (2002), pp. 157-169. |
Froment, B., et.al., “Nickel vs. Cobalt Silicide integration for sub-50nm CMOS”, IMEC ESS Circuits, 2003. pp. 215-219. |
James, D., “65 and 45-nm Devices—an Overview”, Semicon West, Jul. 2008, paper No. ctr_024377. |
Davis, J.A., et.al., “Interconnect Limits on Gigascale Integration(GSI) in the 21st Century”, Proc. IEEE, vol. 89, No. 3, pp. 305-324, Mar. 2001. |
Shino, T., et al., “Floating Body RAM Technology and its Scalability to 32nm Node and Beyond,” Electron Devices Meeting, 2006, IEDM '06, International, pp. 1-4, Dec. 11-13, 2006. |
Hamamoto, T., et al., “Overview and future challenges of floating body RAM (FBRAM) technology for 32 nm technology node and beyond”, Solid-State Electronics, vol. 53, Issue 7, Papers Selected from the 38th European Solid-State Device Research Conference—ESSDERC'08, Jul. 2009, pp. 676-683. |
Okhonin, S., et al., “New Generation of Z-RAM”, Electron Devices Meeting, 2007. IEDM 2007. IEEE International, pp. 925-928, Dec. 10-12, 2007. |
Henttinen, K. et al., “Mechanically Induced Si Layer Transfer in Hydrogen-Implanted Si Wafers,” Applied Physics Letters, Apr. 24, 2000, p. 2370-2372, vol. 76, No. 17. |
Lee, C.-W., et al., “Junctionless multigate field-effect transistor,” Applied Physics Letters, vol. 94, pp. 053511-1 to 053511-2, 2009. |
Park, S. G., et al., “Implementation of HfSiON gate dielectric for sub-60nm DRAM dual gate oxide with recess channel array transistor (RCAT) and tungsten gate,” International Electron Devices Meeting, IEDM 2004, pp. 515-518, Dec. 13-15, 2004. |
Kim, J.Y., et al., “S-RCAT (sphere-shaped-recess-channel-array transistor) technology for 70nm DRAM feature size and beyond,” 2005 Symposium on VLSI Technology Digest of Technical Papers, 2005 pp. 34-35, Jun. 14-16, 2005. |
Oh, H.J., et al., “High-density low-power-operating DRAM device adopting 6F2 cell scheme with novel S-RCAT structure on 80nm feature size and beyond,” Solid-State Device Research Conference, ESSDERC 2005. Proceedings of 35th European , pp. 177-180, Sep. 12-16, 2005. |
Chung, S.-W., et al., “Highly Scalable Saddle-Fin (S-Fin) Transistor for Sub-50nm DRAM Technology,” 2006 Symposium on VLSI Technology Digest of Technical Papers, pp. 32-33. |
Lee, M. J., et al., “A Proposal on an Optimized Device Structure With Experimental Studies on Recent Devices for the DRAM Cell Transistor,” IEEE Transactions on Electron Devices, vol. 54, No. 12, pp. 3325-3335, Dec. 2007. |
Henttinen, K. et al., “Cold ion-cutting of hydrogen implanted Si,” J. Nucl. Instr. and Meth. in Phys. Res. B, 2002, pp. 761-766, vol. 190. |
Brumfiel, G., “Solar cells sliced and diced”, May 19, 2010, Nature News. |
Dragoi, et al., “Plasma-activated wafer bonding: the new low-temperature tool for MEMS fabrication”, Proc. SPIE, vol. 6589, 65890T (2007). |
Vengurlekar, A., et al., “Mechanism of Dopant Activation Enhancement in Shallow Junctions by Hydrogen”, Proceedings of the Materials Research Society, vol. 864, Spring 2005, E9.28.1-6. |
Yamada, M. et al., “Phosphor Free High-Luminous-Efficiency White Light-Emitting Diodes Composed of InGaN Multi-Quantum Well,” Japanese Journal of Applied Physics, 2002, pp. L246-L248, vol. 41. |
Guo, X. et al., “Cascade single-chip phosphor-free white light emitting diodes,” Applied Physics Letters, 2008, pp. 013507-1-013507-3, vol. 92. |
Takafuji, Y. et al., “Integration of Single Crystal Si TFTs and Circuits on a Large Glass Substrate,” IEEE International Electron Devices Meeting (IEDM), Dec. 7-9, 2009, pp. 1-4. |
Wierer, J.J. et al., “High-power AlGaInN flip-chip light-emitting diodes,” Applied Physics Letters, May 28, 2001, pp. 3379-3381, vol. 78, No. 22. |
El-Gamal, A., “Trends in CMOS Image Sensor Technology and Design,” International Electron Devices Meeting Digest of Technical Papers, Dec. 2002. |
Ahn, S.W., “Fabrication of a 50 nm half-pitch wire grid polarizer using nanoimprint lithography,” Nanotechnology, 2005, pp. 1874-1877, vol. 16, No. 9. |
Johnson, R.C., “Switching LEDs on and off to enlighten wireless communications,” EE Times, Jun. 2010, last accessed Oct. 11, 2010, <http://www.embeddedinternetdesign.com/design/225402094>. |
Ohsawa, et al., “Autonomous Refresh of Floating Body Cell (FBC)”, International Electron Device Meeting, 2008, pp. 801-804. |
Chen, P., et al., “Effects of Hydrogen Implantation Damage on the Performance of InP/InGaAs/InP p-i-n Photodiodes, Transferred on Silicon,” Applied Physics Letters, vol. 94, No. 1, Jan. 2009, pp. 012101-1 to 012101-3. |
Lee, D., et al., “Single-Crystalline Silicon Micromirrors Actuated by Self-Aligned Vertical Electrostatic Combdrives with Piston-Motion and Rotation Capability,” Sensors and Actuators A114, 2004, pp. 423-428. |
Shi, X., et al., “Characterization of Low-Temperature Processed Single-Crystalline Silicon Thin-Film Transistor on Glass,” IEEE Electron Device Letters, vol. 24, No. 9, Sep. 2003, pp. 574-576. |
Chen, W., et al., “InP Layer Transfer with Masked Implantation,” Electrochemical and Solid-State Letters, Issue 12, No. 4, Apr. 2009, H149-150. |
Feng, J., et al., “Integration of Germanium-on-Insulator and Silicon MOSFETs on a Silicon Substrate,” IEEE Electron Device Letters, vol. 27, No. 11, Nov. 2006, pp. 911-913. |
Zhang, S., et al., “Stacked CMOS Technology on SOI Substrate,” IEEE Electron Device Letters, vol. 25, No. 9, Sep. 2004, pp. 661-663. |
Brebner, G., “Tooling up for Reconfigurable System Design,” IEE Colloquium on Reconfigurable Systems, 1999, Ref. No. 1999/061, pp. 2/1-2/4. |
Bae, Y.-D., “A Single-Chip Programmable Platform Based on a Multithreaded Processor and Configurable Logic Clusters,” 2002 IEEE International Solid-State Circuits Conference, Feb. 3-7, 2002, Digest of Technical Papers, ISSCC, vol. 1, pp. 336-337. |
Lu, N.C.C., et al., “A Buried-Trench DRAM Cell Using a Self-aligned Epitaxy Over Trench Technology,” Electron Devices Meeting, IEDM '88 Technical Digest, International, 1988, pp. 588-591. |
Valsamakis, E.A., “Generator for a Custom Statistical Bipolar Transistor Model,” IEEE Journal of Solid-State Circuits, Apr. 1985, pp. 586-589, vol. SC-20, No. 2. |
Srivastava, P. et al., “Silicon Substrate Removal of GaN DHFETs for enhanced (>1100V) Breakdown Voltage,” Aug. 2010, IEEE Electron Device Letters, vol. 31, No. 8, pp. 851-852. |
Gosele, U., et al., “Semiconductor Wafer Bonding,” Annual Review of Materials Science, Aug. 1998, pp. 215-241, vol. 28. |
Spangler, L.J. et al., “A Technology for High Performance Single-Crystal Silicon-on-Insulator Transistors,” IEEE Electron Device Letters, Apr. 1987, pp. 137-139, vol. 8, No. 4. |
Larrieu, G., et al., “Low Temperature Implementation of Dopant-Segregated Band-edger Metallic S/D junctions in Thin-Body SOI p-MOSFETs”, Proceedings IEDM, 2007, pp. 147-150. |
Qui, Z., et al., “A Comparative Study of Two Different Schemes to Dopant Segregation at NiSi/Si and PtSi/Si Interfaces for Schottky Barrier Height Lowering”, IEEE Transactions on Electron Devices, vol. 55, No. 1, Jan. 2008, pp. 396-403. |
Khater, M.H., et al., “High-k/Metal-Gate Fully Depleted SOI CMOS With Single-Silicide Schottky Source/Drain With Sub-30-nm Gate Length”, IEEE Electron Device Letters, vol. 31, No. 4, Apr. 2010, pp. 275-277. |
Abramovici, M., “In-system silicon validation and debug”, (2008) IEEE Design and Test of Computers, 25 (3), pp. 216-223. |
Saxena, P., et al., “Repeater Scaling and Its Impact on CAD”, IEEE Transactions On Computer-Aided Design of Integrated Circuits and Systems, vol. 23, No. 4, Apr. 2004. |
Abrmovici, M., et al., A reconfigurable design-for-debug infrastructure for SoCs, (2006) Proceedings—Design Automation Conference, pp. 7-12. |
Anis, E., et al., “Low cost debug architecture using lossy compression for silicon debug”, (2007) Proceedings of the IEEE/ACM Design, pp. 225-230. |
Anis, E., et al., “On using lossless compression of debug data in embedded logic analysis”, (2007) Proceedings of the IEEE International Test Conference, paper 18.3, pp. 1-10. |
Boule, M., et al., “Adding debug enhancements to assertion checkers for hardware emulation and silicon debug”, (2006) Proceedings of the IEEE International Conference on Computer Design, pp. 294-299. |
Boule, M., et al., “Assertion checkers in verification, silicon debug and in-field diagnosis”, (2007) Proceedings—Eighth International Symposium on Quality Electronic Design, ISQED 2007, pp. 613-618. |
Burtscher, M., et al., “The VPC trace-compression algorithms”, (2005) IEEE Transactions on Computers, 54 (11), Nov. 2005, pp. 1329-1344. |
Frieden, B., “Trace port on powerPC 405 cores”, (2007) Electronic Product Design, 28 (6), pp. 12-14. |
Hopkins, A.B.T., et al., “Debug support for complex systems on-chip: A review”, (2006) IEEE Proceedings: Computers and Digital Techniques, 153 (4), Jul. 2006, pp. 197-207. |
Hsu, Y.-C., et al., “Visibility enhancement for silicon debug”, (2006) Proceedings—Design Automation Conference, Jul. 24-28, 2006, San Francisco, pp. 13-18. |
Josephson, D., et al., “The crazy mixed up world of silicon debug”, (2004) Proceedings of the Custom Integrated Circuits Conference, paper 30-1, pp. 665-670. |
Josephson, D.D., “The manic depression of microprocessor debug”, (2002) IEEE International Test Conference (TC), paper 23.4, pp. 657-663. |
Ko, H.F., et al., “Algorithms for state restoration and trace-signal selection for data acquisition in silicon debug”, (2009) IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 28 (2), pp. 285-297. |
Ko, H.F., et al., “Distributed embedded logic analysis for post-silicon validation of SOCs”, (2008) Proceedings of the IEEE International Test Conference, paper 16.3, pp. 755-763. |
Ko, H.F., et al., “Functional scan chain design at RTL for skewed-load delay fault testing”, (2004) Proceedings of the Asian Test Symposium, pp. 454-459. |
Ko, H.F., et al., “Resource-efficient programmable trigger units for post-silicon validation”, (2009) Proceedings of the 14th IEEE European Test Symposium, ETS 2009, pp. 17-22. |
Liu, X., et al., “On reusing test access mechanisms for debug data transfer in SoC post-silicon validation”, (2008) Proceedings of the Asian Test Symposium, pp. 303-308. |
Liu, X., et al., “Trace signal selection for visibility enhancement in post-silicon validation”, (2009) Proceedings DATE, pp. 1338-1343. |
McLaughlin, R., et al., “Automated debug of speed path failures using functional tests”, (2009) Proceedings of the IEEE VLSI Test Symposium, pp. 91-96. |
Morris, K., “On-Chip Debugging—Built-in Logic Analyzers on your FPGA”, (2004) Journal of FPGA and Structured ASIC, 2 (3). |
Nicolici, N., et al., “Design-for-debug for post-silicon validation: Can high-level descriptions help?”, (2009) Proceedings—IEEE International High-Level Design Validation and Test Workshop, HLDVT, pp. 172-175. |
Park, S.-B., et al., “IFRA: Instruction Footprint Recording and Analysis for Post-Silicon Bug Localization”, (2008) Design Automation Conference (DAC08), Jun. 8-13, 2008, Anaheim, CA, USA, pp. 373-378. |
Park, S.-B., et al., “Post-silicon bug localization in processors using instruction footprint recording and analysis (IFRA)”, (2009) IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 28 (10), pp. 1545-1558. |
Moore, B., et al., “High Throughput Non-contact SiP Testing”, (2007) Proceedings—International Test Conference, paper 12.3. |
Riley, M.W., et al., “Cell broadband engine debugging for unknown events”, (2007) IEEE Design and Test of Computers, 24 (5), pp. 486-493. |
Vermeulen, B., “Functional debug techniques for embedded systems”, (2008) IEEE Design and Test of Computers, 25 (3), pp. 208-215. |
Vermeulen, B., et al., “Automatic Generation of Breakpoint Hardware for Silicon Debug”, Proceeding of the 41st Design Automation Conference, Jun. 7-11, 2004, p. 514-517. |
Vermeulen, B., et al., “Design for debug: Catching design errors in digital chips”, (2002) IEEE Design and Test of Computers, 19 (3), pp. 37-45. |
Vermeulen, B., et al., “Core-based scan architecture for silicon debug”, (2002) IEEE International Test Conference (TC), pp. 638-647. |
Vanrootselaar, G. J., et al., “Silicon debug: scan chains alone are not enough”, (1999) IEEE International Test Conference (TC), pp. 892-902. |
Kim, G.-S., et al., “A 25-mV-sensitivity 2-Gb/s optimum-logic-threshold capacitive-coupling receiver for wireless wafer probing systems”, (2009) IEEE Transactions on Circuits and Systems II: Express Briefs, 56 (9), pp. 709-713. |
Sellathamby, C.V., et al., “Non-contact wafer probe using wireless probe cards”, (2005) Proceedings—International Test Conference, 2005, pp. 447-452. |
Jung, S.-M., et al., “Soft Error Immune 0.46pm2 SRAM Cell with MIM Node Capacitor by 65nm CMOS Technology for Ultra High Speed SRAM”, IEDM 2003, pp. 289-292. |
Brillouet, M., “Emerging Technologies on Silicon”, IEDM 2004, pp. 17-24. |
Meindl, J. D., “Beyond Moore's Law: The Interconnect Era”, IEEE Computing in Science & Engineering, Jan./Feb. 2003, pp. 20-24. |
Lin, X., et al., “Local Clustering 3-D Stacked CMOS Technology for Interconnect Loading Reduction”, IEEE Transactions on electron Devices, vol. 53, No. 6, Jun. 2006, pp. 1405-1410. |
He, T., et al., “Controllable Molecular Modulation of Conductivity in Silicon-Based Devices”, J. Am. Chem. Soc. 2009, 131, 10023-10030. |
Henley, F., “Engineered Substrates Using the Nanocleave Process”, SemiconWest, TechXPOT Conference—Challenges in Device Scaling, Jul. 19, 2006, San Francisco. |
Diamant, G., et al., “Integrated Circuits based on Nanoscale Vacuum Phototubes”, Applied Physics Letters 92, 262903-1 to 262903-3 (2008). |
Landesberger, C., et al., “Carrier techniques for thin wafer processing”, CS MANTECH Conference, May 14-17, 2007 Austin, Texas, pp. 33-36. |
Shen, W., et al., “Mercury Droplet Micro switch for Re-configurable Circuit Interconnect”, The 12th International Conference on Solid State Sensors, Actuators and Microsystems. Boston, Jun. 8-12, 2003, pp. 464-467. |
Bangsaruntip, S., et al., “Gate-all-around Silicon Nanowire 25-Stage CMOS Ring Oscillators with Diameter Down to 3 nm”, 2010 Symposium on VLSI Technology Digest of papers, pp. 21-22. |
Borland, J.O., “Low Temperature Activation Of Ion Implanted Dopants: A Review”, International Workshop on Junction technology 2002, S7-3, Japan Society of Applied Physics, pp. 85-88. |
Vengurlekar, A., et al., “Hydrogen Plasma Enhancement of Boron Activation in Shallow Junctions”, Applied Physics Letters, vol. 85, No. 18, Nov. 1, 2004, pp. 4052-4054. |
El-Maleh, A. H., et al., “Transistor-Level Defect Tolerant Digital System Design at the Nanoscale”, Research Proposal Submitted to Internal Track Research Grant Programs, 2007. Internal Track Research Grant Programs. |
Austin, T., et al., “Reliable Systems on Unreliable Fabrics”, IEEE Design & Test of Computers, Jul./Aug. 2008, vol. 25, issue 4, pp. 322-332. |
Borkar, S., “Designing Reliable Systems from Unreliable Components: The Challenges of Transistor Variability and Degradation”, IEEE Micro, IEEE Computer Society, Nov.-Dec. 2005, pp. 10-16. |
Zhu, S., et al., “N-Type Schottky Barrier Source/Drain MOSFET Using Ytterbium Silicide”, IEEE Electron Device Letters, vol. 25, No. 8, Aug. 2004, pp. 565-567. |
Zhang, Z., et al., “Sharp Reduction of Contact Resistivities by Effective Schottky Barrier Lowering With Silicides as Diffusion Sources,” IEEE Electron Device Letters, vol. 31, No. 7, Jul. 2010, pp. 731-733. |
Lee, R. T.P., et al., “Novel Epitaxial Nickel Aluminide-Silicide with Low Schottky-Barrier and Series Resistance for Enhanced Performance of Dopant-Segregated Source/Drain N-channel MuGFETs”, 2007 Symposium on VLSI Technology Digest of Technical Papers, pp. 108-109. |
Awano, M., et al., “Advanced DSS MOSFET Technology for Ultrahigh Performance Applications”, 2008 Symposium on VLSI Technology Digest of Technical Papers, pp. 24-25. |
Choi, S.-J., et al., “Performance Breakthrough in NOR Flash Memory with Dopant-Segregated Schottky-Barrier (DSSB) SONOS Devices”, 2009 Symposium of VLSI Technology Digest, pp. 222-223. |
Zhang, M., et al., “Schottky barrier height modulation using dopant segregation in Schottky-barrier SOI-MOSFETs”, Proceeding of ESSDERC, Grenoble, France, 2005, pp. 457-460. |
Larrieu, G., et al., “Arsenic-Segregated Rare-Earth Silicide Junctions: Reduction of Schottky Barrier and Integration in Metallic n-MOSFETs on SOI”, IEEE Electron Device Letters, vol. 30, No. 12, Dec. 2009, pp. 1266-1268. |
Ko, C.H., et al., “NiSi Schottky Barrier Process-Strained Si (SB-PSS) CMOS Technology for High Performance Applications”, 2006 Symposium on VLSI Technology Digest of Technical Papers. |
Kinoshita, A., et al., “Solution for High-Performance Schottky-Source/Drain MOSFETs: Schottky Barrier Height Engineering with Dopant Segregation Technique”, 2004 Symposium on VLSI Technology Digest of Technical Papers, pp. 168-169. |
Kinoshita, A., et al., “High-performance 50-nm-Gate-Length Schottky-Source/Drain MOSFETs with Dopant-Segregation Junctions”, 2005 Symposium on VLSI Technology Digest of Technical Papers, pp. 158-159. |
Kaneko, A., et al., “High-Performance FinFET with Dopant-Segregated Schottky Source/Drain”, IEDM 2006. |
Kinoshita, A., et al., “Ultra Low Voltage Operations in Bulk CMOS Logic Circuits with Dopant Segregated Schottky Source/Drain Transistors”, IEDM 2006. |
Kinoshita, A., et al., “Comprehensive Study on Injection Velocity Enhancement in Dopant-Segregated Schottky MOSFETs”, IEDM 2006. |
Choi, S.-J., et al., “High Speed Flash Memory and 1T-DRAM on Dopant Segregated Schottky Barrier (DSSB) FinFET SONOS Device for Multi-functional SoC Applications”, 2008 IEDM, pp. 223-226. |
Chin, Y.K., et al., “Excimer Laser-Annealed Dopant Segregated Schottky (ELA-DSS) Si Nanowire Gate-All-Around (GAA) pFET with Near Zero Effective Schottky Barrier Height (SBH)”, IEDM 2009, pp. 935-938. |
Agoura Technologies white paper, “Wire Grid Polarizers: a New High Contrast Polarizer Technology for Liquid Crystal Displays”, 2008, pp. 1-12. |
Unipixel Displays, Inc. white paper, “Time Multi-plexed Optical Shutter (TMOS) Displays”, Jun. 2007, pp. 1-49. |
Azevedo, I. L., et al., “The Transition to Solid-State Lighting”, Proc. IEEE, vol. 97, No. 3, Mar. 2009, pp. 481-510. |
Crawford, M.H., “LEDs for Solid-State Lighting: Performance Challenges and Recent Advances”, IEEE Journal of Selected Topics in Quantum Electronics, vol. 15, No. 4, Jul./Aug. 2009, pp. 1028-1040. |
Tong, Q.-Y., et al., “A “smarter-cut” approach to low temperature silicon layer transfer”, Applied Physics Letters, vol. 72, No. 1, Jan. 5, 1998, pp. 49-51. |
Tong, Q.-Y., et al., “Low Temperature Si Layer Splitting”, Proceedings 1997 IEEE International SOI Conference, Oct. 1997, pp. 126-127. |
Nguyen, P., et al., “Systematic study of the splitting kinetic of H/He co-implanted substrate”, SOI Conference, 2003, pp. 132-134. |
Ma, X., et al., “A high-quality SOI structure fabricated by low-temperature technology with B+/H+ co-implantation and plasma bonding”, Semiconductor Science and Technology, vol. 21, 2006, pp. 959-963. |
Yu, C.Y., et al., “Low-temperature fabrication and characterization of Ge-on-insulator structures”, Applied Physics Letters, vol. 89, 101913-1 to 101913-2 (2006). |
Li, Y. A., et al., “Surface Roughness of Hydrogen Ion Cut Low Temperature Bonded Thin Film Layers”, Japan Journal of Applied Physics, vol. 39 (2000), Part 1, No. 1, pp. 275-276. |
Hoechbauer, T., et al., “Comparison of thermally and mechanically induced Si layer transfer in hydrogen-implanted Si wafers”, Nuclear Instruments and Methods in Physics Research B, vol. 216 (2004), pp. 257-263. |
Aspar, B., et al., “Transfer of structured and patterned thin silicon films using the Smart-Cut process”, Electronics Letters, Oct. 10, 1996, vol. 32, No. 21, pp. 1985-1986. |
Agarwal, A., et al., “Efficient production of silicon-on-insulator films by co-implantation of He+ with H+'” Applied Physics Letters, vol. 72, No. 9, Mar. 1998, pp. 1086-1088. |
Cook III, G. O., et al., “Overview of transient liquid phase and partial transient liquid phase bonding,” Journal of Material Science, vol. 46, 2011, pp. 5305-5323. |
Moustris, G. P., et al., “Evolution of autonomous and semi-autonomous robotic surgical systems: a review of the literature,” International Journal of Medical Robotics and Computer Assisted Surgery, Wiley Online Library, 2011, DOI: 10.10002/rcs.408. |
Subbarao, M., et al., “Depth from Defocus: A Spatial Domain Approach,” International Journal of Computer Vision, vol. 13, No. 3, pp. 271-294 (1994). |
Subbarao, M., et al., “Focused Image Recovery from Two Defocused Images Recorded with Different Camera Settings,” IEEE Transactions on Image Processing, vol. 4, No. 12, Dec. 1995, pp. 1613-1628. |
Guseynov, N. A., et al., “Ultrasonic Treatment Restores the Photoelectric Parameters of Silicon Solar Cells Degraded under the Action of 60Cobalt Gamma Radiation,” Technical Physics Letters, vol. 33, No. 1, pp. 18-21 (2007). |
Gawlik, G., et al., “GaAs on Si: towards a low-temperature “smart-cut” technology”, Vacuum, vol. 70, pp. 103-107 (2003). |
Weldon, M. K., et al., “Mechanism of Silicon Exfoliation Induced by Hydrogen/Helium Co-implantation,” Applied Physics Letters, vol. 73, No. 25, pp. 3721-3723 (1998). |
Miller, D.A.B., “Optical interconnects to electronic chips,” Applied Optics, vol. 49, No. 25, Sep. 1, 2010, pp. F59-F70. |
En, W. G., et al., “The Genesis Process: A New SOI wafer fabrication method”, Proceedings 1998 IEEE International SOI Conference, Oct. 1998, pp. 163-164. |
Uchikoga, S., et al., “Low temperature poly-Si TFT-LCD by excimer laser anneal,” Thin Solid Films, vol. 383 (2001), pp. 19-24. |
He, M., et al., “Large Polycrystalline Silicon Grains Prepared by Excimer Laser Crystallization of Sputtered Amorphous Silicon Film with Process Temperature at 100 C,” Japanese Journal of Applied Physics, vol. 46, No. 3B, 2007, pp. 1245-1249. |
Kim, S.D., et al., “Advanced source/drain engineering for box-shaped ultra shallow junction formation using laser annealing and pre-amorphization implantation in sub-100-nm SOI CMOS,” IEEE Trans. Electron Devices, vol. 49, No. 10, pp. 1748-1754, Oct. 2002. |
Ahn, J., et al., “High-quality MOSFET's with ultrathin LPCVD gate SiO2,” IEEE Electron Device Lett., vol. 13, No. 4, pp. 186-188, Apr. 1992. |
Yang, M., et al., “High Performance CMOS Fabricated on Hybrid Substrate with Different Crystal Orientation,” Proceedings IEDM 2003. |
Yin, H., et al., “Scalable 3-D finlike poly-Si TFT and its nonvolatile memory application,” IEEE Trans. Electron Devices, vol. 55, No. 2, pp. 578-584, Feb. 2008. |
Kawaguchi, N., et al., “Pulsed Green-Laser Annealing for Single-Crystalline Silicon Film Transferred onto Silicon wafer and Non-alkaline Glass by Hydrogen-Induced Exfoliation,” Japanese Journal of Appl,ied Physics, vol. 46, No. 1, 2007, pp. 21-23. |
Faynot, O. et al., “Planar Fully depleted SOI technology: A Powerful architecture for the 20nm node and beyond,” Electron Devices Meeting (IEDM), 2010 IEEE International, vol., No., pp. 3.2.1, 3.2.4, Dec. 6-8, 2010. |
Khakifirooz, A., “ETSOI Technology for 20nm and Beyond”, SOI Consortium Workshop: Fully Depleted SOI, Apr. 28, 2011, Hsinchu Taiwan. |
Kim, I.-K., et al.,“Advanced Integration Technology for a Highly Scalable SOI DRAM with SOC (Silicon-On-Capacitors)”, IEDM 1996, pp. 96-605-608, 22.5.4. |
Lee, B.H., et al., “A Novel CMP Method for cost-effective Bonded SOI Wafer Fabrication,” Proceedings 1995 IEEE International SOI Conference, Oct. 1995, pp. 60-61. |
Topol, A.W., et al., “Enabling SOI-Based Assembly Technology for Three-Dimensional (3D) Integrated Circuits (ICs),” IEDM Tech. Digest, Dec. 5, 2005, pp. 363-366. |
Demeester, P. et al., “Epitaxial lift-off and its applications,” Semicond. Sci. Technol., 1993, pp. 1124-1135, vol. 8. |
Yoon, J., et al., “GaAs Photovoltaics and optoelectronics using releasable multilayer epitaxial assemblies”, Nature, vol. 465, May 20, 2010, pp. 329-334. |
Bakir and Meindl, “Integrated Interconnect Technologies for 3D Nanoelectronic Systems”, Artech House, 2009, Chapter 13, pp. 389-419. |
Tanaka, H., et al., “Bit Cost Scalable Technology with Punch and Plug Process for Ultra High Density Flash Memory,” VLSI Technology, 2007 IEEE Symposium on , vol., No., pp. 14-15, Jun. 12-14, 2007. |
Lue, H.-T., et al., “A Highly Scalable 8-Layer 3D Vertical-Gate (VG) TFT NAND Flash Using Junction-Free Buried Channel BE-SONOS Device,” Symposium on VLSI Technology, 2010, pp. 131-132. |
Kim, W., et al., “Multi-layered Vertical Gate NAND Flash overcoming stacking limit for terabit density storage”, Symposium on VLSI Technology Digest of Technical Papers, 2009, pp. 188-189. |
Dicioccio, L., et. al., “Direct bonding for wafer level 3D integration”, ICICDT 2010, pp. 110-113. |
Kim, W., et al., “Multi-Layered Vertical Gate NAND Flash Overcoming Stacking Limit for Terabit Density Storage,” Symposium on VLSI Technology, 2009, pp. 188-189. |
Walker, A. J., “Sub-50nm Dual-Gate Thin-Film Transistors for Monolithic 3-D Flash”, IEEE Trans. Elect. Dev., vol. 56, No. 11, pp. 2703-2710, Nov. 2009. |
Hubert, A., et al., “A Stacked SONOS Technology, Up to 4 Levels and 6nm Crystalline Nanowires, with Gate-All-Around or Independent Gates (ΦFlash), Suitable for Full 3D Integration”, International Electron Devices Meeting, 2009, pp. 637-640. |
Celler, G.K. et al., “Frontiers of silicon-on-insulator,” J. App. Phys., May 1, 2003, pp. 4955-4978, vol. 93, No. 9. |
Rajendran, B., et al., “Electrical Integrity of MOS Devices in Laser Annealed 3D IC Structures”, proceedings VLSI Multi Level Interconnect Conference 2004, pp. 73-74. |
Rajendran, B., “Sequential 3D IC Fabrication: Challenges and Prospects”, Proceedings of VLSI Multi Level Interconnect Conference 2006, pp. 57-64. |
Jung, S.-M., et al., “The revolutionary and truly 3-dimensional 25F2 SRAM technology with the smallest S3 (stacked single-crystal Si) cell, 0.16um2, and SSTFT (stacked single-crystal thin film transistor) for ultra high density SRAM,” VLSI Technology, 2004. Digest of Technical Papers, pp. 228-229, Jun. 15-17, 2004. |
Hui, K. N., et al., “Design of vertically-stacked polychromatic light-emitting diodes,” Optics Express, Jun. 8, 2009, pp. 9873-9878, vol. 17, No. 12. |
Chuai, D. X., et al., “A Trichromatic Phosphor-Free White Light-Emitting Diode by Using Adhesive Bonding Scheme,” Proc. SPIE, 2009, vol. 7635. |
Suntharalingam, V. et al., “Megapixel CMOS Image Sensor Fabricated in Three-Dimensional Integrated Circuit Technology,” Solid-State Circuits Conference, Digest of Technical Papers, ISSCC, Aug. 29, 2005, pp. 356-357, vol. 1. |
Coudrain, P. et al., “Setting up 3D Sequential Integration for Back-Illuminated CMOS Image Sensors with Highly Miniaturized Pixels with Low Temperature Fully-Depleted SOI Transistors,” IEDM, 2008, pp. 1-4. |
Flamand, G. et al., “Towards Highly Efficient 4-Terminal Mechanical Photovoltaic Stacks,” III-VS Review, Sep.-Oct. 2006, pp. 24-27, vol. 19, Issue 7. |
Zahler, J.M. et al., “Wafer Bonding and Layer Transfer Processes for High Efficiency Solar Cells,” Photovoltaic Specialists Conference, Conference Record of the Twenty-Ninth IEEE, May 19-24, 2002, pp. 1039-1042. |
Sekar, D. C., et al., “A 3D-IC Technology with Integrated Microchannel Cooling”, Proc. Intl. Interconnect Technology Conference, 2008, pp. 13-15. |
Brunschweiler, T., et al., “Forced Convective Interlayer Cooling in Vertically Integrated Packages,” Proc. Intersoc. Conference on Thermal Management (ITHERM), 2008, pp. 1114-1125. |
Yu, H., et al., “Allocating Power Ground Vias in 3D ICs for Simultaneous Power and Thermal Integrity” ACM Transactions on Design Automation of Electronic Systems (TODAES), vol. 14, No. 3, Article 41, May 2009, pp. 41.1-41.31. |
Motoyoshi, M., “3D-IC Integration,” 3rd Stanford and Tohoku University Joint Open Workshop, Dec. 4, 2009, pp. 1-52. |
Wong, S., et al., “Monolithic 3D Integrated Circuits,” VLSI Technology, Systems and Applications, 2007, International Symposium on VLSI-TSA 2007, pp. 1-4. |
Batude, P., et al., “Advances in 3D CMOS Sequential Integration,” 2009 IEEE International Electron Devices Meeting (Baltimore, Maryland), Dec. 7-9, 2009, pp. 345-348. |
Tan, C.S., et al., “Wafer Level 3-D ICs Process Technology,” ISBN-10: 0387765328, Springer, 1st Ed., Sep. 19, 2008, pp. v-xii, 34, 58, and 59. |
Yoon, S.W. et al., “Fabrication and Packaging of Microbump Interconnections for 3D TSV,” IEEE International Conference on 3D System Integration (3DIC), Sep. 28-30, 2009, pp. 1-5. |
Franzon, P.D. et al., “Design and CAD for 3D Integrated Circuits,” 45th ACM/IEEE Design, Automation Conference (DAC), Jun. 8-13, 2008, pp. 668-673. |
Lajevardi, P., “Design of a 3-Dimension FPGA,” Thesis paper, University of British Columbia, Submitted to Dept. of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Jul. 2005, pp. 1-71. |
Dong, C. et al., “Reconfigurable Circuit Design with Nanomaterials,” Design, Automation & Test in Europe Conference & Exhibition, Apr. 20-24, 2009, pp. 442-447. |
Razavi, S.A., et al., “A Tileable Switch Module Architecture for Homogeneous 3D FPGAs,” IEEE International Conference on 3D System Integration (3DIC), Sep. 28-30, 2009, 4 pages. |
Bakir M., et al., “3D Device-Stacking Technology for Memory,” Chptr. 13.4, pp. 407-410, in “Integrated Interconnect Technologies for 3D Nano Electronic Systems”, 2009, Artech House. |
Weis, M. et al., “Stacked 3-Dimensional 6T SRAM Cell with Independent Double Gate Transistors,” IC Design and Technology, May 18-20, 2009. |
Doucette, P., “Integrating Photonics: Hitachi, Oki Put LEDs on Silicon,” Solid State Technology, Jan. 2007, p. 22, vol. 50, No. 1. |
Luo, Z.S. et al., “Enhancement of (In, Ga)N Light-emitting Diode Performance by Laser Liftoff and Transfer from Sapphire to Silicon,” Photonics Technology Letters, Oct. 2002, pp. 1400-1402, vol. 14, No. 10. |
Zahler, J.M. et al., “Wafer Bonding and Layer Transfer Processes for High Efficiency Solar Cells,” NCPV and Solar Program Review Meeting, 2003, pp. 723-726. |
Kada, M., “Updated results of R&D on functionally innovative 3D-integrated circuit (dream chip) technology in FY2009”, (2010) International Microsystems Packaging Assembly and Circuits Technology Conference, IMPACT 2010 and International 3D IC Conference, Proceedings. |
Kada, M., “Development of functionally innovative 3D-integrated circuit (dream chip) technology / high-density 3D-integration technology for multifunctional devices”, (2009) IEEE International Conference on 3D System Integration, 3DIC 2009. |
Marchal, P., et al., “3-D technology assessment: Path-finding the technology/design sweet-spot”, (2009) Proceedings of the IEEE, 97 (1), pp. 96-107. |
Xie Y., et al., “Design space exploration for 3D architectures”, (2006) ACM Journal on Emerging Technologies in Computing Systems, 2 (2), Apr. 2006, pp. 65-103. |
Souri, S., et al., “Multiple Si layers ICs: motivation, performance analysis, and design Implications”, (2000) Proceedings—Design Automation Conference, pp. 213-220. |
Vinet, M., et.al., “3D monolithic integration: Technological challenges and electrical results”, Microelectronic Engineering Apr. 2011 vol. 88, Issue 4, pp. 331-335. |
Bobba, S. et al., “CELONCEL: Effective Design Technique for 3-D Monolithic Integration targeting High Performance Integrated Circuits”, Asia pacific DAC 2011, paper 4A-4. |
Choudhury, D., “3D Integration Technologies for Emerging Microsystems”, IEEE Proceedings of the IMS 2010, pp. 1-4. |
Lee, Y.-J., et. al, “3D 65nm CMOS with 320°C Microwave Dopant Activation”, IEDM 2010, pp. 1-4. |
Crnogorac, F., et al., “Semiconductor crystal islands for three-dimensional integration”, J. Vac. Sci. Technol. B 28(6), Nov./Dec. 2010, pp. C6P53-C6P58. |
Park, J.-H., et al., “N-Channel Germanium MOSFET Fabricated Below 360 °C by Cobalt-Induced Dopant Activation for Monolithic Three-Dimensional-ICs”, IEEE Electron Device Letters, vol. 32, No. 3, Mar. 2011, pp. 234-236. |
Jung, S.-M., et al., “Highly Area Efficient and Cost Effective Double Stacked S3( Stacked Single-crystal Si ) Peripheral CMOS SSTFT and SRAM Cell Technology for 512M bit density SRAM”, IEDM 2003, pp. 265-268. |
Joyner, J.W., “Opportunities and Limitations of Three-dimensional Integration for Interconnect Design”, PhD Thesis, Georgia Institute of Technology, Jul. 2003. |
Choi, S.-J., “A Novel TFT with a Laterally Engineered Bandgap for of 3D Logic and Flash Memory”, 2010 Symposium of VLSI Technology Digest, pp. 111-112. |
Radu, I., et al., “Recent Developments of Cu-Cu non-thermo compression bonding for wafer-to-wafer 3D stacking”, IEEE 3D Systems Integration Conference (3DIC), Nov. 16-18, 2010. |
Gaudin, G., et al., “Low temperature direct wafer to wafer bonding for 3D integration”, 3D Systems Integration Conference (3DIC), IEEE, 2010, Munich, Nov. 16-18, 2010, pp. 1-4. |
Jung, S.-M., et al., ““Three Dimensionally Stacked NAND Flash Memory Technology Using Stacking Single Crystal Si Layers on ILD and TANOS Structure for Beyond 30nm Node””, IEDM 2006, Dec. 11-13, 2006. |
Souri, S. J., “Interconnect Performance in 3-Dimensional Integrated Circuits”, PhD Thesis, Stanford, Jul. 2003. |
Uemoto, Y., et al., “A High-Performance Stacked-CMOS SRAM Cell by Solid Phase Growth Technique”, Symposium on VLSI Technology, 2010, pp. 21-22. |
Jung, S.-M., et al., “Highly Cost Effective and High Performance 65nm S3( Stacked Single-crystal Si ) SRAM Technology with 25F2, 0.16um2 cell and doubly Stacked SSTFT Cell Transistors for Ultra High Density and High Speed Applications”, 2005 Symposium on VLSI Technology Digest of Technical papers, pp. 220-221. |
Steen, S.E., et al., “Overlay as the key to drive wafer scale 3D integration”, Microelectronic Engineering 84 (2007) 1412-1415. |
Maeda, N., et al., “Development of Sub 10-μm Ultra-Thinning Technology using Device Wafers for 3D Manufacturing of Terabit Memory”, 2010 Symposium on VLSI Technology Digest of Technical Papers, pp. 105-106. |
Chan, M., et al., “3-Dimensional Integration for Interconnect Reduction in for Nano-CMOS Technologies”, IEEE Tencon, Nov. 23, 2006, Hong Kong. |
Dong, X., et al., “Chapter 10: System-Level 3D IC Cost Analysis and Design Exploration”, in Xie, Y., et al., “Three-Dimensional Integrated Circuit Design”, book in series “Integrated Circuits and Systems” ed. A. Andrakasan, Springer 2010. |
Naito, T., et al., “World's first monolithic 3D-FPGA with TFT SRAM over 90nm 9 layer Cu CMOS”, 2010 Symposium on VLSI Technology Digest of Technical Papers, pp. 219-220. |
Bernard, E., et al., “Novel integration process and performances analysis of Low STandby Power (LSTP) 3D Multi-Channel CMOSFET (MCFET) on SOI with Metal / High-K Gate stack”, 2008 Symposium on VLSI Technology Digest of Technical Papers, pp. 16-17. |
Cong, J., et al., “Quantitative Studies of Impact of 3D IC Design on Repeater Usage”, Proceedings of International VLSI/ULSI Multilevel Interconnection Conference, pp. 344-348, 2008. |
Gutmann, R.J., et al., “Wafer-Level Three-Dimensional Monolithic Integration for Intelligent Wireless Terminals”, Journal of Semiconductor Technology and Science, vol. 4, No. 3, Sep. 2004, pp. 196-203. |
Crnogorac, F., et al., “Nano-graphoepitaxy of semiconductors for 3D integration”, Microelectronic Engineering 84 (2007) 891-894. |
Koyanagi, M, “Different Approaches to 3D Chips”, 3D IC Review, Stanford University, May 2005. |
Koyanagi, M, “Three-Dimensional Integration Technology and Integrated Systems”, ASPDAC 2009 presentation. |
Koyanagi, M., et al., “Three-Dimensional Integration Technology and Integrated Systems”, ASPDAC 2009, paper 4D-1, pp. 409-415. |
Hayashi, Y., et al., “A New Three Dimensional IC Fabrication Technology Stacking Thin Film Dual-CMOS Layers”, IEDM 1991, paper 25.6.1, pp. 657-660. |
Clavelier, L., et al., “Engineered Substrates for Future More Moore and More Than Moore Integrated Devices”, IEDM 2010, paper 2.6.1, pp. 42-45. |
Kim, K., “From The Future Si Technology Perspective: Challenges and Opportunities”, IEDM 2010, pp. 1.1.1-1.1.9. |
Ababei, C., et al., “Exploring Potential Benefits of 3D FPGA Integration”, in book by Becker, J.et al. Eds., “Field Programmable Logic 2004”, LNCS 3203, pp. 874-880, 2004, Springer-Verlag Berlin Heidelberg. |
Ramaswami, S., “3D TSV IC Processing”, 3DIC Technology Forum Semicon Taiwan 2010, Sep. 9, 2010. |
Davis, W.R., et al., “Demystifying 3D Ics: Pros and Cons of Going Vertical”, IEEE Design and Test of Computers, Nov.-Dec. 2005, pp. 498-510. |
Lin, M., et al., “Performance Benefits of Monolithically Stacked 3DFPGA”, FPGA06, Feb. 22-24, 2006, Monterey, California, pp. 113-122. |
Dong, C., et al., “Performance and Power Evaluation of a 3D CMOS/Nanomaterial Reconfigurable Architecture”, ICCAD 2007, pp. 758-764. |
Gojman, B., et al., “3D Nanowire-Based Programmable Logic”, International Conference on Nano-Networks (Nanonets 2006), Sep. 14-16, 2006. |
Dong, C., et al., “3-D nFPGA: A Reconfigurable Architecture for 3-D CMOS/Nanomaterial Hybrid Digital Circuits”, IEEE Transactions on Circuits and Systems, vol. 54, No. 11, Nov. 2007, pp. 2489-2501. |
Golshani, N., et al., “Monolithic 3D Integration of SRAM and Image Sensor Using Two Layers of Single Grain Silicon”, 2010 IEEE International 3D Systems Integration Conference (3DIC), Nov. 16-18, 2010, pp. 1-4. |
Rajendran, B., et al., “Thermal Simulation of laser Annealing for 3D Integration”, Proceedings VMIC 2003. |
Woo, H.-J., et al., “Hydrogen Ion Implantation Mechanism in GaAs-on-insulator Wafer Formation by Ion-cut Process”, Journal of Semiconductor Technology and Science, vol. 6, No. 2, Jun. 2006, pp. 95-100. |
Sadaka, M., et al., “Building Blocks for wafer level 3D integration”,www.electroiq.com, Aug. 18, 2010, last accessed Aug. 18, 2010. |
Madan, N., et al., “Leveraging 3D Technology for Improved Reliability,” Proceedings of the 40th Annual IEEE/ACM International Symposium on Microarchitecture (MICRO 2007), IEEE Computer Society. |
Hayashi, Y., et al., “Fabrication of Three Dimensional IC Using “Cumulatively Bonded IC” (CUBIC) Technology”, 1990 Symposium on VLSI Technology, pp. 95-96. |
Akasaka, Y., “Three Dimensional IC Trends,” Proceedings of the IEEE, vol. 24, No. 12, Dec. 1986. |
Guarini, K. W., et al., “Electrical Integrity of State-of-the-Art 0.13um SOI Device and Circuits Transferred for Three-Dimensional (3D) Integrated Circuit (IC) Fabrication,” IEDM 2002, paper 16.6, pp. 943-945. |
Kunio, T., et al., “Three Dimensional Ics, Having Four Stacked Active Device Layers,” IEDM 1989, paper 34.6, pp. 837-840. |
Gaillardon, P-E., et al., “Can We Go Towards True 3-D Architectures?,” DAC 2011, paper 58, pp. 282-283. |
Yun, J-G., et al., “Single-Crystalline Si Stacked Array (STAR) NAND Flash Memory,” IEEE Transactions on Electron Devices, vol. 58, No. 4, Apr. 2011, pp. 1006-1014. |
Kim, Y., et al., “Three-Dimensional NAND Flash Architecture Design Based on Single-Crystalline Stacked Array,” IEEE Transactions on Electron Devices, vol. 59, No. 1, Jan. 2012, pp. 35-45. |
Goplen, B., et al., “Thermal Via Placement in 3DICs,” Proceedings of the International Symposium on Physical Design, Apr. 3-6, 2005, San Francisco. |
Bobba, S., et al., “Performance Analysis of 3-D Monolithic Integrated Circuits,” 2010 IEEE International 3D Systems Integration Conference (3DIC), Nov. 2010, Munich, pp. 1-4. |
Batude, P., et al., “Demonstration of low temperature 3D sequential FDSOI integration down to 50nm gate length,” 2011 Symposium on VLSI Technology Digest of Technical Papers, pp. 158-159. |
Batude, P., et al., “Advances, Challenges and Opportunties in 3D CMOS Sequential Integration,” 2011 IEEE International Electron Devices Meeting, paper 7.3, Dec. 2011, pp. 151-154. |
Yun, C. H., et al., “Transfer of patterned ion-cut silicon layers”, Applied Physics Letters, vol. 73, No. 19, Nov. 1998, pp. 2772-2774. |
Ishihara, R., et al., “Monolithic 3D-ICs with single grain Si thin film transistors,” Solid-State Electronics 71 (2012) pp. 80-87. |
Lee, S. Y., et al., “Architecture of 3D Memory Cell Array on 3D IC,” IEEE International Memory Workshop, May 20, 2012, Monterey, CA. |
Lee, S. Y., et al., “3D IC Architecture for High Density Memories,” IEEE International Memory Workshop, p. 1-6, May 2010. |
Rajendran, B., et al., “CMOS transistor processing compatible with monolithic 3-D Integration,” Proceedings VMIC 2005. |
Huet, K., “Ultra Low Thermal Budget Laser Thermal Annealing for 3D Semiconductor and Photovoltaic Applications,” NCCAVS 2012 Junction Technology Group, Semicon West, San Francisco, Jul. 12, 2012. |
Derakhshandeh, J., et al., “A Study of the CMP Effect on the Quality of Thin Silicon Films Crystallized by Using the u-Czochralski Process,” Journal of the Korean Physical Society, vol. 54, No. 1, 2009, pp. 432-436. |
Kim, J., et al., “A Stacked Memory Device on Logic 3D Technology for Ultra-high-density Data Storage,” Nanotechnology, vol. 22, 254006 (2011). |
Lee, K. W., et al., “Three-dimensional shared memory fabricated using wafer stacking technology,” IEDM Tech. Dig., 2000, pp. 165-168. |
Chen, H. Y., et al., “HfOx Based Vertical Resistive Random Access Memory for Cost Effective 3D Cross-Point Architecture without Cell Selector,” Proceedings IEDM 2012, pp. 497-499. |
Huet, K., et al., “Ultra Low Thermal Budget Anneals for 3D Memories: Access Device Formation,” Ion Implantation Technology 2012, AIP Conf Proceedings 1496, 135-138 (2012). |
Batude, P., et al., “3D Monolithic Integration,” ISCAS 2011 pp. 2233-2236. |
Batude, P., et al., “3D Sequential Integration: A Key Enabling Technology for Heterogeneous C-Integration of New Function With CMOS,” IEEE Journal on Emerging and Selected Topics in Circuits and Systems (JETCAS), vol. 2, No. 4, Dec. 2012, pp. 714-722. |
Vinet, M., et.al., “Germanium on Insulator and new 3D architectures opportunities for integration”, International Journal of Nanotechnology, vol. 7, No. 4, (Aug. 2010) pp. 304-319. |
Bernstein, K., et al., “Interconnects in the Third Dimension: Design Challenges for 3DICs,” Design Automation Conference, 2007, DAC'07, 44th ACM/IEEE, vol., No., pp. 562-567, Jun. 4-8, 2007. |
Kuroda, T., “ThruChip Interface for Heterogeneous Chip Stacking,” ElectroChemicalSociety Transactions, 50 (14) 63-68 (2012). |
Miura, N., et al., “A Scalable 3D Heterogeneous Multi-Core Processor with Inductive-Coupling ThruChip Interface,” IEEE Micro Cool Chips XVI, Yokohama, Apr. 17-19, 2013, pp. 1-3(2013). |
Kuroda, T., “Wireless Proximity Communications for 3D System Integration,” Future Directions in IC and Package Design Workshop, Oct. 29, 2007. |
Qiang, J-Q, “3-D Hyperintegration and Packaging Technologies for Micro-Nano Systems,” Proceedings of the IEEE, 97.1 (2009) pp. 18-30. |
Lee, B.H., et al., “A Novel Pattern Transfer Process for Bonded SOI Giga-bit DRAMs,” Proceedings 1996 IEEE International SOI Conference, Oct. 1996, pp. 114-115. |
Wu, B., et al., “Extreme ultraviolet lithography and three dimensional circuits,” Applied Phyisics Reviews, 1, 011104 (2014). |
Delhougne, R., et al., “First Demonstration of Monocrystalline Silicon Macaroni Channel for 3-D NAND Memory Devices” IEEE VLSI Tech Digest, 2018, pp. 203-204. |
Number | Date | Country | |
---|---|---|---|
20190034575 A1 | Jan 2019 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 13862537 | Apr 2013 | US |
Child | 14672202 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 14672202 | Mar 2015 | US |
Child | 16149517 | US |