Automation system with mobile interface

Information

  • Patent Grant
  • 11782394
  • Patent Number
    11,782,394
  • Date Filed
    Monday, May 16, 2022
    a year ago
  • Date Issued
    Tuesday, October 10, 2023
    7 months ago
Abstract
Methods and systems for managing a premises are described. A gateway device may monitor a plurality of devices at a premises. A mobile device may receive, from the gateway device, data indicative of one or more events of the plurality of devices. The mobile device may output a user interface comprising status information associated with the plurality of devices. The user interface may allow for user input to generate control operations associated with the premises.
Description
BACKGROUND

Vendors such as premises vendors, communication service vendors, and Internet portal vendors need a solution for extending their relationship with vendees beyond the immediate transaction. Additionally, vendees desire additional premises management services beyond the immediate transaction for premises, communication services, or Internet portals. There is a need for advanced premises management services.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 shows an example of an overall network for premises management.



FIG. 2 shows an example of a homebuilder-branded Internet portal for premises management.



FIGS. 3A-3C show examples of detailed screens of the portal interface for premises management.



FIG. 3D shows a screen shot of an Internet Portal-branded portal for premises management according to an embodiment of the invention.



FIG. 3E shows a screen shot of a main portal summary page according to an embodiment of the invention.



FIG. 3F shows a screen shot of a portal showing details device information according to an embodiment, of the invention.



FIG. 3G shows an automation tab screen according to an embodiment of the invention.



FIG. 3H shows a system tab screen according to an embodiment of the invention.



FIG. 4 is a diagram of a business method for premises management.



FIG. 5 is a diagram of a method for premises management networking.



FIG. 6 illustrates an example of a control network environment.



FIG. 7 is a block diagram of a control network with a gateway.



FIG. 8 is a flow diagram showing data being transformed, physically and logically, by a gateway.



FIG. 9 is a flow diagram showing the data conversion.



FIG. 10 is a diagram showing a gateway binding mechanism.



FIG. 11 is a diagram showing a camera snapshot scenario.



FIG. 12 is a diagram showing a camera environment.





DETAILED DESCRIPTION


FIG. 1 shows an example of an overall network for premises management. A premises 110 has premises management devices such as a smart thermostat 112. The premises management devices are connected to a premises network 114 which can be, for example, an RF and/or power line network. The premises network 114 is connected to a gateway 116 which in turn is connected to a broadband device 119 such as a DSL, cable, or T1 line. The gateway 116 can alternatively or also be connected to a dial up modem 118. The premises 110 is connected to the Internet 120. The Internet 120 is connected to system managers at the network operations center 150. The Internet 120 is also connected to customers of the system manager, for example vendors such as premises vendors, communication service vendors, or Internet portal vendors. The Internet 120 is also connected to vendees 140, such as premises vendees, communication service vendees, or Internet portal vendees.



FIG. 2 shows an example of a homebuilder-branded Internet portal for premises management.



FIGS. 3A-3H show examples of detailed screens of the portal interface for premises management. FIG. 3A shows a main screen summarizing premises management services. FIG. 3B shows a screen summarizing security management services and safety management services. FIG. 3C shows a screen summarizing energy management services.



FIG. 3D is another example, illustrating how services offered by the system can be branded and incorporated into a third part web portal, for example, in a personal portal such as one provided by Yahoo. The screen includes the usual Yahoo portal content such as the stock pane on the left, the news pane on the top and the calendar pane on the right. The system-specific pane is included on the bottom where the user can access monitoring and control information on the home or business. The look and feel of the system pane can be tailored by the service provider.


The system portal summary page in FIG. 3E shows a snap-shot of the state of the various devices in the user premises. At the top left is a drop-down box that displays the name of the premises being shown on the screen. The user can change premises by clicking on this box and selecting a different premises. A series of tabs allow the user to switch to Details, Notifications, Automation, Schedules and Systems screens for performing other system functions. The various panes on this page highlight different features.


The status pane lists the different devices in the user premises along with their actual states. The pending updates pane shows the time of the last communication between the premises and the server as well as any pending updates waiting to be sent downlink to the premises. The pictures pane shows the last several (e.g. last four) pictures taken by the camera in the user premises. The user can click on a thumbnail picture to look at a larger version of the photo as well as access archived images for that camera, look at live video, take new pictures or delete photos. The schedule pane shows the schedules activities for the premises. The alarm history shows an archive of the most recent event and activity in the user premises. The reminders pane provides a means for the system to remind the user to perform certain activities or functions related to their home or business. The mode drop down button on the blue navigation bar allows the user to switch between the systems modes. The QuikControl drop down allows the user to control any device that is controllable (e.g. camera, thermostat, lamps, etc.).



FIG. 3F shows a details screen of the portal showing details device information. The details screen allows the user to show more detailed device data. The list on the left displays the system devices and their actual states/values. The pictures pane on the top right display the camera thumbnails (beyond the 4 displayed on the summary page). The thermostat pane on the bottom right shows the details of the thermostat data including the current temperature, cooling and heating set points as well as the thermostat mode.



FIG. 3G shows an automation tab screen. This screen shows how the user may assign automation rules to devices such that an event caused by a device can trigger one or more actions by other devices. The left column shows all possible events that can occur based on the devices that belong to this premises network. The three columns, one per mode, identify the action for each event for that mode. For example, the figure shows that when hall motion sensor occupied event occurs in the away mode, the conference room camera takes a picture. The bottom portion of the screen shows that the wireless keychain remote control's buttons can also be programmed by the user to perform any action desired.



FIG. 3H shows a system tab screen showing status of devices. The System screen shows a list of all the devices in the premises' network, including the gateway. Each device in the system is on a separate line. The first column shows the name of the device along with a status indicator which show different colors based on the status of the device (green for ok, yellow for offline, red for not found or problematic). There is also a “last update” column that displays the date and time of the last signal received from that device. The third column (device) describes the type and model number for that device. The user can get more detailed information about a device by clicking on the line corresponding to the respective device.



FIG. 4 is a diagram of a business method for premises management. In 410, an Internet portal is available for access to a vendee, such as a premises vendee, communication service vendee, and/or an Internet portal vendee. In 420, at least after a transaction between the vendor and the vendee, such as a premises transaction, a communication services transaction, and/or Internet portal services transaction, premises management services are provided via the Internet portal to the vendee. In 430, the Internet portal is branded with the brand of the vendor. The shown steps can be added to, removed, rearranged, and/or modified.



FIG. 5 shows a diagram of a method for premises management networking. In 510, premises management devices connected to a gateway at a premises are monitored. In 520, premises management devices connected to the gateway at the premises are controlled. In 530, an uplink-initiation signal associated with a network operations center server is received at the premises. In 540, in response to the uplink-initiation signal, communications between the gateway and the network operations center server are initiated from the gateway at the premises. In 550, during the communications between the gateway and the network operations center server, information associated with the premises management devices is communicated.


Property developers and service providers can:


1. Differentiate their offering from their competitors'


2. Generate new recurring revenue through new, value-added services


3. Reduce their operating costs


4. Increase the value of their offering


5. Increase the effectiveness and reach of their brand


6. Make smarter, knowledge-based business decisions


7. Increase customer retention and satisfaction


Additional content leverages the broadband infrastructure, thereby increasing the effective value of the broadband pipe.


Property developers/managers and service providers are facing ever increasing competition and lack the expertise, time and resources to offer control and telemetry services to their customers. Connecting people to devices is the next evolutionary step for the Internet.


Some of the architectural/design goals for the system are low cost, ease of use, and scalability.


The architecture and products/service offering is flexible enough to cater to the needs of the homeowner while being scalable and intuitive enough to allow for easy installation and minimal support.


Three types of customers are envisioned for the system. Although the ultimate end user is the property owner, customers can be: home developers and commercial property, e.g. multiple tenant unit (MTU) owners and managers; service providers (telcos, cable companies, ISPs, etc.); and homeowners or commercial building tenants.


The actual user of the services resides in the premises where, for example, the gateway and devices are installed. The system can be intuitive enough that the “average” end user can perform the installation and configuration steps.


The installer can be the person or entity that installs the gateway and the devices in the home, configures the gateway, connects the gateway to the Internet and/or telephone line and/or performs any troubleshooting necessary. Depending on the actual customer, the installer can be 1) the installation crew of the service provider or property developer, 2) an outsourced installation outfit hired by the service provider or property developer, 3) an outsourced installation outfit hired by the end user, or 4) the end user.


The premises gateway can be a low-cost and stand-alone unit that connects the in-premises devices to the server. The connectivity to the Internet can be accomplished via a broadband connection (T1, DSL or cable) and/or via the telephone line. Though broadband connectivity is preferred due to its persistence and throughput, telephone connectivity is recommended to be present as a back-up option in case the broadband connection is lost. For premises without a broadband connection (e.g., vacation homes) a telephone-only connection can be used.


The service portal provides an intuitive end user interface to the premises network as well as access to system and network configuration screens and user account information and settings.


Some embodiments of the overall system can be put in use through the following steps:


1. Customer need for telemetry services is established


2. Customer (via web or phone) orders a system


3. Customer acquires system (via service provider, builder, etc.)


4. A service account is established (by the service provider/builder or by the homeowner or system manager)


5. Gateway is registered (by the service provider/builder or by the homeowner)


6. Gateway sends network/device information to the server


7. Homeowner configures own home (alarms, notifications, binding, etc.)


8. Future devices are added to system either via pre-configuration by system manager or via the end user through configuration screens on portal


Each of these steps is described below:


Customer Need is Established


This can done through the property developer, the service provider sales channel or direct advertising by the system manager.


Customer Orders a System from System Manager


The customer specifies what kinds of devices are needed and where each one will reside in the premises (e.g., living room thermostat, lobby motion sensor, etc.). The user account is then appended by system manager to include this information as well as the actual unique ID for each device shipped to the customer.


Customer Acquires System


The gateway and devices can be acquired by the customer in several ways:


1. Pre-installed by the property builder/developer/manager or service provider


2. Directly purchased by the end user


The choice of devices can depend on the particular services and functionality desired by the customer.


Once the customer acquires the gateway and devices, the devices are physically installed in the premises. This task can be performed with the help of an installer, or for smaller premises, performed by the end user.


A Service Account is Established


This is generally done by the end user as the process uses personal information (name, payment option, etc.). The account registration involves the user logging on to the system manager web site and establishing a new account by entering name, address, phone number, payment details and/or the gateway serial number printed on the gateway in the end user's possession.


In some cases the system manager service account may already be pre-established with the gateway serial number and the end user simply has to update the account with personal and payment information. This scenario eliminates the need for the end user to deal with any cumbersome serial numbers or keys and is really more of a personalization step.


Multiple gateways can also be handled per user account.


Gateway is Registered


This step involves the association of the user account on the system manager server (established in the previous step) with an actual gateway in the user's home. The gateway is connected to a broadband network or the telephone line in the home.


For this step, the installer, for example, presses a SYNCH button on the gateway, and initiates an uplink communication from the gateway to the system manager server using a default (first-time) IP address or, in the case of a dial-up-only connection, a toll free number dial by the gateway.


Upon establishing a connection with the server and locating its corresponding user account (e.g., established in a prior step), the gateway acquires a system manager server IP address (to be used from that point on for all gateway to server communication), and changes its state from unregistered to registered.


In the case where the gateway is pre-installed by the developer or service provider, this step may have already been performed.


The gateway may not be able to perform any functions until it has gone through this registration process (as indicated by the state of the gateway).


Gateway Sends Network/Device Information to the Server


This is done on a regular basis and can always be initiated by the gateway. The server dictates the interval for uplink communication initiation between the gateway and server.


Homeowner Configures Home (Alarms, Notifications, Binding, Etc.)


This is the normal use of the system manager portal whereby the user selects the various monitoring, logging and notification options.


Future Devices are Added to System


The end user obtains additional devices from the system manager, in which case they are added to the end user system by the system manager before being shipped to the customer.


Alternatively, the end user could purchase a device from a third party source in which case they could use the system manager portal interface to add (or replace) the device manually.


In addition, the system manager gateway can have a provision for “discovering” devices by listening for RF messages (e.g., GE Interlogix) or service pin messages (e.g., LonWorks devices).


Overview


Parts of the system as a whole are described, including the gateway, the server and the web portal interface.


System Overview


At the highest level, the system provides its users with a hosted and managed service for premises device monitoring and control for a fee, such as a monthly subscription fee. The premises markets include residential homes, commercial MTUs as well as small businesses.


The traditional complexity and expense of installing and maintaining such a system is delegated to the system manager platform. As a revenue-grade Application Service Provider (ASP) business, the system provides reliability, scalability, security, cost-effectiveness, ease-of-use, and flexibility.


The term “system” can denote the portal, server, gateway and end devices.


Reliability


The system can provide a high degree of reliability. This includes 24-7 operation of the Network Operations Center (NOC) and the server software it contains, and the reliability and fault-tolerance of the gateway and the control devices.


Scalability


The system, specifically the NOC, can scale to accommodate large numbers (in one embodiment, millions) of gateways and devices (in one embodiment, tens of millions). Though this may not be used at the onset, necessary architectural provisions can be built into the system to allow for such expandability.


Security


As a revenue-grade service offering, the system provides security against intentional and unintentional interference with the normal operation of the system. The system can be reasonably immune to external unauthorized access (either over the Internet or device network media). The system can provide reasonable protection against spoofing (of NOC server, gateway or device).


Cost-Effectiveness


Similar systems in the past have suffered from a high cost of in-premises devices and gateway as well as high and/or unpredictable installation costs. The system installation process is simple in order to minimize, if not eliminate, the installation costs.


Ease-of-Use


The gateway and device installation process as well as the various user configuration and normal use menus/screens presented by the portal are, according to an embodiment, intuitive and easy to use. This eases the adoption and continued use of the system by its users.


Flexibility


The system is flexible enough to easily handle different device networking protocols/technologies should the need arise in the future. In addition, the system, including the web interface, can be adapted to different markets and applications.


Variable Logging


The system can log any device variable specified by the user for up to, for example, 30 days. The user defines a logging interval for each variable at the time of configuration. The logging feature can be handled by the gateway on the local device side and the data can be transferred to the server at regular intervals. The overall variable log for all variables can be kept on the server side.


Logging of data for more than, for example, 30 days (but no more than, for example, 180 days) can be provided to the user, for example for a nominal fee.


The system can allow for the logging of at least, for example, 10 variables per gateway. The minimum logging interval for any variable can be, for example, 5 minutes. Logging intervals provided can be, for example, 5, 15, 30, 60, 180 minutes as well as 6, 12, 24 hours and weekly.


Activity Logging and Tracking


The system must be able to provide at least, for example, a 14-day history log of all user, system and device actions. An action includes a change to a device variable, system or network settings brought on by either the system or the user (e.g., variable changed, logging enabled, device added, user notified, etc.). The user can trace back system activities to their cause and to the date and time they occurred. Past activities can be searched by variable, device, category or date.


System Modes


The system can support user-defined modes, such as “home”, “away”, “sleep”, “vacation”, etc. The mode the user network is in plays a factor in the determination of the actions taken (reporting, alarming, eventing, notification, etc.) by the system when variable changes occur.


System mode can be changed by the user via methods such as:


1. Via the portal interface


2. Through a schedule set by the user


3. Via a binding (a variable change tied to the mode change—e.g., RF remote control)


The system can provide a set of default modes based on the user profile (homeowner, business, vacation home, etc.). These default modes are a starting point that can be changed or added to by the user at any time.


Alarming


The user can specify alarm conditions for variables with discrete states (e.g., binary ON/OFF). These alarms can be reported in real-time (i.e., immediate uplink) by the gateway to the server. The server then in turn looks at the data and determines, based on user alarm settings, whether to notify the user or not.


Alarm conditions can be determined based on the value or state of a variable as well as the system mode.


Eventing


For non-critical events, the system can notify the user in non-real-time fashion regarding the state of any variable specified by the user. The variables chosen for user eventing can be of any kind (discrete or continuous). The gateway updates the server with the change of variable state/value at a regularly scheduled upload. The server continuously looks at variable data and determines, based on user eventing settings, whether to notify the user or not.


Eventing conditions can be determined based on the value or state of a variable as well as the system mode.


User Notification


The system can support user alarming and eventing via the following methods: email, text messaging, pager, and/or voice telephone call (voice synthesis).


Device Data Monitoring and Control


The user can specify any device variable for monitoring and control via the server portal. For example, up to 255 devices can be supported by a single gateway. For example, up to 512 variables can be supported by a single gateway.


The user can schedule specific variable updates (e.g., turn off thermostat at 8 am every Tuesday). Scheduled events can be canceled (gateway-server protocol can support this). A scheduled variable update is allowed, per time stamp and variable ID. If time stamp and variable ID match an existing scheduled variable change, then the value for that pending variable change is re-written with the new value. A given variable can have multiple scheduled values as long as each scheduled update has a different time stamp.


Any pending downlink variable change commands can be canceled that have not been relayed to the gateway at any time through the portal interface.


Device Network Support


The system can support an open architecture where most, if not all device networking protocols can be supported. Examples of specific device protocols supported by the system include RF and powerline protocols, such as GE Interlogix RF and Echelon LonWorks power line (PL & FT), simplifying the installation burden by requiring no new wires to be installed in a premises.


The LonWorks free topology twisted pair medium (FT-10) can be supported as an option to better support commercial applications (e.g., office buildings).


All devices, regardless of the technology, can possess these attributes:


1. Unique ID (global)


2. Non-volatility. Must not lose any pertinent data or state.


3. Low-battery indication over the network (if battery-operated)


4. Tamper detection (if security-sensitive)


RF


This system includes a low-level, simple unidirectional protocol for multiple sensors to talk to a receiver head end. The protocol needs and footprint are relatively small and as such the RF devices are comparatively low-cost and small. They also can function for several years without the need for a battery change for simplified installation and maintenance of the system by the user.


A bi-directional RF transceiver can be supported by the system. This allows for control as well as monitoring of remote devices (e.g., thermostat) by the user.


The following RF devices can be supported by the system:


1. Door and windows sensor


2. Motion sensor


3. Smoke alarm


4. Water sensor


5. Freeze sensor


6. Contact closure sensor (e.g., ITI DWS with external connector pins)


7. CO alarm


8. Heat sensor


9. Thermostat


10. RF remote control


PL


The power line solution offers a robust and reliable mechanism for communicating over existing residential power line wiring.


The following PL devices can be supported by the system:


1. Thermostat (e.g., RCS)


2. Load controller (e.g., Halen Smart)


3. Relay actuator (e.g., Comap)


4. Photo camera, e.g., black & white, low-resolution (with motion sensor)


FT


The Free Topology solution offers a cost-effective medium for commercial applications. Many third party LonWorks devices use this medium for communications.


Other Devices


The following is a non-exhaustive list of a few other devices supported by the system.


1. Small data/message display—for text messages, news, weather, stock, photos, etc.


2. Door latch control


3. Pool/spa controller


4. Weather station


5. Lighting control


6. Elderly or disabled monitoring


7. Irrigation controller (Bibija)


8. VCR programming


Cameras


The system can support cameras. For example, standard off-the-shelf IP cameras (also referred to as web cameras) may be used, such as those available from vendors such as Axis, Panasonic, Veo, D-Link, and Linksys, or other cameras manufactured for remote surveillance and monitoring.


Surveillance cameras may contain a standalone web server and a unique IP address may be assigned to the camera. The user of such a camera would typically retrieve the camera image by accessing the camera's web page through a standard web browser, using the camera's IP address. In some cases the IP camera acquires a local IP address by using a DHCP client to negotiate an address from the local DHCP server (usually residing in the user's router/firewall).


According to an embodiment, the gateway treats camera images as it does other sensor or device data. User commands to “snap” a picture are sent from the system's portal/server to the local premises gateway during scheduled communications between the gateway and server (initiated by the gateway). Alternatively, a picture “snap” command for a local or remote camera can be initiated by a sensor (e.g., motion detector, remote control, etc.) on the local device network. The gateway then in turn talks to the camera over the IP network (wired or wireless) to retrieve the image and pass that image up to the system's backend server, effectively acting as a pass-through agent for the camera.


Since the data from the gateway (including the camera image) is pushed up from the gateway to the server using standard HTTP protocol (used by web browsers), additional configuration of the user network may be avoided. Also, adjusting of the user's firewall (port forwarding, DMZ, etc.) may be avoided (i.e., simpler installation and enhanced security).


Also, the push mechanism eliminates all the issues related to accessing the camera from the Internet, namely firewall and dynamic IP issues mentioned above, since the user gets the images from the system servers and not from the premises directly.


The system's user portal interface acts as a unified user interface for the user by displaying multiple images from different cameras in the same user interface page (e.g., web page).


The system's IP cameras can be physically located anywhere as long as they are connected to the Internet (if remote) or to the local IP network (if local).


Due to the fact that the images are served from the system's server (as opposed to the local camera or network) potential security exposure of accessing the home network directly from the outside may be avoided. Also, additional security measures can be put in place (e.g., SSL) to block an unauthorized user from accessing the images on the server.


Device Low-Battery Notification


The system can notify the user via the web portal of any low-battery conditions for the devices that operate on battery (e.g., GE Interlogix devices).


Server-Side Binding


The system can send variable control information downlink based on variable information collected through the uplink connection. This rule-based exchange can take place within the same atomic uplink-downlink (request-response) exchange between the gateway and server. The user specifies the actual “rules” for such bindings (e.g., turn off the thermostat when there is no motion in the premises for 2 hours).


This implementation may impact scalability because of the atomic communication factor.


Local Binding


Local binding can permit a more real-time interaction between devices. This functionality can take place without the server's involvement (other than the initial configuration of the local rules). The local binding, given the different technologies used at the device level, needs to be routed through the gateway.


Gateway Shoulder Tap


The server can “call” a gateway if the user requests that a variable change be propagated to a device in real-time (rather than waiting for the next gateway uplink connection).


Device Sharing Between Different Users


The system can provide a means for a single device to be managed by multiple users. For example, a security gate or a pool temperature sensor in a property common area should be accessible by all residents in the complex.


Gateway


The gateway is the central link between the premises device network and the backend server. It can be a thin, low-cost client of the server and use the least amount of hardware and software without compromising the basic functionality and objectives of the overall system.


Internet Connectivity


The gateway can provide both a connection to a broadband network (Ethernet DSL or cable modem) and telephone network. The telephone network connection provides a second, redundant route for accessing the server in case the broadband network access is down and there is a need for the gateway to report critical alarm information uplink to the server. The telephone connection also provides a means for the system to support premises that have no broadband connection available (e.g., as in many second or vacation homes).


The gateway can terminate any data call in process if a user picks up a telephone and provide a dial tone immediately. In addition, the gateway may not initiate a data call if the phone is in use by the user (off hook).


They gateway can dial out in the absence of external power to the gateway.


Communication with Server


The gateway can initiate all communications with the server. Gateway communication can either initiate based on a predetermined schedule (e.g., every 30 minutes) or due to a local premises alarm (selected by the user).


Gateways can contact a common server for their first uplink connection in order to obtain their assigned gateway server address, which they can use for all subsequent uplink connections (unless changed later by the system). In the event that the gateway cannot connect to its designated gateway server, it can fall back to contacting the default initial gateway in order to refresh its gateway server address.


The predetermined call initiation schedule can be programmable by the server and can provide different intervals for broadband and telephone intervals (e.g., every 30 minutes for broadband and every 90 minutes for telephone).


By assigning the gateway-server communication initiation to the gateway the system can enjoy the following benefits:


1. Most if not all issues generally attributed to routers, firewalls and NAT are eliminated, as the gateway is now simply an HTTP client (much like a web browser).


2. Security against outside hackers is greatly increased as access into the gateway can be disallowed. The gateway knows whom it can talk to (server) and it does so when it needs to.


A possible disadvantage of a push-only scheme can be an inability of the server to provide “real-time” device control. This can be a relatively minor disadvantage minimized through the shoulder-tap mechanism.


Gateway Shoulder Tap


The gateway can have the provision of initiating an uplink communication based on a telephone ring signal detected on the phone line. This shoulder tap from the server allows the server to pass down a variable change to the gateway without having to wait for the next gateway uplink connection.


A drawback of a telephone line shoulder tap is the occasional ringing on the telephone line. It is difficult to detect an incoming ring reliably without the phone actually ringing. This is fairly benign when considering:


1. Most user variable change requests (control) may not have to be done in real-time and can occur at the next scheduled gateway uplink synch.


2. Most often the premises (e.g., home) being controlled in real-time is unoccupied.


3. The shoulder tap can at most ring the phone only once so the user can wait for the second ring before picking up the phone


4. The user can opt to provide a second phone line dedicated to the gateway.


Implementing shoulder tap over IP is another embodiment with a more complicated installation process (e.g., router/firewall configuration, opening ports, etc.). Keeping an IP connection alive between the gateway and server can be unreliable and could heavily burden the server.


Configuration


The gateway can be installed without any special skills. The NOC server can handle the complexity of configuration.


Once plugged into a power outlet as well as a broadband and/or telephone network, the gateway can:


1. Determine if there is a broadband connection available


2. If so, obtain an address from the local DHCP server


3. Make sure the telephone connection is operational


4. Contact the server for the first time and check to see if there is a user account associated with it (this can be a secured inquiry to eliminate hacking)


5. If there is no associated user account found, notify the user (e.g., blinking LED on front panel)


Device Discovery


The gateway can be put into a device discovery mode via, for example, a front panel push button. Devices can normally be introduced to the system and assigned to the user:


1. By system manager before shipping out to the user


2. By the user/installer via the portal device registration screens


The discovery mode is a third way of registering devices. The discovery mode allows the gateway to listen for and discover new devices added to the network—should there ever be a need for such functionality. Upon discovery of a new device the information is passed to the server for further processing and registration. The user can then finalize the device registration process through the system's portal (e.g., assigning names, alarming, etc.).


If the user can specify the adding of a device, it can be configured by the user immediately on the portal. Auto-configuration comes with set defaults. Another similar device to copy can be specified.


Auto Recovery


The gateway can be self-sustaining and autonomous.


In the event of communication failure between the gateway and the server for an extended period of time the gateway can continue to do its tasks (e.g., variable monitoring, logging, etc.).


In the event of an extended power loss or a system reset, the gateway can resume normal operation after the appropriate “boot-up” period (i.e., no more than 2-3 minutes). A hardware buffer can receive, e.g., RF signals during bootup.


Any pending scheduled events that did not occur because of the power loss can be performed once the gateway has resumed normal operation and can occur in the original order defined by the user.


In the event that the gateway software “hangs,” the gateway can recover itself through a built-in watchdog-monitoring feature.


Rule-Based “Binding”


Gateway Power Interruption


The gateway can operate for at least, e.g., 5 minutes after a power failure in order to report its latest status (including the power status) to the server (either via broadband or telephone). The gateway may not use a rechargeable battery in order to eliminate the need for gateway servicing when the battery reaches the need of its life (e.g., typically 2-3 years).


The gateway can withstand power interruptions without losing any pertinent data (e.g., device data, log data, date & time).


For applications where the gateway and devices are to operate in the absence of power, the user can obtain and use an uninterruptible power supply (UPS).


Remote Firmware Upgrade


The gateway can receive firmware upgrades over its WAN connection (Internet or PSTN). The gateway can have provision for recovery in case there is an interruption during a firmware download (e.g., network connection loss).


The gateway firmware upgrade is an automated process initiated by the gateway based on a schedule downloaded from the server during a gateway-server exchange. The upgrade process may not involve any user interaction or involvement and may take place when the user is least likely to be using the system (e.g., at night).


Variable Logging


The gateway can provide enough storage for logging one day worth of data for, e.g., 10 variables logged every, e.g., 15 minutes. In the event that the local gateway log is filled up before the gateway has had a chance to upload the data to the gateway, the gateway can stop logging additional data and report a “log full” error to the server at the next uplink connection.


Security


Appropriate security measures can be provided by the gateway to ensure protection against:


1. Inadvertent communication with neighboring networks and devices not related to a gateway/user.


2. Intentional external hacking into the system from the WAN side (Internet and PSTN).


3. Intentional external hacking in to the device network side (PL or RF).


Power Consumption


The gateway can use minimal operating power in order to reduce the cost associated with the power supply as well as the circuitry to keep the gateway alive immediately after a power failure.


Form Factor


The gateway can be encased in a visually attractive enclosure that is generic enough for multiple markets including consumer applications and commercial building applications (schools, etc.).


Ease of Use


The gateway can use the simplest possible installation procedure. The gateway can “figure out” how to communicate with the NOC (broadband and/or PSTN) once the power has been connected to it. No user involvement may be necessary for this to take place.


User Interface


The gateway's user interfaces include the following LEDs and switches:


POWER LED


COMM LED: communication happening between gateway and server


DEVICE LED: Device communication (PL or RF) happening. This LED can also be used for the device discovery feature.


ERROR LED: Displays different errors using different blink rates (log error, synch error, comm. error)


SYNCH switch: Initiates a gateway-server uplink communication


Gateway Local Reset


The gateway can provide a way for it to be reset locally by the user. Upon the execution of this gateway reset function, the gateway can be in the factory default state with no device, variable, user or configuration variables residing in it.


The reset operation for the gateway can be performed by, e.g., holding down the SYNCH switch for 20 seconds.


Agency Certifications


The gateway can be designed to comply with both FCC Part 15 (Level B) and Part 68 certifications.


If an external Tamura power supply is not used, then gateway design can meet the standards for the appropriate regional safety agency certification (i.e., UL, CSA, CE, and TUV).


Error Reporting


The system can report error to the user and/or administrator when the following conditions occur:


1. Downlink variable update failed


2. Gateway synch delayed or missed


3. Missing variable poll value


4. Variable log full


5. Broadband or phone line connection down


Server


The server provides a hosted, reliable and secure “server-in-the-sky” for the premises gateways to communicate to and for the users (customers) to access for accessing and controlling the various devices in one or more premises.


Reliability


The NOC facility can be run by a managed hosting service and as such provisions for power failure and security (theft) can be in place via the vendor providing the hosting service. However, the NOC server software architecture can support certain backup features.


All user, system, network, gateway and device data contained by the NOC server can be backed up on a regular schedule (e.g., once a day).


When NOC server hardware malfunctions, that hardware can be quickly and easily replaced with minimum user downtime.


Security


The server can communicate to the gateway in a secure fashion.


The data can be encrypted when transferring between the gateway and server, as well as ID/password for authentication.


Scalability


The server software can be scalable such that it can support a large number of gateways over time. The scalability sold also enables the server to have a small foot print at the beginning when the number of gateways may be relatively small.


Platform


The interfaces between the servers and modules can be in XML in order to provide maximum flexibility and scalability. No requirements may be imposed for the operating system or programming language platforms used.


Server API


The server can provide an API (via XML and SOAP) that permits third party applications to get full access to the functionality of the server.


Portal


The portal can support web, WAP and PDA access points. An important attribute of the portal is ease-of-use.


Customization


The portal can present an automatically-customized UI to the user based on the application (e.g., residential, commercial, etc.) and the devices used (e.g., security, energy, safety, etc.).


As a secondary feature the portal can also allow the user to easily customize their portal for their particular needs.


Lastly, system manager personnel or authorized agents can further customize a portal for a specific customer (e.g., a telecom) or class of customers (e.g., homeowners of a home builder). This process can put a specific “skin” on a customer portal.


User Account Screens


These screens allow the end user to open an account and register the end user's gateway(s). Screens can be included for obtaining billing/payment info and other user information (e.g., address, primary contact information, phone number, etc.).


In addition, this can be where the user enters their gateway ID(s) (on the gateways) so the system can make an association between the logical user account and the physical user network(s)/gateway(s).


User notification options (email, phone, page, text messaging, etc.), as well as time zone, uplink interval can also be selected here.


The option to customize the WAP portal interface can be provided so the user can select the variables and the functionalities that are presented on a WAP device accessing the service.


Device Registration Screen


The user can register devices obtained from other sources—assuming they were not pre-registered already by the system manager. The user can enter the unique device ID and the device name, etc.


The ability to delete a device from the local user network can be provided. History related to the device being deleted (log data, action tracking, etc.) can be removed from the system, e.g., 30 days after the device deletion.


The gateway can know if something succeeds or not and report it back to the server. Similarly, each “command” the server performs on the gateway can be tracked back when the results of what the gateway did with it come back (e.g., success, fail, etc.).


The gateway can report the downlink changes like it reports uplink changes. The state change of the variable in question (e.g., Change thermostat setpoint) can appear in the log like any other variable, along with its time stamp.


The portal can set the change, then after the change occurs it can verify it is reported in the log. For example, if the portal is asked to turn the light on, it can be ensured that it happened “once and only once” and if it failed, that can be known.


The ability to replace a device in the local user network can also be provided. Old log data for the replaced device can be kept without a break in the device's data (i.e., the log can start getting values from the new device. Also, since the downlink values are set on the new device, those initial settings can also appear in the log.


Network Configuration Screens


This is where the user configures the device network and sets preferences and options (e.g., which variables to monitor, logging options, etc.).


Provisions for creating variable groupings are also provided here (i.e., defining a single variable that represents the collection of all similar type variables selected by the user—either ANY or ALL function (OR or AND)—e.g., all door/windows sensor states).


The user selection of which variables are monitored for eventing and alarming is performed here as well.


Normal Usage Screens


These represent the main screens used most often by the user on a day-to-day basis. Typical functionality provided includes: network summary, variable monitoring, variable control, variable logging, system activity log, system status, alarms, etc.


WAP Interface


The portal can also provide a simplified interface for supporting WAP devices. The functionality can be a limited subset of monitoring and control services offered by the web portal.


The customization of the WAP portal interface can be done through the normal Web interface screens


PDA Interface


The portal can also provide a simplified interface for supporting browsers running on PDAs. The functionality can be a limited subset of monitoring and control services offered by the web portal.


The customization of the PDA portal interface can be done through the normal Web interface screens (see above).


Permission Levels


The portal, in association with the server, can provide configurable user access and permission levels for both inter-account (e.g., different premises) and intra-account (e.g., mom, dad & kid) isolation.


Other Features


1. A desktop application in the icon tray that reports alarms and events in the background.


2. Support for larger premises (single user with multiple gateways)


3. Support for multiple users/locations per gateway


4. Rule-based local binding


5. IPSec (e.g., via HiFn chips)


6. Support for LonWorks free topology (FT-10) devices by the gateway


Control Network


An embodiment of a control network may comprise a collection of sensor and actuator devices that are networked together.


Sensor devices are devices that sense something about their surroundings and report what they sense on the network. Examples of sensor devices are door/window sensors, motion detectors, smoke detectors and remote controls.


Actuator devices are devices that receive commands over the network and then perform some physical action. Actuator devices may include light dimmers, appliance controllers, burglar alarm sirens and cameras. Some actuator devices also act as sensors, in that after they respond to a command, the result of that command is sent back over the network. For example, a light dimmer may return the value that it was set to. A camera returns an image after has been commanded to snap a picture.


The core of an embodiment of a control network is an architecture where sensor devices are coupled to actuator devices. A light switch, for example, may turn on a lamp through a light dimmer actuator. A door/window sensor or smoke detector triggers an alarm. Other devices may also be controlled in various ways.



FIG. 6 illustrates an example of a control network environment. Here three different networks with devices are depicted (GE security, LonWorks, IP). The LonWorks network includes a light switch and lamp, the GE network has some door sensors and an alarm controller, and the IP network has some IP cameras attached.


Note that the computer in the middle of the network may be used to bridge the various networks, essentially providing interoperability, but with available existing technologies that calls for a custom solution requiring expensive custom software. Otherwise, the three control networks are independent.



FIG. 7 depicts one embodiment of an architecture that uses these described concepts.


Here we see the same three local networks on the premises (IP, LonWorks, GE Security). However, now they are all connected together by the system gateway. Furthermore, the system gateway is attached to the internet, through which it regularly contacts the system servers in order to send up new data and get back control and configuration information. Clients can monitor and control their premises using ordinary browsers on a wide variety of devices by accessing the system servers.


Note that, at the premises, use of a PC or custom programming to achieve interoperability between different device technologies, or to provide remote monitoring and control may be avoided. Instead, in an embodiment both functions are performed by the system gateway, which according to an embodiment is designed to interface to a variety of device technologies and provide an abstraction layer that helps the rest of the system (servers and clients) to be technology-neutral.


Sensor/Actuator Device Abstraction


Sensor and actuator devices are abstracted at the gateway hardware level so that different devices from different manufacturers can be handled seamlessly. Embodiments may support devices from several different manufacturers (for example, GE Security, Axis Communications, Axsys Systems) using three different communications technologies (unlicensed-band RF for GE devices, Internet Protocol for IP cameras, and powerline for LonWorks modules).


Gateway Device


The gateway device performs the hardware abstraction function according to an embodiment of the invention. The gateway includes the hardware and software required to communicate with all supported device technologies. Software on the gateway converts the raw data received from the device to an indexed data point. Periodically the gateway sends the data to the server, with each datum tagged with its data point index and time stamp.


In an embodiment, the server performs substantial operations for data storage and user interface.


Gateway—Server Data Interface


Between the server and the gateway, an embodiment of the system uses a device-property-value model. Each device supports some number of properties that expose its capabilities. For example, an embodiment of a door sensor has a state property (open or close) and a battery-level property (low or ok). Both the devices and their properties are given indexes when the gateway is configured, and all subsequent data exchange uses the indexes to identify the property involved. This indexed property ID may also be referred to as an “indexed data point.”



FIG. 8 illustrates how data is transformed, physically and logically, by the gateway.


The door sensor has detected an open door, and sends the gateway a message with its hardware ID and raw value. The gateway interprets the data, converts it to an indexed data point value, and sends it to the server as device #1, property #0, set to 1 (true). Note that the device ID is converted to the configured device index (1), and the changed property is identified by its property index (0).


In the second case, the client wants to take a picture, so the server sends down the value (in this case, the desired picture name) indexed by the camera's device index (2) and the camera's picture property's index (1). In this case, the gateway initiates a web service to the camera to access (and upload) the image, then sends back the result of that operation to the server, again as an indexed data point.


According to an embodiment, the camera and a door sensor are both handled identically by the server and in the server-gateway protocol, using the device+property model.


Common Device Definition Format


In the server infrastructure, the device data is handled as indexed data point values. When the data is presented to the user, it is reinterpreted. The device definition file is the mechanism that permits the server software to handle this reinterpretation with a single, common code module, independent of device types or technologies.


Physical devices are defined using a common device definition file format which provides the information necessary to convert the device- and technology-specific view of a device to an abstracted, generalized view.


Function Types and Properties Abstraction


In order to allow client inspection and manipulation of sensor/actuator devices in a device- and technology-independent manner, device capabilities are mapped to standard function types, each of which defines one or more standard properties. This permits client software to, for example, query the system for temperature measurements, without necessarily knowing what physical device type provided it or what networking technology it used.


Raw Data Types


Each property in a device definition is tagged with its raw data type. This is the format of the raw data as received from the device and passed up by the gateway. Note that this is usually not the same format as the raw data that is passed from the device to the gateway.


For Boolean (digital) properties, this raw value is either the string “1” or the string “0.” For analog properties, the format of the value can vary widely depending on the type of device. The gateway does not have to be responsible for handling the wide variety of formats possible, since the raw format type is stored in the device type definition, and is used by the server to make the conversion when necessary.


Standard Data Types


Each property in the device definition file is further tagged with a standard data type. This is the type that is stored in the server database and, by default, reported to the client. (Note that the actual database field type is a string: the “standard type”, as used here, refers to how that string is formatted, not to the database data type).


Formatter Conversion Classes


The server has a set of formatter classes that convert between the raw and standard formats. These are selected and instantiated dynamically, as needed, based on the raw and standard data type strings from the device definition. This way the server code that manages data is identical for all data types, and supporting a new data type includes creation of a new formatter conversion class. Similarly, there are a set of formatter classes that convert between different standard formats.


Data Conversion Data Flow



FIG. 9 illustrates how the data conversion is handled. Raw data is sent up by the gateway. The server uses the device definition to determine which raw data converter to invoke, calls the converter, and stores the standard data in the database. Later, when the data is read, the server accesses the standard data from the database, optionally reformats it to the client's specifications, then returns the formatted value to the client.


Associative Binding


Binding is the process of “connecting” the output of one device (a sensor) to another device (actuator). An example is a switch that triggers a light to go on.


Gateway Binding


First, whether the devices in question use the same technology or not, associative binding uses the gateway itself as the “connection” mechanism. The gateway receives the signals from the sensor, interprets them, and relays the appropriate message to the actuator.


Gateway binding can be implemented without associative binding. That may, however, involve the gateway containing code to do the data conversion from the source device's data format to the destination device's data format. For example, if a switch is bound to a lamp controller, switching the switch to on causes the lamp to turn on.


Associative Binding


The gateway implements a form of associative binding, where a binding (connection) is triggered by the value of a source device property. Bindings are kept in a table that maps source device properties+values to destination device properties+values. For example, consider a remote control that sends out a numeric value (for example, 1 to 10). Binding entries can map the individual values to different target devices, so that each value can turn on a different lamp. Furthermore, the binding entries contain the specific values that need to be sent to the target device property.


Each associative binding defined on the gateway may include:

    • Index of the source device property
    • Index of the target device property
    • Source property value
    • Destination property value


When a sensor's bound data point reports a change, the gateway checks whether there are any bindings that match that data value. If there are, it sends the appropriate destination data to the destination device property, hence to the destination device hardware.



FIG. 10 illustrates a gateway binding mechanism. The steps illustrated in the diagram are:

    • 1. User presses on-1 button, remote sends “prop 2=1”
    • 2. Gateway finds “prop2=1” in table, sends “prop 0=8fff” to Device 2 prop 0
    • 3. User presses on-2 button, remote sends “prop 2=2”
    • 4. Gateway finds “prop2=2” in table, sends “prop 0=8fff” to Device 3 prop 0
    • 5. User presses off-1 button, remote sends “prop 1=1”
    • 6. Gateway finds “prop1=1” in table, sends “prop 0=0000” to Device 2 prop 0


Gateway Data Abstraction


The source and destination data are specified in the table as untyped strings, so the gateway can do a string comparison, which may not involve knowledge of the data semantics. The gateway passes the destination string back to the destination device, again without necessarily using semantic knowledge.


User Data Abstraction


In an embodiment of the system, the user knows the semantics of the data, but may not know the raw data formats. So the user knows that “when I press the lamp on button on my remote, I want the lamp to go to full brightness.” Because the data from both the sensor and the actuator involved in a binding is normalized to standard data units, the user can specify their desired bindings using those standard data formats, and the system receives these selections. (In the above case, Remote “lamp” button=“On” causes the Lamp to be set to “100%”).


Server Data Abstraction


As in cases where the server handles sensor/actuator data, it does so in the case of bindings using the format conversion classes, driven by the device definition files. The server does not necessarily use semantic knowledge of the values being bound.


Gateway Device Abstraction


For a given user premises, in addition to the sensor and actuator data, there is system-level data that is managed. Some examples are error logs, usage logs, gateway error alerts, tracking changes to the system, etc. The gateway may be treated as a pseudo device.


In this design, system data are reported as properties belonging to the gateway pseudo device. Because the system properties are exposed this way, they can be transparently handled by the server infrastructure (logging, reporting, etc.) rather than requiring a separate logging/reporting mechanism. This enhances the resiliency of the server design, since new system properties can be added without changing the server code (simply adding the new system variables to the gateway device model suffices).


Camera Snapshot: Abstracting Images Through Properties


The data from cameras (i.e., “camera” function types) is a relatively large binary file. An embodiment of this does not fit the simple property-value model, and in an embodiment the image is not represented by a string. An embodiment handles the cameras and camera properties like other devices where it is appropriate, yet still offers the camera features (still images and video) to the user. An embodiment does that by creating special properties for the camera.


Cameras contain a property named “snapshot” that is linked to the camera's images. This property performs: 1) writing to this property causes the camera to take a snapshot and upload it to the server, and 2) the property is logged when the property changes. The value of the property is the name of the snapshot image. That is used by the server to fetch an image given a name.


Taking a Snapshot


Clients write a string value to the snapshot property that gets sent down to the gateway. That causes the camera code in the gateway to get the snapshot from the camera and upload it to the server. Finally, it reports (to the server) that the property was successfully updated. While the gateway does require special code to handle the camera interface, the device property data is handled exactly like any other device property. FIG. 11 illustrates a camera snapshot scenario.


Logging Images


By using a regular property to represent an image snapshot, the times, names, etc. of the snapshots can be logged using the ordinary property logging mechanisms used for other properties. The client software uses this history log to display thumbnails of the saved images. As in the case of the server, the client software does not need special code to get the list of images (although it does use special code to display the thumbnails and images according to an embodiment).


Binding Snapshots


Because a snapshot is triggered by a property assignment, that assignment can also occur due to a binding. Thus combining this snapshot property functionality with the associative binding capability leads to a way to take snapshots based on reported sensor data.



FIG. 11 illustrates a camera snapshot binding mechanism. The steps depicted are:


1. User presses “take picture” button on remote, remote sends “Device 1 Prop 0=1”


2. Gateway finds the binding in the table (Dev 4 Prop 0=Snap #)


3. The # at the end tells the camera code to append a random number


4. Gateway camera code gets the data update, initiates an HTTP GET to the camera


5. Gateway camera code sends the image to the server


6. Gateway reports updated data like any other data update.


Camera Integration


Embodiments of the server and gateway incorporate a number of features that simplify the installation and use of still and video cameras.


Camera Type Abstraction


As is the case for attached devices, cameras are abstracted on the gateway so that neither the client nor the server infrastructure necessarily has specific knowledge of the camera type, thus they may handle all cameras identically according to an embodiment. (Note: the client application—in our case the portal—may use some specific camera knowledge in order to present the video and stills transparently to the user).


Integrated Stills and Video


The camera stills and video are integrated into the user interface so that the user never sees any camera-specific web pages. FIG. 12 illustrates a camera environment.


Firewall-Proof Still Images


According to an embodiment, the images from the IP-attached cameras supported are not viewed from beyond the user's own local network unless the user's router opens a port and forwards the camera requests to the camera. However, since the gateway is behind the same firewall as the camera, it gets the image from the camera and transfers it to the server via HTTP port 80 (which is always open). The images thus become available to the user on the Internet (protected by username/password).


Integrated Video Dynamic DNS Replacement


Viewing video from the camera involves the client changing router settings to forward TCP requests to their camera. Then, the portal allows the client to access the video without the client necessarily knowing the Internet address of the client's system. The gateway is in regular communication with the server, and upon update the server saves the gateway's current WAN address. When the client wants to see video from the client's camera, the server inserts the gateway's WAN address into the video image link (href). If the user's IP address changes frequently, the user can access their camera's video from anywhere.


Installation


Network cameras on the market come with a variety of installation methods. An embodiment of the gateway eliminates the need for client involvement by automatically configuring the camera hardware.


During the camera configuration, the gateway creates private administrator password, then a view-only user with a random password that is subsequently used to get camera images (still or video). The gateway searches for the camera on the local network to obtain its IP address (as assigned by the user's router). Since the gateway itself is automatically configured via DHCP, it knows the subnet and approximate address range that the router is using for the DHCP-assigned addresses.


Configuration


According to an embodiment, the camera configuration capability is exposed via camera configuration properties. Should the user want to change the camera's address or client user name/password, the user can do so in one place, on the system portal. The changes are passed down to the gateway (as camera configuration property updates) where it causes the gateway to reconfigure the camera hardware. Differences between different camera types are handled by the gateway software. These properties are handled and logged as other properties.


Router Port Forwarding Assistance


Setting a router's port forwarding table to support remote video viewing may involve:


1. Determine that port forwarding is called for


2. Find the router's configuration web page


3. Figure out what to enter as the server address


4. Figure out what to enter as the server port


5. Know what to put where


6. Know if it is working correctly


An embodiment of the system addresses these items. Note that the user is logged on from the user's own network (the “Local Client” example in FIG. 12) to configure the user's router.


Determining Port Forwarding is Desired


When the user accesses a camera from the system portal, the system server performs a test to check whether the camera is accessible from the Internet. If it is, the camera page includes a link to a page that will display the video. If the camera is not accessible, the video link instead opens a camera assistance page that guides the user through steps to configure their router's port forwarding.


Finding the Router's Web Page


Since the gateway is on the same internal network as the camera, it knows what the router's address is (it is the default gateway passed back in the DHCP assignment). The portal generates a link on the camera assistance page that takes the user right to the user's router's configuration web page.


Address, Port and where to Put them


Since the camera's address and port are available via properties, the portal reads these properties and includes these properties in descriptive text on the camera assistance page. That page also contains a link to a router help page, where the user can select the user's router and get specific help on what to do to configure it.


Device Test


The camera assistance page has a button to test whether the port forwarding is a success or not. It uses the server's test-camera-access API to make the determination, and displays either a pass or fail message to let the user know.


Various Embodiments


In addition to the foregoing, the following are various examples of embodiments of the invention.


Some embodiments of a method for premises management networking include monitoring premises management devices connected to a gateway at a premises; controlling premises management devices connected to the gateway at the premises; receiving, at the premises, an uplink-initiation signal associated with a network operations center server; and in response to the uplink-initiation signal, initiating, from the gateway at the premises, communications between the gateway and the network operations center server; and communicating, during the communications between the gateway and the network operations center server, information associated with the premises management devices.


The uplink-initiation signal can be received via telephone and/or broadband connection. The gateway can initiate communications between the gateway and the network operations center server with at least an HTTP message and/or at least an XML message. The premises management devices can manage energy of the premises, security of the premises, and/or safety of the premises. Many embodiments provide a hosted solution for property developers, owners and managers as well as service providers (ISPs, telcos, utilities, etc.) such as communication service providers and Internet portal providers. Some embodiments offer a complete, turnkey, reliable, and/or cost-effective solution for the delivery of telemetry services (e.g., energy management, security, safety, access, health monitoring, messaging, etc.) to customers.


An embodiment of the invention is directed to a business method for premises management. Some embodiments of a business method for premises management include making an Internet portal available for access to a vendee, such as a premises vendee, communication service vendee, and/or an Internet portal vendee; and at least after a transaction between the vendor and the vendee, such as a premises transaction, a communication services transaction, and/or Internet portal services transaction, providing premises management services via the Internet portal to the vendee.


The Internet portal can be branded with a brand of the vendor according to an embodiment. Examples of a premises vendor include a home builder, premises builder, and premises manager. Examples of a premises vendee include a home buyer, premises buyer, and premises tenant. Examples of a communication service vendor include an Internet service provider, a telephone company, a satellite television company, and a cable television company. Examples of a communication service vendee include a customer of the Internet service provider, a customer of the telephone company, a customer of the satellite television company, and a customer of the cable television company. Premises management services can manage energy of the premises, security of the premises, and/or safety of the premises.


An embodiment of the invention is directed to a system. The system includes a network of premises management devices, a gateway coupled to the network and premises management devices, a server coupled to the gateway by a communication medium and a portal coupled to the communications medium. The portal provides communication with the premises management devices.


According to various embodiments in the invention alone or in various combinations: the communications medium may comprise the Internet; the portal may comprise an internet portal; and/or the portal may be branded with the name of a vendor of a product associated with the premises. The product may comprise a building, and/or the vendor may comprise a party that leases the premises. The vendor may also or alternatively comprise a property management organization. The server may be included within a network operations center. The logic may comprise, according to various embodiments of the invention, software, hardware, or a combination of software and hardware.


Another embodiment to the invention is directed to a gateway. The gateway includes an interface coupled to a network of premises management devices, logic that receives data from different premises management devices, and an interface coupled to a communications medium that is coupled to a server. The server is coupled to a portal coupled to the communications medium. The portal provides communications with the premises management devices.


According to various embodiments of the invention alone or in various combinations: the communications medium may comprise the Internet; the portal may comprise an internet to portal; and/or the portal may be branded with the name of a vendor of a product associated with the premises. The product may comprise a building; the vendor may comprise a party that leases the premises; the vendor may comprise a property management organization; and/or the server may be included within a network operations center.


Another embodiment of the invention is directed to premises management system. The premises management system includes a network of premises management devices and a gateway coupled to the network of premises management devices. The gateway includes logic that receives data from different premises management devices and an interface coupled to a communications medium that is coupled to a server. The server is coupled to a portal coupled to the communications medium, and the portal provides communication with the premises management devices. The logic may comprise, according to various embodiments of the invention, software, hardware, or a combination of software and hardware.


Another embodiment of the invention is directed to a system that includes: a network of premises management devices; a gateway coupled to the network of premises management devices; a server coupled to the gateway by a communications medium and a portal coupled to the communications medium, the portal providing communication with the premises management devices.


According to various embodiments in the invention, alone, or in various combinations: the common format includes a set of properties for each type of device; the format includes an index for each device and an index for each property of each device; the network comprises a network operations center; the network of premises management devices includes at least a camera; the system includes logic that reinterprets abstracted data in the common format from the different premises management devices; the server includes a device definition file for reinterpreting the abstracted data; the system includes a set of standard function types that define standard properties; the standard properties include temperature; the system includes client software that queries measurements corresponding to the respective property without specifying the type of device from which the measurement is to be received; the server includes a set of formatter classes that convert between the format of data in which data is passed from the gateway to the server in a type in which the data is stored in the server; the formatter classes are instantiated dynamically; the system includes device definitions for respective premises management devices; and/or the server is included within a network operations center.


An embodiment of the invention is directed to a gateway that includes: an interface coupled to a network of premises management devices; logic that abstracts data from different premises management devices using a common format; and an interface coupled to a communications medium that is coupled to a server. The server is coupled to a portal coupled to the communications medium, and the portal provides communication with the premises management devices. The gateway may include logic to interact with various aspects of the various systems described herein.


Another embodiment in the invention is directed to a gateway that includes: an interface coupled to a network of premises management devices, the network including at least a first device comprising a source of data and at least a second device comprising a recipient of the data; logic that abstracts data from different premises management devices using a common format; logic that maps data from a first device least comprising the source of data to data on a second device comprising the recipient of the data; and an interface coupled to a communications medium that is coupled to a server, wherein the server is coupled to a portal coupled to the communications medium, the portal providing communication with the premises management devices.


According to various embodiments of the invention, in various combinations or alternatively: the mapping is based on a property of the first device and a corresponding property of the second device; the mapping is stored in a table in the server; the mapping is based on a correspondence between an index of a property of the first device with an index of a property of the second device; gateway includes logic that checks whether there are any corresponding properties on a corresponding device that comprises a recipient of data if corresponding data from a device that comprises a source of the corresponding data changes; and/or the logic comprises hardware, software, or a combination of hardware and software.


Another embodiment of the invention is directed to a system that includes: a set of one or more premises management devices, the set of one or more premises management devices including at least a camera; a gateway coupled to the set of one or more network of premises management devices, the gateway including logic that abstracts data from a premises management device using a common format, general to different devices; a server coupled to the gateway by a communications medium; and a portal coupled to the communications medium, the portal providing communication with at least a device in the set of one or more premises management devices.


According to various embodiments of the invention, alternatively, or in various combinations: the system includes logic that transmits data from the gateway to the server using HTTP protocol; the data from the gateway includes an image from the camera; the gateway includes logic that pushes data to the server from the set of one or more premises management devices; the system includes logic that causes an image from the camera served from the server to be displayed; the system includes logic that causes an image from the camera to be transmitted from the gateway to the server in response to an uplink-initiation signal; the uplink communication signal is received via telephone; the uplink communication signal is received via telephone without requiring answering of a telephone call; the uplink communication signal is received via broadband connection; at least a device in the set of one or more network of premises management devices manages energy of the premises; at least a device in the set of one or more network of premises management devices manages security of the premises; at least a device in the set of one or more network of premises management devices manages safety of the premises; the camera includes at least a property specific to a camera and at least a property common with at least another type of device; the property specific to a camera causes the camera to take a picture; the property specific to a camera causes a picture taken by the camera to be uploaded to the server; the system includes logic that causes a picture to be taken based on the state of another device in the set of one or more premises management devices; another device in the set comprises a motion sensor; the system includes the plurality of different types of cameras and wherein the gateway includes logic that abstracts data from the different types of cameras into a common format for delivery to the server; the system includes a router that couples the gateway to the communications medium; the camera comprises an internet protocol (IP) camera; and images from the camera are provided over the communications medium only if the gateway initiates a transfer of the image to the server.


Another embodiment of the invention is directed to a system that includes: a set of one or more premises management devices, the set of one or more premises management devices including at least a camera; a gateway coupled to the set of one or more network of premises management devices; a server coupled to the gateway by a communications medium, and a portal coupled to the communications medium, the portal providing communication with at least a device in the set of one or more premises management devices. The gateway includes logic that pushes data from the set of one or more premises management devices to the server.


According to various embodiments of the invention, alternatively, or in various combinations: the gateway does not allow direct access to the set of one or more premises management devices from the communications medium; the system includes logic that causes an image from the camera to be transmitted from the gateway to the server in response to an uplink-initiation signal; the uplink communication signal is received via telephone; the uplink communication signal is received via telephone without requiring answering of a telephone call; the uplink communication signal is received via broadband connection; at least a device in the set of one or more network of premises management devices manages security of the premises; the camera includes at least a property specific to a camera and at least a property common with at least another type of device; the property specific to a camera causes the camera to take a picture; the system includes logic that causes a picture to be taken based on the state of another device in the set of one or more premises management devices; the system includes a plurality of different types of cameras and the gateway includes logic that abstracts data from the different types of cameras into a common format for delivery to the server; and/or the camera comprises an internet protocol (IP) camera.


Another embodiment of the invention is directed to a gateway that includes: an interface coupled to a set of one or more premises management devices, the set of one or more premises management devices including at least a camera; and an interface coupled to a communications medium that is coupled to a server, wherein the server is coupled to a portal coupled to the communications medium, the portal providing communication with the premises management devices; and logic that pushes data from one or more premises management devices to the server.


Components of the gateway, server, system and/or other aspects described above include any collection of computing components and devices operating together. Components of these items can also be components of subsystems or within a larger computer system or network. The components can also be coupled among any number of components (not shown), for example other buses, controllers, memory devices and data input/output (IO) devices in any number of combinations. Further common components of these items can be distributed among various numbers or combinations of other processor-based components according to various embodiments of the invention.


Aspects of the gateway, server, system and other items described here and may be implemented as functionality programmed into any variety of circuitry, including programmable logic devices, (PLDs), such as field programmable gate arrays (FPGAs), programmable array logic (PAL) devices, electrically programmable logic and memory devices and standard cell-based devices, as well as application specific integrated circuits (ASICs). Some other possibilities for implementing aspects these items include: microcontrollers with memory (such as electronically erasable programmable read only memory (EEPROM)), embedded microprocessors, firmware, software, etc. Furthermore, aspects of the gateway, server and other elements may be embodied in microprocessors having software-based circuit emulation, discrete logic (sequential and combinatorial), custom devices, fuzzy (neural) logic, quantum devices, and hybrids of any of the above device types. Of course the underlying device technologies may be provided in a variety of component types, e.g., metal-oxide semiconductor field-effect transistor (MOSFET) technologies like complementary metal-oxide semiconductor (CMOS), bipolar technologies like emitter-coupled logic (ECL), polymer technologies (e.g., silicon-conjugated polymer and metal-conjugated polymer-metal structures), mixed analog and digital, etc.


The various functions or processes disclosed herein may be described as data and/or instructions embodied in various computer-readable media, in terms of their behavioral, register transfer, logic component, transistor, layout geometries, and/or other characteristics. Computer-readable media in which such formatted data and/or instructions may be embodied include, but are not limited to, non-volatile storage media in various forms (e.g., optical, magnetic or semiconductor storage media) and carrier waves that may be used to transfer such formatted data and/or instructions through wireless, optical, or wired signaling media or any combination thereof. Examples of transfers of such formatted data and/or instructions by carrier waves include, but are not limited to, transfers (uploads, downloads, e-mail, etc.) over the Internet and/or other computer networks via one or more data transfer protocols (e.g., HTTP, FTP, SMTP, etc.). When received within a computer system via one or more computer-readable media, such data and/or instruction-based expressions of components and/or processes under the ICS may be processed by a processing entity (e.g., one or more processors) within the computer system in conjunction with execution of one or more other computer programs.


Unless the context clearly requires otherwise, throughout the description and the claims, the words “comprise,” “comprising,” and the like are to be construed in an inclusive sense as opposed to an exclusive or exhaustive sense; that is to say, in a sense of “including, but not limited to.” Words using the singular or plural number also include the plural or singular number respectively. Additionally, the words “herein,” “hereunder,” “above,” “below,” and words of similar import refer to this application as a whole and not to any particular portions of this application. When the word “or” is used in reference to a list of two or more items, that word covers all of the following interpretations of the word: any of the items in the list, all of the items in the list and any combination of the items in the list.


The above description of illustrated embodiments of the system is not intended to be exhaustive or to limit the system to the precise form disclosed. While specific embodiments of, and examples for, the system are described herein for illustrative purposes, various equivalent modifications are possible within the scope of the system, as those skilled in the relevant art will recognize. The teachings of the system provided herein can be applied to other processing systems and methods, not only for the systems and methods described above.


The elements and acts of the various embodiments described above can be combined to provide further embodiments. These and other changes can be made to the system in light of the above detailed description.


In general, in the following claims, the terms used should not be construed to limit the system to the specific embodiments disclosed in the specification and the claims, but should be construed to include all processing systems that operate under the claims. Accordingly, the system is not limited by the disclosure, but instead the scope of the system is to be determined entirely by the claims.


While certain aspects of the system are presented below in certain claim forms, the inventors contemplate the various aspects of the system in any number of claim forms. For example, while only one aspect of the system is recited as embodied in machine-readable medium, other aspects may likewise be embodied in machine-readable medium. Accordingly, the inventors reserve the right to add additional claims after filing the application to pursue such additional claim forms for other aspects of the system.

Claims
  • 1. A method comprising: receiving, by a server device located external to a premises, an automation rule, wherein the automation rule comprises an indication of an action to perform in response to receiving an indication of an event associated with a sensor located at the premises, and wherein the sensor is associated with a premises management system located at the premises; andtransmitting, to a computing device located at the premises, the automation rule, wherein the computing device is configured, based on the automation rule, to perform the action based on event data associated with the sensor.
  • 2. The method of claim 1, wherein the computing device comprises one or more of a touchscreen device, a gateway device, or a network device.
  • 3. The method of claim 1, wherein the event data comprises an indication of a change of a sensor state, and wherein the automation rule configures the computing device to change, based on the change in the sensor state, a state of an automation device.
  • 4. The method of claim 1, wherein the event data comprises an indication of a change of a camera state, and wherein the automation rule configures the computing device to output, based on the change in the camera state, one or more of a video or an image.
  • 5. The method of claim 1, wherein receiving the automation rule comprises receiving, from a user device, the automation rule.
  • 6. The method of claim 1, wherein the premises management system comprises a security system.
  • 7. The method of claim 1, wherein the sensor comprises one or more of one or more of a camera, a door sensor, a motion sensor, or a window sensor.
  • 8. A server device comprising: one or more processors; andmemory storing instructions that, when executed by the one or more processors, cause the device to: receive, external to a premises, an automation rule, wherein the automation rule comprises an indication of an action to perform in response to receiving an indication of an event associated with a sensor located at the premises, and wherein the sensor is associated with a premises management system located at the premises; andtransmit, to a computing device located at the premises, the automation rule, wherein the computing device is configured, based on the automation rule, to perform the action based on event data associated with the sensor.
  • 9. The device of claim 8, wherein the computing device comprises one or more of a touchscreen device, a gateway device, or a network device.
  • 10. The device of claim 8, wherein the event data comprises an indication of a change of a sensor state, and wherein the automation rule configures the computing device to change, based on the change in the sensor state, a state of an automation device.
  • 11. The device of claim 8, wherein the event data comprises an indication of a change of a camera state, and wherein the automation rule configures the computing device to output, based on the change in the camera state, one or more of a video or an image.
  • 12. The device of claim 8, wherein the instructions that, when executed by the one or more processors, cause the device to receive the automation rule comprises instructions that, when executed by the one or more processors, cause the device to receive, from a user device, the automation rule.
  • 13. The device of claim 8, wherein the premises management system comprises a security system.
  • 14. The device of claim 8, wherein the sensor comprises one or more of one or more of a camera, a door sensor, a motion sensor, or a window sensor.
  • 15. A system comprising: a computing device located at a premises; anda server device located external to the premises and configured to: receive an automation rule, wherein the automation rule comprises an indication of an action to perform in response to receiving an indication of an event associated with a sensor located at the premises, and wherein the sensor is associated with a premises management system located at the premises; andtransmit, to the computing device, the automation rule, wherein the computing device is configured, based on the automation rule, to perform the action based on event data associated with the sensor.
  • 16. The system of claim 15, wherein the computing device comprises one or more of a touchscreen device, a gateway device, or a network device.
  • 17. The system of claim 15, wherein the event data comprises an indication of a change of a sensor state, and wherein the automation rule configures the computing device to change, based on the change in the sensor state, a state of an automation device.
  • 18. The system of claim 15, wherein the event data comprises an indication of a change of a camera state, and wherein the automation rule configures the computing device to output, based on the change in the camera state, one or more of a video or an image.
  • 19. The system of claim 15, wherein the server device is configured to receive the automation rule by receiving, from a user device, the automation rule.
  • 20. The system of claim 15, wherein the premises management system comprises a security system.
  • 21. The system of claim 15, wherein the sensor comprises one or more of one or more of a camera, a door sensor, a motion sensor, or a window sensor.
  • 22. A non-transitory computer-readable medium storing computer-executable instructions that, when executed, cause: receiving, by a server device located external to a premises, an automation rule, wherein the automation rule comprises an indication of an action to perform in response to receiving an indication of an event associated with a sensor located at the premises, and wherein the sensor is associated with a premises management system located at the premises; andtransmitting, to a computing device located at the premises, the automation rule, wherein the computing device is configured, based on the automation rule, to perform the action based on event data associated with the sensor.
  • 23. The non-transitory computer-readable medium of claim 22, wherein the computing device comprises one or more of a touchscreen device, a gateway device, or a network device.
  • 24. The non-transitory computer-readable medium of claim 22, wherein the event data comprises an indication of a change of a sensor state, and wherein the automation rule configures the computing device to change, based on the change in the sensor state, a state of an automation device.
  • 25. The non-transitory computer-readable medium of claim 22, wherein the event data comprises an indication of a change of a camera state, and wherein the automation rule configures the computing device to output, based on the change in the camera state, one or more of a video or an image.
  • 26. The non-transitory computer-readable medium of claim 22, wherein receiving the automation rule comprises receiving, from a user device, the automation rule.
  • 27. The non-transitory computer-readable medium of claim 22, wherein the premises management system comprises a security system.
  • 28. The non-transitory computer-readable medium of claim 22, wherein the sensor comprises one or more of one or more of a camera, a door sensor, a motion sensor, or a window sensor.
CROSS-REFERENCE TO RELATED APPLICATIONS

This application is a continuation of U.S. patent application Ser. No. 16/925,026, filed Jul. 9, 2020, issued as U.S. Pat. No. 11,378,922 on Jul. 5, 2022, which is a continuation of U.S. patent application Ser. No. 15/969,514, filed May 2, 2018, issued as U.S. Pat. No. 10,754,304 on Aug. 25, 2020, which is a continuation of U.S. patent application Ser. No. 15/078,786, filed Mar. 23, 2016, now abandoned, which is a continuation of U.S. patent application Ser. No. 13/718,851, filed Dec. 18, 2012, issued as U.S. Pat. No. 10,156,831 on Dec. 18, 2018, which is a continuation of U.S. patent application Ser. No. 11/084,232, filed Mar. 16, 2005, issued as U.S. Pat. No. 8,335,842 on Dec. 18, 2012, which are each hereby incorporated by reference in their entirety. U.S. patent application Ser. No. 11/084,232 is a non-provisional of and claims the benefit of U.S. Provisional Application No. 60/652,475, filed on Feb. 11, 2005, and is a non-provisional of and claims the benefit of U.S. Provisional Application No. 60/553,932, filed on Mar. 16, 2004, and is a non-provisional of and claims the benefit of U.S. Provisional Application No. 60/553,934, filed on Mar. 16, 2004, which are each hereby incorporated by reference in their entirety.

US Referenced Citations (2382)
Number Name Date Kind
686838 Appel Nov 1901 A
1738540 Replogle et al. Dec 1929 A
3803576 Dobrzanski et al. Apr 1974 A
3852541 Altenberger Dec 1974 A
4006460 Hewitt et al. Feb 1977 A
4141006 Braxton Feb 1979 A
4206449 Apsell et al. Jun 1980 A
4257038 Rounds et al. Mar 1981 A
4286331 Anderson et al. Aug 1981 A
4304970 Fahey et al. Dec 1981 A
4351023 Richer Sep 1982 A
4363031 Reinowitz Dec 1982 A
4459582 Sheahan et al. Jul 1984 A
4520503 Kirst et al. May 1985 A
4559526 Tani et al. Dec 1985 A
4559527 Kirby Dec 1985 A
4567557 Burns Jan 1986 A
4574305 Campbell et al. Mar 1986 A
4581606 Mallory Apr 1986 A
4591834 Kyle May 1986 A
D284084 Ferrara, Jr. Jun 1986 S
4641127 Hogan et al. Feb 1987 A
4652859 Van Wienen Mar 1987 A
4670739 Kelly, Jr. Jun 1987 A
4683460 Nakatsugawa Jul 1987 A
4694282 Tamura et al. Sep 1987 A
4716973 Cobern Jan 1988 A
4730184 Bach Mar 1988 A
4754261 Marino Jun 1988 A
4755792 Pezzolo et al. Jul 1988 A
4779007 Schlanger et al. Oct 1988 A
4785289 Chen Nov 1988 A
4801924 Burgmann et al. Jan 1989 A
4812820 Chatwin Mar 1989 A
4818970 Natale et al. Apr 1989 A
4833339 Luchaco et al. May 1989 A
4833449 Gaffigan May 1989 A
4855713 Brunius Aug 1989 A
4860185 Brewer et al. Aug 1989 A
4887064 Drori et al. Dec 1989 A
4897630 Nykerk Jan 1990 A
4918623 Lockitt et al. Apr 1990 A
4918717 Bissonnette et al. Apr 1990 A
4951029 Severson Aug 1990 A
4959713 Morotomi et al. Sep 1990 A
4962473 Crain Oct 1990 A
4980666 Hwang Dec 1990 A
4993059 Smith et al. Feb 1991 A
4994787 Kratt et al. Feb 1991 A
4996646 Farrington Feb 1991 A
5023901 Sloan et al. Jun 1991 A
5083106 Kostusiak et al. Jan 1992 A
5086385 Launey et al. Feb 1992 A
5091780 Pomerleau Feb 1992 A
5109278 Erickson et al. Apr 1992 A
5132968 Cephus Jul 1992 A
5134644 Garton et al. Jul 1992 A
5159315 Schultz et al. Oct 1992 A
5160879 Tortola et al. Nov 1992 A
5164703 Rickman Nov 1992 A
5164979 Choi Nov 1992 A
D337569 Kando Jul 1993 S
5227776 Starefoss Jul 1993 A
5237305 Ishikuro et al. Aug 1993 A
5245694 Zwern Sep 1993 A
5247232 Lin Sep 1993 A
5280527 Gullman et al. Jan 1994 A
5283816 Gomez Diaz Feb 1994 A
5299971 Hart Apr 1994 A
5319394 Dukek Jun 1994 A
5319698 Glidewell et al. Jun 1994 A
5334974 Simms et al. Aug 1994 A
5400011 Sutton Mar 1995 A
5400246 Wilson et al. Mar 1995 A
5406260 Cummings et al. Apr 1995 A
5410343 Coddington et al. Apr 1995 A
5412708 Katz May 1995 A
5414409 Voosen et al. May 1995 A
5414833 Hershey et al. May 1995 A
5428293 Sinclair et al. Jun 1995 A
5438607 Przygoda et al. Aug 1995 A
5446445 Bloomfield et al. Aug 1995 A
5448290 Vanzeeland Sep 1995 A
5452344 Larson Sep 1995 A
5465081 Todd Nov 1995 A
5471194 Guscott Nov 1995 A
5481312 Cash et al. Jan 1996 A
5483224 Rankin et al. Jan 1996 A
5486812 Todd Jan 1996 A
5499014 Greenwaldt Mar 1996 A
5499196 Pacheco Mar 1996 A
5510975 Ziegler, Jr. Apr 1996 A
5519878 Dolin, Jr. May 1996 A
RE35268 Frolov et al. Jun 1996 E
5525966 Parish Jun 1996 A
5526428 Arnold Jun 1996 A
5534845 Issa et al. Jul 1996 A
5541585 Duhame et al. Jul 1996 A
5543778 Stouffer Aug 1996 A
5546072 Creuseremee et al. Aug 1996 A
5546074 Bernal et al. Aug 1996 A
5546447 Skarbo et al. Aug 1996 A
5548646 Aziz et al. Aug 1996 A
5550984 Gelb Aug 1996 A
5557254 Johnson et al. Sep 1996 A
5565843 Meyvis Oct 1996 A
5570079 Dockery Oct 1996 A
5572438 Ehlers et al. Nov 1996 A
5578989 Pedtke Nov 1996 A
5579197 Mengelt et al. Nov 1996 A
5579221 Mun Nov 1996 A
D377034 Matsushita Dec 1996 S
5586254 Kondo et al. Dec 1996 A
5587705 Morris Dec 1996 A
5598086 Somerville Jan 1997 A
5602918 Chen et al. Feb 1997 A
5604493 Behlke Feb 1997 A
5606615 Lapointe et al. Feb 1997 A
5621662 Humphries Apr 1997 A
5623601 Vu Apr 1997 A
5625338 Pildner et al. Apr 1997 A
5625410 Washino et al. Apr 1997 A
5629687 Sutton et al. May 1997 A
5630216 McEwan May 1997 A
5631630 McSweeney May 1997 A
5638046 Malinowski Jun 1997 A
5650773 Chiarello Jul 1997 A
5651070 Blunt Jul 1997 A
5652567 Traxler Jul 1997 A
5654694 Newham Aug 1997 A
5675321 McBride Oct 1997 A
5680131 Utz Oct 1997 A
5682133 Johnson et al. Oct 1997 A
5686885 Bergman Nov 1997 A
5686896 Bergman Nov 1997 A
5689235 Sugimoto et al. Nov 1997 A
5689708 Regnier et al. Nov 1997 A
5691697 Carvalho et al. Nov 1997 A
5694335 Hollenberg Dec 1997 A
5694595 Jacobs et al. Dec 1997 A
5696486 Poliquin et al. Dec 1997 A
5696898 Baker et al. Dec 1997 A
D389501 Mascarenas et al. Jan 1998 S
5706191 Bassett et al. Jan 1998 A
5712679 Coles Jan 1998 A
5714933 Le Van Suu Feb 1998 A
5715394 Jabs Feb 1998 A
5717378 Malvaso et al. Feb 1998 A
5717379 Peters Feb 1998 A
5717578 Afzal Feb 1998 A
5719551 Flick Feb 1998 A
5726912 Krall et al. Mar 1998 A
5731756 Roddy Mar 1998 A
5736927 Stebbins et al. Apr 1998 A
5737391 Dame et al. Apr 1998 A
5748084 Isikoff May 1998 A
5748089 Sizemore May 1998 A
5757616 May et al. May 1998 A
5761206 Kackman Jun 1998 A
5774051 Kostusiak Jun 1998 A
5777551 Hess Jul 1998 A
5777837 Eckel et al. Jul 1998 A
5784461 Shaffer et al. Jul 1998 A
5784463 Chen et al. Jul 1998 A
5790531 Ellebracht et al. Aug 1998 A
5793028 Wagener et al. Aug 1998 A
5793763 Mayes et al. Aug 1998 A
5794128 Brockel et al. Aug 1998 A
5796401 Winer Aug 1998 A
5798701 Bernal et al. Aug 1998 A
5801618 Jenkins Sep 1998 A
5805056 Mueller et al. Sep 1998 A
5805064 Yorkey Sep 1998 A
5809013 Kackman Sep 1998 A
5809265 Blair et al. Sep 1998 A
5812054 Cohen Sep 1998 A
5819124 Somner et al. Oct 1998 A
5821937 Tonelli Oct 1998 A
5825865 Oberlander et al. Oct 1998 A
5838226 Houggy et al. Nov 1998 A
5844599 Hildin Dec 1998 A
5845070 Ikudome Dec 1998 A
5845081 Rangarajan et al. Dec 1998 A
5854588 Dockery Dec 1998 A
5859966 Hayman et al. Jan 1999 A
5861804 Fansa et al. Jan 1999 A
5864614 Farris et al. Jan 1999 A
5867484 Shaunfield Feb 1999 A
5867495 Elliott et al. Feb 1999 A
5874952 Morgan Feb 1999 A
5875395 Holmes Feb 1999 A
5877696 Powell Mar 1999 A
5877957 Bennett Mar 1999 A
5880775 Ross Mar 1999 A
5881226 Veneklase Mar 1999 A
5886697 Naughton et al. Mar 1999 A
5886894 Rakoff Mar 1999 A
5892442 Ozery Apr 1999 A
5898831 Hall et al. Apr 1999 A
5905438 Weiss et al. May 1999 A
5907279 Bruins et al. May 1999 A
5909183 Borgstahl et al. Jun 1999 A
5914655 Clifton et al. Jun 1999 A
5924069 Kowalkowski et al. Jul 1999 A
5926209 Glatt Jul 1999 A
5933098 Haxton Aug 1999 A
5940387 Humpleman Aug 1999 A
5943394 Ader et al. Aug 1999 A
5952815 Rouillard et al. Sep 1999 A
5955946 Beheshti et al. Sep 1999 A
5958053 Denker Sep 1999 A
5959528 Right et al. Sep 1999 A
5959529 Kail, IV Sep 1999 A
5963916 Kaplan Oct 1999 A
5967975 Ridgeway Oct 1999 A
5974547 Klimenko Oct 1999 A
D416910 Vasquez Nov 1999 S
5982418 Ely Nov 1999 A
5991795 Howard et al. Nov 1999 A
5995838 Oda et al. Nov 1999 A
5999525 Krishnaswamy et al. Dec 1999 A
6002430 McCall et al. Dec 1999 A
6009320 Dudley Dec 1999 A
6011321 Stancu et al. Jan 2000 A
6011921 Takahashi et al. Jan 2000 A
6032036 Maystre et al. Feb 2000 A
6037991 Thro et al. Mar 2000 A
6038289 Sands Mar 2000 A
6040770 Britton Mar 2000 A
6049272 Lee et al. Apr 2000 A
6049273 Hess Apr 2000 A
6049598 Peters et al. Apr 2000 A
6052052 Delmonaco Apr 2000 A
6058115 Sawyer et al. May 2000 A
6060994 Chen May 2000 A
6067346 Akhteruzzaman May 2000 A
6067440 Diefes May 2000 A
6069655 Seeley et al. May 2000 A
6078253 Fowler Jun 2000 A
6078257 Ferraro Jun 2000 A
6078649 Small et al. Jun 2000 A
6085030 Whitehead et al. Jul 2000 A
6085238 Yuasa et al. Jul 2000 A
6091771 Seeley et al. Jul 2000 A
6094134 Cohen Jul 2000 A
6097429 Seeley et al. Aug 2000 A
6104785 Chen Aug 2000 A
6107918 Klein et al. Aug 2000 A
6107930 Behlke et al. Aug 2000 A
6108034 Kim Aug 2000 A
6112015 Planas et al. Aug 2000 A
6112237 Donaldson et al. Aug 2000 A
6117182 Alpert et al. Sep 2000 A
6124882 Voois et al. Sep 2000 A
6128653 Del et al. Oct 2000 A
6134303 Chen Oct 2000 A
6134591 Nickles Oct 2000 A
6138249 Nolet Oct 2000 A
6139177 Venkatraman et al. Oct 2000 A
6140987 Stein et al. Oct 2000 A
6144993 Fukunaga et al. Nov 2000 A
6154133 Ross et al. Nov 2000 A
6157649 Peirce et al. Dec 2000 A
6157943 Meyer Dec 2000 A
6161182 Nadooshan Dec 2000 A
6167186 Kawasaki et al. Dec 2000 A
6167253 Farris et al. Dec 2000 A
6181341 Shinagawa Jan 2001 B1
6192282 Smith et al. Feb 2001 B1
6192418 Hale et al. Feb 2001 B1
6198475 Kunimatsu et al. Mar 2001 B1
6198479 Humpleman et al. Mar 2001 B1
6208247 Agre et al. Mar 2001 B1
6208952 Goertzel et al. Mar 2001 B1
6209011 Vong et al. Mar 2001 B1
6211783 Wang Apr 2001 B1
6215404 Morales Apr 2001 B1
6218938 Lin Apr 2001 B1
6219677 Howard Apr 2001 B1
6226031 Barraclough et al. May 2001 B1
6229429 Horon May 2001 B1
6230271 Wadlow et al. May 2001 B1
6239892 Davidson May 2001 B1
6243683 Peters Jun 2001 B1
6246320 Monroe Jun 2001 B1
6252883 Schweickart et al. Jun 2001 B1
6259440 Vaughan et al. Jul 2001 B1
6268789 Diamant et al. Jul 2001 B1
6271752 Vaios Aug 2001 B1
6275227 DeStefano Aug 2001 B1
6281790 Kimmel et al. Aug 2001 B1
6282569 Wallis et al. Aug 2001 B1
6286038 Reichmeyer et al. Sep 2001 B1
6288716 Humpleman et al. Sep 2001 B1
6289382 Bowman-Amuah Sep 2001 B1
6292766 Mattos et al. Sep 2001 B1
6292827 Raz Sep 2001 B1
6295346 Markowitz et al. Sep 2001 B1
6314425 Serbinis et al. Nov 2001 B1
6320506 Ferraro Nov 2001 B1
6323897 Kogane et al. Nov 2001 B1
D451529 Vasquez Dec 2001 S
6327044 Shima Dec 2001 B1
6331122 Wu Dec 2001 B1
6332193 Glass et al. Dec 2001 B1
6341274 Leon Jan 2002 B1
6347393 Alpert et al. Feb 2002 B1
6351213 Hirsch et al. Feb 2002 B1
6351271 Mainwaring et al. Feb 2002 B1
6351595 Kim Feb 2002 B1
6351829 Dupont et al. Feb 2002 B1
6353853 Gravlin Mar 2002 B1
6353891 Borella et al. Mar 2002 B1
6359560 Budge et al. Mar 2002 B1
6363417 Howard et al. Mar 2002 B1
6363422 Hunter et al. Mar 2002 B1
6366211 Parker Apr 2002 B1
6369695 Horon Apr 2002 B2
6369705 Kennedy Apr 2002 B1
6370436 Howard et al. Apr 2002 B1
6374079 Hsu Apr 2002 B1
6377861 York Apr 2002 B1
6378109 Young et al. Apr 2002 B1
6385772 Courtney May 2002 B1
6392538 Shere May 2002 B1
6396531 Gerszberg et al. May 2002 B1
6400265 Saylor et al. Jun 2002 B1
6405348 Fallah-Tehrani et al. Jun 2002 B1
6411802 Cardina et al. Jun 2002 B1
D460472 Wang Jul 2002 S
6418037 Zhang Jul 2002 B1
6421080 Lambert Jul 2002 B1
6430629 Smyers Aug 2002 B1
6433683 Robinson Aug 2002 B1
6434604 Harada et al. Aug 2002 B1
6434700 Alonso et al. Aug 2002 B1
6437692 Petite et al. Aug 2002 B1
6441723 Mansfield et al. Aug 2002 B1
6441731 Hess Aug 2002 B1
6442241 Tsumpes Aug 2002 B1
6445291 Addy et al. Sep 2002 B2
6446111 Lowery Sep 2002 B1
6446192 Narasimhan et al. Sep 2002 B1
6452490 Garland et al. Sep 2002 B1
6452923 Gerszberg et al. Sep 2002 B1
6452924 Golden et al. Sep 2002 B1
6453687 Sharood et al. Sep 2002 B2
D464328 Vasquez et al. Oct 2002 S
D464948 Vasquez et al. Oct 2002 S
6462507 Fisher, Jr. Oct 2002 B2
6462663 Wilson et al. Oct 2002 B1
6467084 Howard et al. Oct 2002 B1
6473407 Ditmer et al. Oct 2002 B1
6476858 Ramirez et al. Nov 2002 B1
6480901 Weber et al. Nov 2002 B1
6486896 Ubillos Nov 2002 B1
6493020 Stevenson et al. Dec 2002 B1
6496927 McGrane et al. Dec 2002 B1
6499131 Savithri et al. Dec 2002 B1
6504479 Lemons et al. Jan 2003 B1
6507589 Ramasubramani et al. Jan 2003 B1
6508709 Karmarkar Jan 2003 B1
6515968 Combar et al. Feb 2003 B1
6526581 Edson Feb 2003 B1
6529230 Chong Mar 2003 B1
6529589 Nelson et al. Mar 2003 B1
6529723 Bentley Mar 2003 B1
6535110 Arora et al. Mar 2003 B1
6542075 Barker et al. Apr 2003 B2
6542992 Peirce et al. Apr 2003 B1
6549130 Joao Apr 2003 B1
6552647 Thiessen et al. Apr 2003 B1
6553336 Johnson et al. Apr 2003 B1
6559769 Anthony et al. May 2003 B2
6563800 Salo et al. May 2003 B1
6563910 Menard et al. May 2003 B2
6567122 Anderson et al. May 2003 B1
6567502 Zellner et al. May 2003 B2
6574234 Myer et al. Jun 2003 B1
6580424 Krumm Jun 2003 B1
6580950 Johnson et al. Jun 2003 B1
6587046 Joao Jul 2003 B2
6587235 Chaudhuri et al. Jul 2003 B1
6587455 Ray et al. Jul 2003 B1
6587736 Howard et al. Jul 2003 B2
6587739 Abrams et al. Jul 2003 B1
6591094 Bentley Jul 2003 B1
6593856 Madau Jul 2003 B1
6597703 Li et al. Jul 2003 B1
6601086 Howard et al. Jul 2003 B1
6603488 Humpleman et al. Aug 2003 B2
6609127 Lee et al. Aug 2003 B1
6611206 Eshelman et al. Aug 2003 B2
6615088 Myer et al. Sep 2003 B1
6621827 Rezvani et al. Sep 2003 B1
6624750 Marman et al. Sep 2003 B1
6631416 Bendinelli et al. Oct 2003 B2
6636893 Fong Oct 2003 B1
6643355 Tsumpes Nov 2003 B1
6643652 Helgeson et al. Nov 2003 B2
6643669 Novak et al. Nov 2003 B1
6643795 Sicola et al. Nov 2003 B1
6648682 Wu Nov 2003 B1
6658091 Naidoo Dec 2003 B1
6661340 Saylor et al. Dec 2003 B1
6662340 Rawat et al. Dec 2003 B2
6665004 Paff Dec 2003 B1
6667688 Menard et al. Dec 2003 B1
6674767 Kadyk et al. Jan 2004 B1
6675365 Elzinga Jan 2004 B2
6680730 Shields et al. Jan 2004 B1
6680935 Kung et al. Jan 2004 B1
6686838 Rezvani et al. Feb 2004 B1
6690411 Naidoo et al. Feb 2004 B2
6690719 Raphaeli et al. Feb 2004 B1
6693530 Dowens et al. Feb 2004 B1
6693545 Brown et al. Feb 2004 B2
6697103 Fernandez et al. Feb 2004 B1
6704786 Gupta et al. Mar 2004 B1
6716101 Meadows et al. Apr 2004 B1
6720990 Walker et al. Apr 2004 B1
6721689 Markle et al. Apr 2004 B2
6721740 Skinner et al. Apr 2004 B1
6721747 Lipkin Apr 2004 B2
6721802 Wright et al. Apr 2004 B1
6727811 Fendis Apr 2004 B1
6728233 Park et al. Apr 2004 B1
6728688 Hirsch et al. Apr 2004 B1
6738824 Blair May 2004 B1
6741171 Palka et al. May 2004 B2
6741977 Nagaya et al. May 2004 B1
6754181 Elliott et al. Jun 2004 B1
6754717 Day et al. Jun 2004 B1
6756896 Ford Jun 2004 B2
6756988 Wang et al. Jun 2004 B1
6756998 Bilger Jun 2004 B1
6759956 Menard et al. Jul 2004 B2
6762686 Tabe Jul 2004 B1
6763377 Belknap et al. Jul 2004 B1
6766353 Lin et al. Jul 2004 B1
6771181 Hughen, Jr. Aug 2004 B1
6778085 Faulkner et al. Aug 2004 B2
6779019 Mousseau et al. Aug 2004 B1
6781509 Oppedahl et al. Aug 2004 B1
6785542 Blight et al. Aug 2004 B1
6789147 Kessler et al. Sep 2004 B1
6795322 Aihara et al. Sep 2004 B2
6795863 Doty, Jr. Sep 2004 B1
6798344 Faulkner et al. Sep 2004 B2
6804638 Fiedler Oct 2004 B2
6810409 Fry et al. Oct 2004 B1
6810420 Buse et al. Oct 2004 B1
6823223 Gonzales et al. Nov 2004 B2
6826173 Kung et al. Nov 2004 B1
6826233 Oosawa Nov 2004 B1
6829478 Layton et al. Dec 2004 B1
6834208 Gonzales et al. Dec 2004 B2
6836214 Choi Dec 2004 B2
6850252 Hoffberg Feb 2005 B1
6856236 Christensen et al. Feb 2005 B2
6857026 Cain Feb 2005 B1
6859831 Gelvin et al. Feb 2005 B1
6865690 Kocin Mar 2005 B2
6871193 Campbell et al. Mar 2005 B1
6873256 Lemelson et al. Mar 2005 B2
6885362 Suomela Apr 2005 B2
D504889 Andre et al. May 2005 S
6891838 Petite May 2005 B1
6912429 Bilger Jun 2005 B1
6914533 Petite Jul 2005 B2
6918112 Bourke-Dunphy et al. Jul 2005 B2
6920502 Araujo et al. Jul 2005 B2
6920615 Campbell et al. Jul 2005 B1
6922701 Ananian et al. Jul 2005 B1
6928148 Simon et al. Aug 2005 B2
6930598 Weiss Aug 2005 B2
6930599 Naidoo et al. Aug 2005 B2
6930730 Maxson et al. Aug 2005 B2
6931445 Davis Aug 2005 B2
6941258 Van et al. Sep 2005 B2
6943681 Rezvani et al. Sep 2005 B2
6956477 Chun Oct 2005 B2
6957075 Iverson Oct 2005 B1
6957186 Guheen et al. Oct 2005 B1
6957275 Sekiguchi Oct 2005 B1
6959341 Leung Oct 2005 B1
6959393 Hollis et al. Oct 2005 B2
6963908 Lynch et al. Nov 2005 B1
6963981 Bailey et al. Nov 2005 B1
6965294 Elliott et al. Nov 2005 B1
6965313 Saylor et al. Nov 2005 B1
6970183 Monroe Nov 2005 B1
6971063 Rappaport et al. Nov 2005 B1
6971076 Chen Nov 2005 B2
6972676 Kimmel et al. Dec 2005 B1
6975220 Foodman et al. Dec 2005 B1
6977485 Wei Dec 2005 B1
6983432 Hayes Jan 2006 B2
6990591 Pearson Jan 2006 B1
6993658 Engberg et al. Jan 2006 B1
6999562 Winick Feb 2006 B2
6999992 Deen et al. Feb 2006 B1
7015806 Naidoo et al. Mar 2006 B2
7016970 Harumoto et al. Mar 2006 B2
7019639 Stilp Mar 2006 B2
7020697 Goodman et al. Mar 2006 B1
7020701 Gelvin et al. Mar 2006 B1
7023913 Monroe Apr 2006 B1
7023914 Furukawa et al. Apr 2006 B2
7023975 Mansfield et al. Apr 2006 B2
7024676 Klopfenstein Apr 2006 B1
7028328 Kogane et al. Apr 2006 B2
7030752 Tyroler Apr 2006 B2
7032002 Rezvani et al. Apr 2006 B1
7034681 Yamamoto et al. Apr 2006 B2
7035907 Decasper et al. Apr 2006 B1
7039391 Rezvani et al. May 2006 B2
7042880 Voit et al. May 2006 B1
7043537 Pratt May 2006 B1
7047088 Nakamura et al. May 2006 B2
7047092 Wimsatt May 2006 B2
7047180 Mathews et al. May 2006 B1
7050388 Kim et al. May 2006 B2
7053764 Stilp May 2006 B2
7053765 Clark May 2006 B1
7068164 Duncan et al. Jun 2006 B1
7072934 Helgeson et al. Jul 2006 B2
7073140 Li et al. Jul 2006 B1
7075429 Marshall Jul 2006 B2
7079020 Stilp Jul 2006 B2
7080046 Rezvani et al. Jul 2006 B1
7081813 Winick et al. Jul 2006 B2
7082460 Hansen et al. Jul 2006 B2
7084756 Stilp Aug 2006 B2
7085814 Gandhi et al. Aug 2006 B1
7085937 Rezvani et al. Aug 2006 B1
7086018 Ito Aug 2006 B2
7099944 Anschutz et al. Aug 2006 B1
7099994 Thayer et al. Aug 2006 B2
7103152 Naidoo et al. Sep 2006 B2
7106176 La et al. Sep 2006 B2
7107322 Freeny, Jr. Sep 2006 B1
7110774 Davis et al. Sep 2006 B1
7111072 Matthews et al. Sep 2006 B1
7113090 Saylor et al. Sep 2006 B1
7113099 Tyroler et al. Sep 2006 B2
7114554 Bergman et al. Oct 2006 B2
7119609 Naidoo et al. Oct 2006 B2
7119674 Sefton Oct 2006 B2
7120139 Kung et al. Oct 2006 B1
7120232 Naidoo et al. Oct 2006 B2
7120233 Naidoo et al. Oct 2006 B2
7126473 Powell Oct 2006 B1
7130383 Naidoo et al. Oct 2006 B2
7130585 Ollis et al. Oct 2006 B1
7134138 Scherr Nov 2006 B2
7136711 Duncan et al. Nov 2006 B1
7142503 Grant et al. Nov 2006 B1
7145898 Elliott Dec 2006 B1
7147147 Enright et al. Dec 2006 B1
7148810 Bhat Dec 2006 B2
7149798 Rezvani et al. Dec 2006 B2
7149814 Neufeld et al. Dec 2006 B2
7158026 Feldkamp et al. Jan 2007 B2
7158776 Estes et al. Jan 2007 B1
7158920 Ishikawa Jan 2007 B2
7164883 Rappaport et al. Jan 2007 B2
7164907 Cochran et al. Jan 2007 B2
7166987 Lee et al. Jan 2007 B2
7171466 Van Der Meulen Jan 2007 B2
7171686 Jansen et al. Jan 2007 B1
7174018 Patil et al. Feb 2007 B1
7174564 Weatherspoon et al. Feb 2007 B1
7180889 Kung et al. Feb 2007 B1
7181207 Chow et al. Feb 2007 B1
7181517 Iavergne et al. Feb 2007 B1
7181571 Jiang et al. Feb 2007 B2
7181716 Dahroug Feb 2007 B1
7183907 Simon et al. Feb 2007 B2
7184428 Gerszberg et al. Feb 2007 B1
7184848 Krzyzanowski et al. Feb 2007 B2
7187279 Chung Mar 2007 B2
7187986 Johnson et al. Mar 2007 B2
7194003 Danner et al. Mar 2007 B2
7194446 Bromley et al. Mar 2007 B1
7197125 Prasad et al. Mar 2007 B1
7203486 Patel Apr 2007 B2
7209945 Hicks et al. Apr 2007 B2
7212570 Akiyama et al. May 2007 B2
7213061 Hite et al. May 2007 B1
7218217 Adonailo et al. May 2007 B2
7222359 Freund et al. May 2007 B2
7229012 Enright et al. Jun 2007 B1
7237267 Rayes et al. Jun 2007 B2
7240327 Singh et al. Jul 2007 B2
7246044 Imamura et al. Jul 2007 B2
7248150 Mackjust et al. Jul 2007 B2
7248161 Spoltore et al. Jul 2007 B2
7249177 Miller Jul 2007 B1
7249317 Nakagawa et al. Jul 2007 B1
7250854 Rezvani et al. Jul 2007 B2
7250859 Martin et al. Jul 2007 B2
7254779 Rezvani et al. Aug 2007 B1
7254833 Cornelius et al. Aug 2007 B1
7262690 Heaton et al. Aug 2007 B2
7277010 Joao Oct 2007 B2
7292142 Simon et al. Nov 2007 B2
7293083 Ranous et al. Nov 2007 B1
7298253 Petricoin et al. Nov 2007 B2
7305461 Ullman Dec 2007 B2
7310115 Tanimoto Dec 2007 B2
7313102 Stephenson et al. Dec 2007 B2
7313231 Reid Dec 2007 B2
D558460 Yu et al. Jan 2008 S
D558756 Andre et al. Jan 2008 S
7315886 Meenan et al. Jan 2008 B1
7337217 Wang Feb 2008 B2
7337473 Chang et al. Feb 2008 B2
7339895 Ozaki et al. Mar 2008 B2
7340314 Duncan et al. Mar 2008 B1
7343619 Ofek et al. Mar 2008 B2
7345580 Akamatsu et al. Mar 2008 B2
7346338 Calhoun et al. Mar 2008 B1
7349682 Bennett et al. Mar 2008 B1
7349761 Cruse Mar 2008 B1
7349967 Wang Mar 2008 B2
7356372 Duncan et al. Apr 2008 B1
7359843 Keller et al. Apr 2008 B1
7362221 Katz Apr 2008 B2
7367045 Ofek et al. Apr 2008 B2
7370115 Bae et al. May 2008 B2
7383339 Meenan et al. Jun 2008 B1
7383522 Murgai et al. Jun 2008 B2
7391298 Campbell et al. Jun 2008 B1
7403838 Deen et al. Jul 2008 B2
7409045 Naidoo et al. Aug 2008 B2
7409451 Meenan et al. Aug 2008 B1
7412447 Hilbert et al. Aug 2008 B2
7425101 Cheng Sep 2008 B2
7428585 Owens et al. Sep 2008 B1
7430614 Shen et al. Sep 2008 B2
7437753 Nahum Oct 2008 B2
7440434 Chaskar et al. Oct 2008 B2
7440767 Ballay et al. Oct 2008 B2
7447775 Zhu et al. Nov 2008 B1
7454731 Oh et al. Nov 2008 B2
7457869 Kernan Nov 2008 B2
7466223 Sefton Dec 2008 B2
7469139 Van De Groenendaal Dec 2008 B2
7469294 Luo et al. Dec 2008 B1
7469381 Ording Dec 2008 B2
7469391 Carrere et al. Dec 2008 B2
D584738 Kim et al. Jan 2009 S
D585399 Hwang Jan 2009 S
7477629 Tsirtsis et al. Jan 2009 B2
7479949 Jobs et al. Jan 2009 B2
7480713 Ullman Jan 2009 B2
7480724 Zimler et al. Jan 2009 B2
7483958 Elabbady et al. Jan 2009 B1
7490350 Murotake et al. Feb 2009 B1
7493651 Vaenskae et al. Feb 2009 B2
7498695 Gaudreau et al. Mar 2009 B2
7502672 Kolls Mar 2009 B1
7506052 Qian et al. Mar 2009 B2
7509687 Ofek et al. Mar 2009 B2
7511614 Stilp et al. Mar 2009 B2
7512965 Amdur et al. Mar 2009 B1
7526539 Hsu Apr 2009 B1
7526762 Astala et al. Apr 2009 B1
7528723 Fast et al. May 2009 B2
7535880 Hinman et al. May 2009 B1
7542721 Bonner et al. Jun 2009 B1
7549134 Li et al. Jun 2009 B1
7551071 Bennett et al. Jun 2009 B2
7554934 Abraham et al. Jun 2009 B2
7558379 Winick Jul 2009 B2
7558862 Tyukasz et al. Jul 2009 B1
7558903 Kinstler Jul 2009 B2
7562323 Bai et al. Jul 2009 B1
7564855 Georgiou Jul 2009 B1
7568018 Hove et al. Jul 2009 B1
7571459 Ganesh et al. Aug 2009 B2
7577420 Srinivasan et al. Aug 2009 B2
7583191 Zinser Sep 2009 B2
7584263 Hicks et al. Sep 2009 B1
7587464 Moorer et al. Sep 2009 B2
7590953 Chang Sep 2009 B2
7595816 Enright et al. Sep 2009 B1
7596622 Owen et al. Sep 2009 B2
D602014 Andre et al. Oct 2009 S
D602015 Andre et al. Oct 2009 S
D602017 Andre et al. Oct 2009 S
D602486 Andre et al. Oct 2009 S
D602487 Maskatia Oct 2009 S
7606767 Couper et al. Oct 2009 B1
7610555 Klein et al. Oct 2009 B2
7610559 Humpleman et al. Oct 2009 B1
7619512 Trundle et al. Nov 2009 B2
7620427 Shanahan Nov 2009 B2
7627665 Barker et al. Dec 2009 B2
7633385 Cohn et al. Dec 2009 B2
7634519 Creamer et al. Dec 2009 B2
7639157 Whitley et al. Dec 2009 B1
7651530 Winick Jan 2010 B2
7653911 Doshi et al. Jan 2010 B2
7671729 Hershkovitz et al. Mar 2010 B2
7679503 Mason et al. Mar 2010 B2
7681201 Dale et al. Mar 2010 B2
7684418 Scott et al. Mar 2010 B2
7696873 Sharma et al. Apr 2010 B2
7697028 Johnson Apr 2010 B1
7701970 Krits et al. Apr 2010 B2
7702421 Sullivan et al. Apr 2010 B2
7702782 Pai Apr 2010 B1
D615083 Andre et al. May 2010 S
7711796 Gutt et al. May 2010 B2
7720654 Hollis May 2010 B2
7730223 Bavor et al. Jun 2010 B1
7733371 Monroe Jun 2010 B1
7734020 Elliot et al. Jun 2010 B2
7734286 Almeda et al. Jun 2010 B2
7734906 Orlando et al. Jun 2010 B2
7739596 Clarke-Martin et al. Jun 2010 B2
7739658 Watson et al. Jun 2010 B2
7747975 Dinter et al. Jun 2010 B2
7751409 Carolan Jul 2010 B1
7755472 Grossman Jul 2010 B2
7755506 Clegg et al. Jul 2010 B1
7756928 Meenan et al. Jul 2010 B1
7761275 Chopra et al. Jul 2010 B2
7787863 Van De Groenendaal Aug 2010 B2
7804760 Schmukler et al. Sep 2010 B2
D624896 Park et al. Oct 2010 S
D626437 Lee et al. Nov 2010 S
7825793 Spillman et al. Nov 2010 B1
7827252 Hopmann et al. Nov 2010 B2
7844699 Horrocks et al. Nov 2010 B1
7847675 Thyen et al. Dec 2010 B1
7855635 Cohn et al. Dec 2010 B2
7859404 Chul et al. Dec 2010 B2
7882466 Ishikawa Feb 2011 B2
7882537 Okajo et al. Feb 2011 B2
7884855 Ortiz Feb 2011 B2
7890612 Todd et al. Feb 2011 B2
7890915 Celik et al. Feb 2011 B2
7899732 Van et al. Mar 2011 B2
7904074 Karaoguz et al. Mar 2011 B2
7904187 Hoffberg et al. Mar 2011 B2
7911341 Raji et al. Mar 2011 B2
7912447 Bennett, III Mar 2011 B2
7917624 Gidwani Mar 2011 B2
D636769 Wood et al. Apr 2011 S
7921686 Bagepalli et al. Apr 2011 B2
7928840 Kim et al. Apr 2011 B2
7930365 Dixit et al. Apr 2011 B2
D637596 Akana et al. May 2011 S
7949960 Roessler et al. May 2011 B2
D639805 Song et al. Jun 2011 S
D640663 Arnholt et al. Jun 2011 S
7956736 Cohn et al. Jun 2011 B2
7957326 Christie, IV Jun 2011 B1
7970863 Fontaine Jun 2011 B1
D641018 Lee et al. Jul 2011 S
7974235 Ghozati et al. Jul 2011 B2
D642563 Akana et al. Aug 2011 S
8001219 Moorer et al. Aug 2011 B2
D645015 Lee et al. Sep 2011 S
D645435 Kim et al. Sep 2011 S
D645833 Seflic et al. Sep 2011 S
8022833 Cho Sep 2011 B2
8028041 Olliphant et al. Sep 2011 B2
8032881 Holmberg et al. Oct 2011 B2
8042049 Killian et al. Oct 2011 B2
8046411 Hayashi et al. Oct 2011 B2
8046721 Chaudhri et al. Oct 2011 B2
8069194 Manber et al. Nov 2011 B1
D650381 Park et al. Dec 2011 S
8073931 Dawes et al. Dec 2011 B2
8086702 Baum et al. Dec 2011 B2
8086703 Baum et al. Dec 2011 B2
D654460 Kim et al. Feb 2012 S
D654497 Lee Feb 2012 S
8122131 Baum et al. Feb 2012 B2
8125184 Raji et al. Feb 2012 B2
D656137 Chung et al. Mar 2012 S
8140658 Gelvin et al. Mar 2012 B1
8144836 Naidoo et al. Mar 2012 B2
8149849 Osborn et al. Apr 2012 B2
8159519 Kurtz et al. Apr 2012 B2
8159945 Muro et al. Apr 2012 B2
8160425 Kisliakov Apr 2012 B2
8196064 Krzyzanowski et al. Jun 2012 B2
8200827 Hunyady et al. Jun 2012 B1
8205181 Singla et al. Jun 2012 B1
8209400 Baum et al. Jun 2012 B2
D663298 Song et al. Jul 2012 S
D664540 Kim et al. Jul 2012 S
8214494 Slavin Jul 2012 B1
8214496 Gutt et al. Jul 2012 B2
8219254 O'Connor Jul 2012 B2
8229812 Raleigh Jul 2012 B2
8230466 Cockrell et al. Jul 2012 B2
D664954 Kim et al. Aug 2012 S
D666198 Van et al. Aug 2012 S
8239477 Sharma et al. Aug 2012 B2
8244550 Sim et al. Aug 2012 B2
D667395 Lee Sep 2012 S
D667396 Koh Sep 2012 S
D667397 Koh Sep 2012 S
D667398 Koh Sep 2012 S
D667399 Koh Sep 2012 S
8269376 Elberbaum Sep 2012 B1
8269623 Addy Sep 2012 B2
8271629 Winters et al. Sep 2012 B1
8271881 Moorer et al. Sep 2012 B2
8272053 Markham et al. Sep 2012 B2
8275830 Raleigh Sep 2012 B2
D668650 Han Oct 2012 S
D668651 Kim et al. Oct 2012 S
D668652 Kim et al. Oct 2012 S
D669469 Kang Oct 2012 S
D670692 Akana et al. Nov 2012 S
D671514 Kim et al. Nov 2012 S
8311526 Forstall et al. Nov 2012 B2
D671938 Hsu et al. Dec 2012 S
D672344 Li Dec 2012 S
D672345 Li Dec 2012 S
D672739 Sin Dec 2012 S
D672768 Huang et al. Dec 2012 S
8335842 Raji et al. Dec 2012 B2
8335854 Eldering Dec 2012 B2
8336010 Chang et al. Dec 2012 B1
D673561 Hyun et al. Jan 2013 S
D673948 Andre et al. Jan 2013 S
D673950 Li et al. Jan 2013 S
D674369 Jaewoong Jan 2013 S
D675203 Yang Jan 2013 S
8350694 Trundle et al. Jan 2013 B1
8363791 Gupta et al. Jan 2013 B2
D675588 Park Feb 2013 S
D675612 Andre et al. Feb 2013 S
D676443 Canizares et al. Feb 2013 S
D676819 Choi Feb 2013 S
8373313 Garcia et al. Feb 2013 B2
D677255 McManigal et al. Mar 2013 S
D677640 Kim et al. Mar 2013 S
D677659 Akana et al. Mar 2013 S
D677660 Groene et al. Mar 2013 S
D678271 Chiu Mar 2013 S
D678272 Groene et al. Mar 2013 S
D678877 Groene et al. Mar 2013 S
8396766 Enright et al. Mar 2013 B1
8400767 Yeom et al. Mar 2013 B2
D679706 Tang et al. Apr 2013 S
D680151 Katori Apr 2013 S
D680524 Feng et al. Apr 2013 S
D681032 Akana et al. Apr 2013 S
8413204 White et al. Apr 2013 B2
D681583 Park May 2013 S
D681591 Sung May 2013 S
D681632 Akana et al. May 2013 S
D682239 Yeh et al. May 2013 S
8451986 Cohn et al. May 2013 B2
D684553 Kim et al. Jun 2013 S
D684968 Smith et al. Jun 2013 S
8456293 Trundle et al. Jun 2013 B1
8473619 Baum et al. Jun 2013 B2
D685778 Fahrendorff et al. Jul 2013 S
D685783 Bryan et al. Jul 2013 S
8478450 Lu et al. Jul 2013 B2
8478844 Baum et al. Jul 2013 B2
8478871 Gutt et al. Jul 2013 B2
8483853 Lambourne Jul 2013 B1
8493202 Trundle et al. Jul 2013 B1
8499038 Vucurevich Jul 2013 B1
8520068 Naidoo et al. Aug 2013 B2
8520072 Slavin et al. Aug 2013 B1
8525664 Hadizad et al. Sep 2013 B2
8543665 Ansari et al. Sep 2013 B2
D692042 Dawes et al. Oct 2013 S
8554478 Hartman Oct 2013 B2
8560041 Flaherty et al. Oct 2013 B2
8570993 Austin et al. Oct 2013 B2
8584199 Chen et al. Nov 2013 B1
8595377 Apgar et al. Nov 2013 B1
D695735 Kitchen et al. Dec 2013 S
8599018 Kellen et al. Dec 2013 B2
8612591 Dawes et al. Dec 2013 B2
8619136 Howarter et al. Dec 2013 B2
8634533 Strasters Jan 2014 B2
8635350 Gutt et al. Jan 2014 B2
8635499 Cohn et al. Jan 2014 B2
8638211 Cohn et al. Jan 2014 B2
8649386 Ansari et al. Feb 2014 B2
8650320 Merrick et al. Feb 2014 B1
8666560 Lu et al. Mar 2014 B2
8675071 Slavin et al. Mar 2014 B1
8700769 Alexander et al. Apr 2014 B2
8704821 Kulkarni et al. Apr 2014 B2
8713132 Baum et al. Apr 2014 B2
8723671 Foisy et al. May 2014 B2
8730834 Marusca et al. May 2014 B2
8738765 Wyatt et al. May 2014 B2
8812654 Gelvin et al. Aug 2014 B2
8817809 Gage Aug 2014 B2
8819178 Baum et al. Aug 2014 B2
8825871 Baum et al. Sep 2014 B2
8832244 Gelvin et al. Sep 2014 B2
8836467 Cohn et al. Sep 2014 B1
8868678 Hildreth et al. Oct 2014 B2
8885552 Bedingfield et al. Nov 2014 B2
8902740 Hicks, III Dec 2014 B2
8914526 Lindquist et al. Dec 2014 B1
8914837 Ahmed et al. Dec 2014 B2
8935236 Morita et al. Jan 2015 B2
8937539 Sharma et al. Jan 2015 B2
8937658 Hicks et al. Jan 2015 B2
8953479 Hall et al. Feb 2015 B2
8953749 Naidoo et al. Feb 2015 B2
8963713 Dawes et al. Feb 2015 B2
8976763 Shrestha et al. Mar 2015 B2
8983534 Patel Mar 2015 B2
8988217 Piccolo, III Mar 2015 B2
8988221 Raji et al. Mar 2015 B2
8989922 Jones et al. Mar 2015 B2
8996665 Baum et al. Mar 2015 B2
9047753 Dawes et al. Jun 2015 B2
9059863 Baum et al. Jun 2015 B2
9064394 Trundle Jun 2015 B1
9094407 Matthieu et al. Jul 2015 B1
9100446 Cohn et al. Aug 2015 B2
9141276 Dawes et al. Sep 2015 B2
9144143 Raji et al. Sep 2015 B2
9146548 Chambers et al. Sep 2015 B2
9147337 Cohn et al. Sep 2015 B2
9160784 Jeong et al. Oct 2015 B2
9164669 Yaksick et al. Oct 2015 B1
9170707 Laska et al. Oct 2015 B1
9172532 Fuller et al. Oct 2015 B1
9172533 Fielder Oct 2015 B2
9172553 Dawes et al. Oct 2015 B2
9172605 Hardy et al. Oct 2015 B2
9189934 Jentoft et al. Nov 2015 B2
9191228 Fulker et al. Nov 2015 B2
9202362 Hyland et al. Dec 2015 B2
9246921 Vlaminck et al. Jan 2016 B1
9286772 Shapiro et al. Mar 2016 B2
9287727 Egan et al. Mar 2016 B1
9300921 Naidoo et al. Mar 2016 B2
9306809 Dawes et al. Apr 2016 B2
9310864 Klein et al. Apr 2016 B1
9373014 Mehranfar Jun 2016 B1
9412248 Cohn et al. Aug 2016 B1
9426720 Cohn et al. Aug 2016 B2
9450776 Baum et al. Sep 2016 B2
9462041 Hagins et al. Oct 2016 B1
9510065 Cohn et al. Nov 2016 B2
9529344 Hagins et al. Dec 2016 B1
9531593 Baum Dec 2016 B2
9553738 Meenan et al. Jan 2017 B2
9600945 Naidoo et al. Mar 2017 B2
9609003 Chmielewski et al. Mar 2017 B1
9613524 Lamb et al. Apr 2017 B1
9621408 Gutt et al. Apr 2017 B2
9674199 Vlaminck et al. Jun 2017 B2
9721461 Zeng et al. Aug 2017 B2
9729342 Cohn et al. Aug 2017 B2
9761123 Ramasubbu et al. Sep 2017 B2
9779595 Thibault Oct 2017 B2
9805587 Lamb Oct 2017 B2
9819911 K V et al. Nov 2017 B2
9824234 Cho et al. Nov 2017 B2
9843458 Cronin Dec 2017 B2
9876651 Cho et al. Jan 2018 B2
9882985 Esam et al. Jan 2018 B1
9978238 Fadell et al. May 2018 B2
9979625 McLaughlin et al. May 2018 B2
10002507 Wilson et al. Jun 2018 B2
10025473 Sarao et al. Jul 2018 B2
10051078 Burd et al. Aug 2018 B2
10062245 Fulker et al. Aug 2018 B2
10062273 Raji et al. Aug 2018 B2
10078958 Cohn et al. Sep 2018 B2
10079839 Bryan et al. Sep 2018 B1
10108272 Debates et al. Oct 2018 B1
10120354 Rolston et al. Nov 2018 B1
10237757 Raleigh et al. Mar 2019 B2
10257474 Nadathur et al. Apr 2019 B2
10264138 Raleigh et al. Apr 2019 B2
10354517 King Jul 2019 B1
10375253 Dawes Aug 2019 B2
10380873 Halverson Aug 2019 B1
10430887 Parker et al. Oct 2019 B1
10687270 Ishii Jun 2020 B2
10782681 Slavin Sep 2020 B1
10796557 Sundermeyer et al. Oct 2020 B2
10868712 Hutz Dec 2020 B1
11037433 Baum et al. Jun 2021 B2
11132888 Cohn et al. Sep 2021 B2
11175793 Fulker et al. Nov 2021 B2
11184322 Dawes et al. Nov 2021 B2
11194320 Cohn et al. Dec 2021 B2
11201755 Dawes et al. Dec 2021 B2
11223998 Cohn et al. Jan 2022 B2
11417159 Li et al. Aug 2022 B2
11616659 Kitchen Mar 2023 B2
20010012775 Modzelesky et al. Aug 2001 A1
20010016501 King Aug 2001 A1
20010022836 Bremer et al. Sep 2001 A1
20010025349 Sharood et al. Sep 2001 A1
20010029585 Simon et al. Oct 2001 A1
20010030597 Inoue et al. Oct 2001 A1
20010034209 Tong et al. Oct 2001 A1
20010034754 Elwahab et al. Oct 2001 A1
20010034759 Chiles et al. Oct 2001 A1
20010036192 Chiles et al. Nov 2001 A1
20010042137 Ota et al. Nov 2001 A1
20010044835 Schober et al. Nov 2001 A1
20010046366 Susskind Nov 2001 A1
20010047474 Takagi et al. Nov 2001 A1
20010048030 Sharood et al. Dec 2001 A1
20010053207 Jeon et al. Dec 2001 A1
20010054115 Ferguson et al. Dec 2001 A1
20020000913 Hamamoto et al. Jan 2002 A1
20020003575 Marchese Jan 2002 A1
20020004828 Davis et al. Jan 2002 A1
20020005894 Foodman et al. Jan 2002 A1
20020016639 Smith et al. Feb 2002 A1
20020018057 Sano Feb 2002 A1
20020018478 Takeyama et al. Feb 2002 A1
20020019751 Rothschild et al. Feb 2002 A1
20020026476 Miyazaki et al. Feb 2002 A1
20020026531 Keane et al. Feb 2002 A1
20020027504 Davis et al. Mar 2002 A1
20020028696 Hirayama et al. Mar 2002 A1
20020031120 Rakib Mar 2002 A1
20020032853 Preston et al. Mar 2002 A1
20020035633 Bose et al. Mar 2002 A1
20020037004 Bossemeyer et al. Mar 2002 A1
20020038380 Brawn et al. Mar 2002 A1
20020046280 Fujita Apr 2002 A1
20020046301 Shannon et al. Apr 2002 A1
20020052719 Alexander et al. May 2002 A1
20020052913 Yamada et al. May 2002 A1
20020055977 Nishi May 2002 A1
20020059078 Valdes et al. May 2002 A1
20020059148 Rosenhaft et al. May 2002 A1
20020059637 Rakib May 2002 A1
20020068558 Janik Jun 2002 A1
20020068984 Alexander et al. Jun 2002 A1
20020072868 Bartone et al. Jun 2002 A1
20020075153 Dahl Jun 2002 A1
20020080771 Krumel Jun 2002 A1
20020083342 Webb et al. Jun 2002 A1
20020085488 Kobayashi Jul 2002 A1
20020091815 Anderson et al. Jul 2002 A1
20020099809 Lee Jul 2002 A1
20020099829 Richards et al. Jul 2002 A1
20020099854 Jorgensen Jul 2002 A1
20020101858 Stuart et al. Aug 2002 A1
20020103898 Moyer et al. Aug 2002 A1
20020103927 Parent Aug 2002 A1
20020107910 Zhao Aug 2002 A1
20020109580 Shreve et al. Aug 2002 A1
20020111698 Graziano et al. Aug 2002 A1
20020114439 Dunlap Aug 2002 A1
20020116117 Martens et al. Aug 2002 A1
20020119800 Jaggers et al. Aug 2002 A1
20020120696 Mousseau et al. Aug 2002 A1
20020120698 Tamargo Aug 2002 A1
20020120790 Schwalb Aug 2002 A1
20020126009 Oyagi et al. Sep 2002 A1
20020128728 Murakami et al. Sep 2002 A1
20020131404 Mehta et al. Sep 2002 A1
20020133539 Monday Sep 2002 A1
20020133578 Wu Sep 2002 A1
20020136167 Steele et al. Sep 2002 A1
20020143805 Hayes et al. Oct 2002 A1
20020143923 Alexander Oct 2002 A1
20020150086 Bailey et al. Oct 2002 A1
20020152298 Kikta et al. Oct 2002 A1
20020152432 Fleming Oct 2002 A1
20020156564 Preston et al. Oct 2002 A1
20020156899 Sekiguchi Oct 2002 A1
20020161885 Childers et al. Oct 2002 A1
20020163534 Choi et al. Nov 2002 A1
20020163997 Bergman et al. Nov 2002 A1
20020164953 Curtis Nov 2002 A1
20020164997 Parry Nov 2002 A1
20020165006 Haller et al. Nov 2002 A1
20020166125 Fulmer Nov 2002 A1
20020174367 Kimmel et al. Nov 2002 A1
20020174434 Lee et al. Nov 2002 A1
20020177428 Menard et al. Nov 2002 A1
20020177482 Cheong et al. Nov 2002 A1
20020178100 Koveos Nov 2002 A1
20020178211 Singhal et al. Nov 2002 A1
20020180579 Nagaoka et al. Dec 2002 A1
20020184301 Parent Dec 2002 A1
20020184527 Chun et al. Dec 2002 A1
20020186683 Buck et al. Dec 2002 A1
20020188723 Choi et al. Dec 2002 A1
20020191636 Hallenbeck Dec 2002 A1
20030004088 Ushio et al. Jan 2003 A1
20030005030 Sutton et al. Jan 2003 A1
20030006879 Kang et al. Jan 2003 A1
20030009552 Benfield et al. Jan 2003 A1
20030009553 Benfield et al. Jan 2003 A1
20030010243 Roller Jan 2003 A1
20030023839 Burkhardt et al. Jan 2003 A1
20030025599 Monroe Feb 2003 A1
20030028294 Yanagi Feb 2003 A1
20030028398 Yamashita et al. Feb 2003 A1
20030030548 Kovacs et al. Feb 2003 A1
20030031165 O'Brien Feb 2003 A1
20030038730 Imafuku et al. Feb 2003 A1
20030038849 Craven et al. Feb 2003 A1
20030039242 Moore Feb 2003 A1
20030040813 Gonzales et al. Feb 2003 A1
20030041137 Horie et al. Feb 2003 A1
20030041167 French et al. Feb 2003 A1
20030046557 Miller et al. Mar 2003 A1
20030050731 Rosenblum Mar 2003 A1
20030050737 Osann Mar 2003 A1
20030051009 Shah et al. Mar 2003 A1
20030051026 Carter et al. Mar 2003 A1
20030052905 Gordon et al. Mar 2003 A1
20030052923 Porter Mar 2003 A1
20030056012 Modeste et al. Mar 2003 A1
20030056014 Verberkt et al. Mar 2003 A1
20030059005 Meyerson et al. Mar 2003 A1
20030060900 Lo et al. Mar 2003 A1
20030061344 Monroe Mar 2003 A1
20030061621 Petty et al. Mar 2003 A1
20030062997 Naidoo Apr 2003 A1
20030065757 Mentze et al. Apr 2003 A1
20030065784 Herrod Apr 2003 A1
20030065791 Garg et al. Apr 2003 A1
20030067923 Ju et al. Apr 2003 A1
20030069854 Hsu et al. Apr 2003 A1
20030069948 Ma et al. Apr 2003 A1
20030071724 D Amico Apr 2003 A1
20030071840 Huang et al. Apr 2003 A1
20030073406 Benjamin et al. Apr 2003 A1
20030074090 Becka Apr 2003 A1
20030081768 Caminschi May 2003 A1
20030084165 Kjellberg et al. May 2003 A1
20030090473 Joshi May 2003 A1
20030096590 Satoh May 2003 A1
20030101243 Donahue et al. May 2003 A1
20030101459 Edson May 2003 A1
20030103088 Dresti et al. Jun 2003 A1
20030105850 Lean et al. Jun 2003 A1
20030110262 Hasan et al. Jun 2003 A1
20030110302 Hodges et al. Jun 2003 A1
20030112866 Yu et al. Jun 2003 A1
20030113100 Hecht et al. Jun 2003 A1
20030115345 Chien et al. Jun 2003 A1
20030120593 Bansal et al. Jun 2003 A1
20030123419 Rangnekar et al. Jul 2003 A1
20030123634 Chee Jul 2003 A1
20030126236 Marl et al. Jul 2003 A1
20030128114 Quigley Jul 2003 A1
20030128115 Giacopelli et al. Jul 2003 A1
20030132018 Okita et al. Jul 2003 A1
20030134590 Suda et al. Jul 2003 A1
20030137426 Anthony et al. Jul 2003 A1
20030137991 Doshi et al. Jul 2003 A1
20030147534 Ablay et al. Aug 2003 A1
20030149671 Yamamoto et al. Aug 2003 A1
20030153325 Veerepalli et al. Aug 2003 A1
20030155757 Larsen et al. Aug 2003 A1
20030158609 Chiu Aug 2003 A1
20030158635 Pillar et al. Aug 2003 A1
20030159135 Hiller et al. Aug 2003 A1
20030163514 Waldschmidt Aug 2003 A1
20030169728 Choi Sep 2003 A1
20030172145 Nguyen Sep 2003 A1
20030174154 Yukie et al. Sep 2003 A1
20030174648 Wang et al. Sep 2003 A1
20030174717 Zabarski et al. Sep 2003 A1
20030177236 Goto et al. Sep 2003 A1
20030182396 Reich et al. Sep 2003 A1
20030182640 Alani et al. Sep 2003 A1
20030184436 Seales et al. Oct 2003 A1
20030187920 Redkar Oct 2003 A1
20030187938 Mousseau et al. Oct 2003 A1
20030189509 Hayes et al. Oct 2003 A1
20030193991 Lansford Oct 2003 A1
20030196115 Karp Oct 2003 A1
20030197847 Shinoda Oct 2003 A1
20030198938 Murray et al. Oct 2003 A1
20030200325 Krishnaswamy et al. Oct 2003 A1
20030201889 Zulkowski Oct 2003 A1
20030208610 Rochetti et al. Nov 2003 A1
20030210126 Kanazawa Nov 2003 A1
20030214775 Fukuta et al. Nov 2003 A1
20030216143 Roese et al. Nov 2003 A1
20030217136 Cho et al. Nov 2003 A1
20030225883 Greaves et al. Dec 2003 A1
20030227382 Breed Dec 2003 A1
20030227439 Lee Dec 2003 A1
20030229779 Morais et al. Dec 2003 A1
20030230934 Cordelli et al. Dec 2003 A1
20030233155 Slemmer et al. Dec 2003 A1
20030233332 Keeler et al. Dec 2003 A1
20030233429 Matte Dec 2003 A1
20030233549 Hatakeyama et al. Dec 2003 A1
20030233583 Carley Dec 2003 A1
20030233594 Earl Dec 2003 A1
20030236841 Epshteyn Dec 2003 A1
20040003051 Krzyzanowski et al. Jan 2004 A1
20040003241 Sengodan et al. Jan 2004 A1
20040005039 White et al. Jan 2004 A1
20040008724 Devine et al. Jan 2004 A1
20040015572 Kang Jan 2004 A1
20040034697 Fairhurst et al. Feb 2004 A1
20040034798 Yamada et al. Feb 2004 A1
20040036615 Candela Feb 2004 A1
20040037295 Tanaka et al. Feb 2004 A1
20040039459 Daugherty et al. Feb 2004 A1
20040049321 Lehr et al. Mar 2004 A1
20040054789 Breh et al. Mar 2004 A1
20040056665 Iwanaga et al. Mar 2004 A1
20040064351 Mikurak Apr 2004 A1
20040068583 Monroe et al. Apr 2004 A1
20040068657 Alexander et al. Apr 2004 A1
20040068668 Lor et al. Apr 2004 A1
20040075738 Burke et al. Apr 2004 A1
20040078825 Murphy Apr 2004 A1
20040083015 Patwari Apr 2004 A1
20040086093 Schranz May 2004 A1
20040093492 Daude et al. May 2004 A1
20040095943 Korotin May 2004 A1
20040102859 Bennett May 2004 A1
20040103308 Paller May 2004 A1
20040107027 Boudrieau Jun 2004 A1
20040107299 Lee et al. Jun 2004 A1
20040111294 McNally et al. Jun 2004 A1
20040113770 Falk et al. Jun 2004 A1
20040113778 Script et al. Jun 2004 A1
20040113937 Sawdey et al. Jun 2004 A1
20040117068 Lee Jun 2004 A1
20040117330 Ehlers et al. Jun 2004 A1
20040117462 Bodin et al. Jun 2004 A1
20040117465 Bodin et al. Jun 2004 A1
20040125146 Gerlach et al. Jul 2004 A1
20040125782 Chang Jul 2004 A1
20040125931 Archer Jul 2004 A1
20040133689 Vasisht Jul 2004 A1
20040136386 Miller et al. Jul 2004 A1
20040137915 Diener et al. Jul 2004 A1
20040139227 Takeda Jul 2004 A1
20040143428 Rappaport et al. Jul 2004 A1
20040143602 Ruiz et al. Jul 2004 A1
20040143749 Tajalli et al. Jul 2004 A1
20040153171 Brandt et al. Aug 2004 A1
20040155757 Litwin et al. Aug 2004 A1
20040160309 Stilp Aug 2004 A1
20040163073 Krzyzanowski et al. Aug 2004 A1
20040163118 Mottur Aug 2004 A1
20040163705 Uhler Aug 2004 A1
20040169288 Hsieh et al. Sep 2004 A1
20040170120 Reunamaki et al. Sep 2004 A1
20040170155 Omar et al. Sep 2004 A1
20040172657 Phillips et al. Sep 2004 A1
20040177163 Casey et al. Sep 2004 A1
20040181693 Milliot et al. Sep 2004 A1
20040183756 Freitas et al. Sep 2004 A1
20040189471 Ciarcia et al. Sep 2004 A1
20040189871 Kurosawa et al. Sep 2004 A1
20040196844 Hagino Oct 2004 A1
20040198386 Dupray Oct 2004 A1
20040199645 Rouhi Oct 2004 A1
20040201472 McGunn et al. Oct 2004 A1
20040202351 Park et al. Oct 2004 A1
20040212494 Stilp Oct 2004 A1
20040212687 Patwari Oct 2004 A1
20040213150 Krause et al. Oct 2004 A1
20040215694 Podolsky Oct 2004 A1
20040215700 Shenfield et al. Oct 2004 A1
20040215750 Stilp Oct 2004 A1
20040215955 Tamai et al. Oct 2004 A1
20040218591 Ogawa et al. Nov 2004 A1
20040220830 Moreton et al. Nov 2004 A1
20040223605 Donnelly Nov 2004 A1
20040225516 Bruskotter et al. Nov 2004 A1
20040225719 Kisley et al. Nov 2004 A1
20040225878 Costa-Requena et al. Nov 2004 A1
20040229569 Franz Nov 2004 A1
20040243714 Wynn et al. Dec 2004 A1
20040243835 Terzis et al. Dec 2004 A1
20040243996 Sheehy et al. Dec 2004 A1
20040246339 Ooshima et al. Dec 2004 A1
20040249613 Sprogis et al. Dec 2004 A1
20040249922 Hackman et al. Dec 2004 A1
20040253926 Gross Dec 2004 A1
20040257433 Lia et al. Dec 2004 A1
20040258032 Kawamura Dec 2004 A1
20040260407 Wimsatt Dec 2004 A1
20040260527 Stanculescu Dec 2004 A1
20040263314 Dorai et al. Dec 2004 A1
20040263625 Ishigami et al. Dec 2004 A1
20040263626 Piccionelli Dec 2004 A1
20040266493 Bahl et al. Dec 2004 A1
20040267385 Lingemann Dec 2004 A1
20040267937 Klemets Dec 2004 A1
20040268298 Miller et al. Dec 2004 A1
20050002335 Adamczyk et al. Jan 2005 A1
20050002408 Lee Jan 2005 A1
20050002417 Kelly et al. Jan 2005 A1
20050007967 Keskar et al. Jan 2005 A1
20050010866 Humpleman et al. Jan 2005 A1
20050015458 La Jan 2005 A1
20050015805 Iwamura Jan 2005 A1
20050021309 Alexander et al. Jan 2005 A1
20050021626 Prajapat et al. Jan 2005 A1
20050021826 Kumar Jan 2005 A1
20050022210 Zintel et al. Jan 2005 A1
20050023858 Bingle et al. Feb 2005 A1
20050024203 Wolfe Feb 2005 A1
20050030928 Virtanen et al. Feb 2005 A1
20050031108 Eshun et al. Feb 2005 A1
20050033513 Gasbarro Feb 2005 A1
20050038325 Moll Feb 2005 A1
20050038326 Mathur Feb 2005 A1
20050044061 Klemow Feb 2005 A1
20050048957 Casey et al. Mar 2005 A1
20050049746 Rosenblum Mar 2005 A1
20050050214 Nishiyama et al. Mar 2005 A1
20050052831 Chen Mar 2005 A1
20050055575 Evans et al. Mar 2005 A1
20050055716 Louie et al. Mar 2005 A1
20050057361 Giraldo et al. Mar 2005 A1
20050060163 Barsness et al. Mar 2005 A1
20050060411 Coulombe et al. Mar 2005 A1
20050066045 Johnson et al. Mar 2005 A1
20050066912 Korbitz et al. Mar 2005 A1
20050069098 Kalervo et al. Mar 2005 A1
20050071483 Motoyama Mar 2005 A1
20050075764 Horst et al. Apr 2005 A1
20050079855 Jethi et al. Apr 2005 A1
20050079863 Macaluso Apr 2005 A1
20050081161 MacInnes et al. Apr 2005 A1
20050086093 Hammad et al. Apr 2005 A1
20050086126 Patterson Apr 2005 A1
20050086211 Mayer Apr 2005 A1
20050086366 Luebke et al. Apr 2005 A1
20050088983 Wesslen et al. Apr 2005 A1
20050089023 Barkley et al. Apr 2005 A1
20050090915 Geiwitz Apr 2005 A1
20050091435 Han et al. Apr 2005 A1
20050091696 Wolfe et al. Apr 2005 A1
20050096753 Arling et al. May 2005 A1
20050101314 Levi May 2005 A1
20050102152 Hodges May 2005 A1
20050102497 Buer May 2005 A1
20050105530 Kono May 2005 A1
20050108091 Sotak et al. May 2005 A1
20050108369 Sather et al. May 2005 A1
20050111660 Hosoda May 2005 A1
20050114432 Hodges et al. May 2005 A1
20050114528 Suito May 2005 A1
20050114900 Ladd et al. May 2005 A1
20050117602 Carrigan et al. Jun 2005 A1
20050117732 Arpin Jun 2005 A1
20050119767 Kiwimagi et al. Jun 2005 A1
20050119913 Hornreich et al. Jun 2005 A1
20050120082 Hesselink et al. Jun 2005 A1
20050125083 Kiko Jun 2005 A1
20050128083 Puzio et al. Jun 2005 A1
20050128093 Genova et al. Jun 2005 A1
20050128314 Ishino Jun 2005 A1
20050144044 Godschall et al. Jun 2005 A1
20050144312 Kadyk et al. Jun 2005 A1
20050144645 Casey et al. Jun 2005 A1
20050148356 Ferguson et al. Jul 2005 A1
20050149639 Vrielink et al. Jul 2005 A1
20050149746 Lu et al. Jul 2005 A1
20050154494 Ahmed Jul 2005 A1
20050154774 Giaffreda et al. Jul 2005 A1
20050155757 Paton Jul 2005 A1
20050156568 Yueh Jul 2005 A1
20050156737 Al-Khateeb Jul 2005 A1
20050159823 Hayes Jul 2005 A1
20050159911 Funk et al. Jul 2005 A1
20050169288 Kamiwada et al. Aug 2005 A1
20050177515 Kalavade et al. Aug 2005 A1
20050179531 Tabe Aug 2005 A1
20050181196 Aylward et al. Aug 2005 A1
20050182681 Bruskotter et al. Aug 2005 A1
20050184865 Han Aug 2005 A1
20050185618 Friday et al. Aug 2005 A1
20050187677 Walker Aug 2005 A1
20050188315 Campbell et al. Aug 2005 A1
20050197847 Smith Sep 2005 A1
20050198216 Behera et al. Sep 2005 A1
20050200474 Behnke Sep 2005 A1
20050204076 Cumpson et al. Sep 2005 A1
20050207429 Akita et al. Sep 2005 A1
20050216302 Raji et al. Sep 2005 A1
20050220123 Wybenga et al. Oct 2005 A1
20050222933 Wesby Oct 2005 A1
20050229016 Addy Oct 2005 A1
20050232242 Karaoguz et al. Oct 2005 A1
20050232284 Karaoguz et al. Oct 2005 A1
20050234568 Chung et al. Oct 2005 A1
20050237182 Wang Oct 2005 A1
20050246119 Koodali Nov 2005 A1
20050246408 Chung Nov 2005 A1
20050249199 Albert et al. Nov 2005 A1
20050253709 Baker Nov 2005 A1
20050256608 King et al. Nov 2005 A1
20050257013 Ma Nov 2005 A1
20050257260 Lenoir et al. Nov 2005 A1
20050259673 Lu et al. Nov 2005 A1
20050262241 Gubbi et al. Nov 2005 A1
20050266826 Vlad Dec 2005 A1
20050267605 Lee et al. Dec 2005 A1
20050270151 Winick Dec 2005 A1
20050273831 Slomovich et al. Dec 2005 A1
20050276389 Hinkson et al. Dec 2005 A1
20050277434 Tuomi et al. Dec 2005 A1
20050280964 Richmond et al. Dec 2005 A1
20050281196 Tornetta et al. Dec 2005 A1
20050282557 Mikko et al. Dec 2005 A1
20050285934 Carter Dec 2005 A1
20050285941 Haigh et al. Dec 2005 A1
20050286518 Park et al. Dec 2005 A1
20060007005 Yui et al. Jan 2006 A1
20060009863 Lingemann Jan 2006 A1
20060015943 Mahieu Jan 2006 A1
20060018328 Mody et al. Jan 2006 A1
20060018479 Chen Jan 2006 A1
20060022816 Yukawa Feb 2006 A1
20060023847 Tyroler et al. Feb 2006 A1
20060026017 Walker Feb 2006 A1
20060026301 Maeda et al. Feb 2006 A1
20060028997 McFarland Feb 2006 A1
20060031426 Mesarina Feb 2006 A1
20060031436 Sakata et al. Feb 2006 A1
20060031852 Chu et al. Feb 2006 A1
20060036750 Ladd et al. Feb 2006 A1
20060041655 Holloway et al. Feb 2006 A1
20060045074 Lee Mar 2006 A1
20060050692 Petrescu et al. Mar 2006 A1
20060050862 Shen et al. Mar 2006 A1
20060051122 Kawazu et al. Mar 2006 A1
20060052884 Staples et al. Mar 2006 A1
20060053447 Krzyzanowski et al. Mar 2006 A1
20060053459 Simerly et al. Mar 2006 A1
20060053491 Khuti et al. Mar 2006 A1
20060058923 Kruk Mar 2006 A1
20060063534 Kokkonen et al. Mar 2006 A1
20060064305 Alonso Mar 2006 A1
20060064478 Sirkin Mar 2006 A1
20060067344 Sakurai Mar 2006 A1
20060067356 Kim et al. Mar 2006 A1
20060067484 Elliot et al. Mar 2006 A1
20060071773 Ahmed et al. Apr 2006 A1
20060072470 Moore et al. Apr 2006 A1
20060075235 Renkis Apr 2006 A1
20060077254 Shu et al. Apr 2006 A1
20060078344 Kawazu et al. Apr 2006 A1
20060080380 Aizu et al. Apr 2006 A1
20060080465 Conzola et al. Apr 2006 A1
20060088092 Chen et al. Apr 2006 A1
20060093365 Dybsetter et al. May 2006 A1
20060094400 Beachem et al. May 2006 A1
20060101062 Godman et al. May 2006 A1
20060103510 Chen et al. May 2006 A1
20060104312 Friar May 2006 A1
20060105713 Zheng et al. May 2006 A1
20060106933 Huang et al. May 2006 A1
20060109113 Reyes et al. May 2006 A1
20060109860 Matsunaga et al. May 2006 A1
20060109966 Sasakura et al. May 2006 A1
20060111095 Weigand May 2006 A1
20060114842 Miyamoto et al. Jun 2006 A1
20060121924 Rengaraju et al. Jun 2006 A1
20060123212 Yagawa Jun 2006 A1
20060129837 Im et al. Jun 2006 A1
20060130004 Hughes et al. Jun 2006 A1
20060132302 Stilp Jun 2006 A1
20060133412 Callaghan Jun 2006 A1
20060136558 Sheehan et al. Jun 2006 A1
20060142968 Han et al. Jun 2006 A1
20060142978 Suenbuel et al. Jun 2006 A1
20060143268 Chatani Jun 2006 A1
20060145842 Stilp Jul 2006 A1
20060153122 Hinman et al. Jul 2006 A1
20060154642 Scannell, Jr. Jul 2006 A1
20060155851 Ma et al. Jul 2006 A1
20060159032 Ukrainetz et al. Jul 2006 A1
20060161270 Luskin et al. Jul 2006 A1
20060161662 Ng et al. Jul 2006 A1
20060161960 Benoit Jul 2006 A1
20060167784 Hoffberg Jul 2006 A1
20060167919 Hsieh Jul 2006 A1
20060168013 Wilson et al. Jul 2006 A1
20060168095 Sharma et al. Jul 2006 A1
20060168178 Hwang et al. Jul 2006 A1
20060168190 Johan et al. Jul 2006 A1
20060171307 Gopalakrishnan et al. Aug 2006 A1
20060176146 Krishan et al. Aug 2006 A1
20060176167 Dohrmann Aug 2006 A1
20060181406 Petite et al. Aug 2006 A1
20060182100 Li et al. Aug 2006 A1
20060187900 Akbar Aug 2006 A1
20060189311 Cromer et al. Aug 2006 A1
20060190458 Mishina et al. Aug 2006 A1
20060190529 Morozumi et al. Aug 2006 A1
20060197660 Luebke et al. Sep 2006 A1
20060200845 Foster et al. Sep 2006 A1
20060206220 Amundson Sep 2006 A1
20060206246 Walker Sep 2006 A1
20060208872 Yu et al. Sep 2006 A1
20060208880 Funk et al. Sep 2006 A1
20060209857 Hicks, III Sep 2006 A1
20060215650 Wollmershauser et al. Sep 2006 A1
20060217115 Cassett et al. Sep 2006 A1
20060218244 Rasmussen et al. Sep 2006 A1
20060218593 Afshary et al. Sep 2006 A1
20060221184 Vallone et al. Oct 2006 A1
20060222153 Tarkoff et al. Oct 2006 A1
20060226972 Smith Oct 2006 A1
20060229746 Ollis et al. Oct 2006 A1
20060230270 Goffin Oct 2006 A1
20060233372 Shaheen et al. Oct 2006 A1
20060235963 Wetherly et al. Oct 2006 A1
20060236050 Sugimoto et al. Oct 2006 A1
20060238372 Jung et al. Oct 2006 A1
20060238617 Tamir Oct 2006 A1
20060242395 Fausak Oct 2006 A1
20060244589 Schranz Nov 2006 A1
20060245369 Schimmelpfeng et al. Nov 2006 A1
20060246886 Benco et al. Nov 2006 A1
20060246919 Park et al. Nov 2006 A1
20060250235 Astrin Nov 2006 A1
20060250578 Pohl et al. Nov 2006 A1
20060251255 Batta Nov 2006 A1
20060258342 Fok et al. Nov 2006 A1
20060259951 Forssell et al. Nov 2006 A1
20060265489 Moore Nov 2006 A1
20060271695 Lavian Nov 2006 A1
20060274764 Mah et al. Dec 2006 A1
20060281435 Shearer et al. Dec 2006 A1
20060282886 Gaug Dec 2006 A1
20060288288 Girgensohn et al. Dec 2006 A1
20060291507 Sarosi et al. Dec 2006 A1
20060293100 Walter Dec 2006 A1
20060294565 Walter Dec 2006 A1
20070001818 Small et al. Jan 2007 A1
20070002833 Bajic Jan 2007 A1
20070005736 Hansen et al. Jan 2007 A1
20070005957 Sahita et al. Jan 2007 A1
20070006177 Aiber et al. Jan 2007 A1
20070008099 Kimmel et al. Jan 2007 A1
20070014248 Fowlow Jan 2007 A1
20070027987 Tripp et al. Feb 2007 A1
20070043478 Ehlers et al. Feb 2007 A1
20070043954 Fox Feb 2007 A1
20070046462 Fancella Mar 2007 A1
20070047585 Gillespie et al. Mar 2007 A1
20070052675 Chang Mar 2007 A1
20070055770 Karmakar et al. Mar 2007 A1
20070058627 Smith et al. Mar 2007 A1
20070061018 Callaghan et al. Mar 2007 A1
20070061020 Bovee et al. Mar 2007 A1
20070061266 Moore et al. Mar 2007 A1
20070061430 Kim Mar 2007 A1
20070061878 Hagiu et al. Mar 2007 A1
20070063836 Hayden et al. Mar 2007 A1
20070063866 Webb Mar 2007 A1
20070064714 Bi et al. Mar 2007 A1
20070067780 Kumar et al. Mar 2007 A1
20070079012 Walker Apr 2007 A1
20070079151 Connor et al. Apr 2007 A1
20070079385 Williams et al. Apr 2007 A1
20070083668 Kelsey et al. Apr 2007 A1
20070090944 Du Breuil Apr 2007 A1
20070094716 Farino et al. Apr 2007 A1
20070096981 Abraham May 2007 A1
20070101345 Takagi May 2007 A1
20070105072 Koljonen May 2007 A1
20070106124 Kuriyama et al. May 2007 A1
20070106536 Moore May 2007 A1
20070106547 Agrawal May 2007 A1
20070109975 Reckamp et al. May 2007 A1
20070116020 Cheever et al. May 2007 A1
20070117464 Freeman May 2007 A1
20070118609 Mullan et al. May 2007 A1
20070126875 Miyamaki Jun 2007 A1
20070127510 Bossemeyer et al. Jun 2007 A1
20070132576 Kolavennu et al. Jun 2007 A1
20070136759 Zhang et al. Jun 2007 A1
20070140267 Yang Jun 2007 A1
20070142022 Madonna et al. Jun 2007 A1
20070142044 Fitzgerald et al. Jun 2007 A1
20070143400 Kelley et al. Jun 2007 A1
20070143440 Reckamp et al. Jun 2007 A1
20070146127 Stilp et al. Jun 2007 A1
20070146484 Horton et al. Jun 2007 A1
20070147419 Tsujimoto et al. Jun 2007 A1
20070150616 Baek et al. Jun 2007 A1
20070154010 Wong Jul 2007 A1
20070155325 Bambic et al. Jul 2007 A1
20070155423 Carmody et al. Jul 2007 A1
20070156689 Meek et al. Jul 2007 A1
20070160017 Meier et al. Jul 2007 A1
20070161372 Rogalski et al. Jul 2007 A1
20070162228 Mitchell Jul 2007 A1
20070162680 Mitchell Jul 2007 A1
20070164779 Weston et al. Jul 2007 A1
20070168860 Takayama et al. Jul 2007 A1
20070176766 Cheng Aug 2007 A1
20070182543 Luo Aug 2007 A1
20070182819 Monroe Aug 2007 A1
20070183345 Fahim et al. Aug 2007 A1
20070185989 Corbett et al. Aug 2007 A1
20070192486 Wilson et al. Aug 2007 A1
20070192863 Kapoor et al. Aug 2007 A1
20070197236 Ahn et al. Aug 2007 A1
20070198698 Boyd et al. Aug 2007 A1
20070200658 Yang Aug 2007 A1
20070208521 Petite et al. Sep 2007 A1
20070214262 Buchbinder et al. Sep 2007 A1
20070214264 Koister Sep 2007 A1
20070216764 Kwak Sep 2007 A1
20070216783 Ortiz et al. Sep 2007 A1
20070218895 Saito et al. Sep 2007 A1
20070223465 Wang et al. Sep 2007 A1
20070223500 Lee et al. Sep 2007 A1
20070226182 Sobotka et al. Sep 2007 A1
20070230415 Malik Oct 2007 A1
20070230744 Dronge Oct 2007 A1
20070245223 Siedzik et al. Oct 2007 A1
20070249323 Lee et al. Oct 2007 A1
20070253361 Pristas et al. Nov 2007 A1
20070255856 Reckamp et al. Nov 2007 A1
20070256105 Tabe Nov 2007 A1
20070257986 Ivanov et al. Nov 2007 A1
20070260713 Moorer et al. Nov 2007 A1
20070262857 Jackson Nov 2007 A1
20070263782 Stock et al. Nov 2007 A1
20070265866 Fehling et al. Nov 2007 A1
20070271398 Manchester et al. Nov 2007 A1
20070275703 Lim et al. Nov 2007 A1
20070277111 Bennett et al. Nov 2007 A1
20070282665 Buehler et al. Dec 2007 A1
20070283001 Spiess et al. Dec 2007 A1
20070283004 Buehler Dec 2007 A1
20070287405 Radtke Dec 2007 A1
20070288858 Pereira Dec 2007 A1
20070290830 Gurley Dec 2007 A1
20070291118 Shu et al. Dec 2007 A1
20070296814 Cooper et al. Dec 2007 A1
20070298772 Owens et al. Dec 2007 A1
20080013531 Elliott et al. Jan 2008 A1
20080013957 Akers et al. Jan 2008 A1
20080025487 Johan et al. Jan 2008 A1
20080027587 Nickerson et al. Jan 2008 A1
20080034379 Dale et al. Feb 2008 A1
20080040272 Eskin Feb 2008 A1
20080042826 Hevia et al. Feb 2008 A1
20080043107 Coogan et al. Feb 2008 A1
20080046593 Ando et al. Feb 2008 A1
20080048975 Leibow Feb 2008 A1
20080052348 Adler et al. Feb 2008 A1
20080056212 Karaoguz et al. Mar 2008 A1
20080059533 Krikorian Mar 2008 A1
20080059622 Hite et al. Mar 2008 A1
20080065681 Fontijn et al. Mar 2008 A1
20080065685 Frank Mar 2008 A1
20080069121 Adamson et al. Mar 2008 A1
20080072244 Eker et al. Mar 2008 A1
20080074258 Bennett et al. Mar 2008 A1
20080074993 Vainola Mar 2008 A1
20080082186 Hood et al. Apr 2008 A1
20080084294 Zhiying et al. Apr 2008 A1
20080084296 Kutzik et al. Apr 2008 A1
20080086564 Putman et al. Apr 2008 A1
20080091793 Diroo et al. Apr 2008 A1
20080094204 Kogan et al. Apr 2008 A1
20080095339 Elliott et al. Apr 2008 A1
20080100705 Kister et al. May 2008 A1
20080102845 Zhao May 2008 A1
20080103608 Gough et al. May 2008 A1
20080104215 Excoffier et al. May 2008 A1
20080104516 Lee May 2008 A1
20080109302 Salokannel et al. May 2008 A1
20080109650 Shim et al. May 2008 A1
20080112340 Luebke May 2008 A1
20080112405 Cholas et al. May 2008 A1
20080117029 Dohrmann et al. May 2008 A1
20080117201 Martinez et al. May 2008 A1
20080117922 Cockrell et al. May 2008 A1
20080120405 Son et al. May 2008 A1
20080122575 Lavian et al. May 2008 A1
20080126535 Zhu et al. May 2008 A1
20080128444 Schininger et al. Jun 2008 A1
20080129484 Dahl et al. Jun 2008 A1
20080129821 Howarter et al. Jun 2008 A1
20080130949 Ivanov et al. Jun 2008 A1
20080133725 Shaouy Jun 2008 A1
20080134165 Anderson et al. Jun 2008 A1
20080134343 Pennington et al. Jun 2008 A1
20080137572 Park et al. Jun 2008 A1
20080140868 Kalayjian et al. Jun 2008 A1
20080141303 Walker et al. Jun 2008 A1
20080141341 Vinogradov et al. Jun 2008 A1
20080144884 Habibi Jun 2008 A1
20080147834 Quinn et al. Jun 2008 A1
20080151037 Kumarasamy et al. Jun 2008 A1
20080155080 Marlow et al. Jun 2008 A1
20080155470 Khedouri et al. Jun 2008 A1
20080162637 Adamczyk et al. Jul 2008 A1
20080163355 Chu Jul 2008 A1
20080165787 Xu et al. Jul 2008 A1
20080170511 Shorty et al. Jul 2008 A1
20080181239 Wood et al. Jul 2008 A1
20080183483 Hart Jul 2008 A1
20080183842 Raji et al. Jul 2008 A1
20080189609 Larson et al. Aug 2008 A1
20080201468 Titus Aug 2008 A1
20080201723 Bottaro et al. Aug 2008 A1
20080208399 Pham Aug 2008 A1
20080209505 Ghai et al. Aug 2008 A1
20080209506 Ghai et al. Aug 2008 A1
20080215450 Gates et al. Sep 2008 A1
20080215613 Grasso Sep 2008 A1
20080219239 Bell et al. Sep 2008 A1
20080221715 Krzyzanowski et al. Sep 2008 A1
20080227460 David et al. Sep 2008 A1
20080229415 Kapoor et al. Sep 2008 A1
20080235326 Parsi et al. Sep 2008 A1
20080235600 Harper et al. Sep 2008 A1
20080239075 Mehrotra et al. Oct 2008 A1
20080240372 Frenette Oct 2008 A1
20080240696 Kucharyson Oct 2008 A1
20080259818 Balassanian Oct 2008 A1
20080261540 Rohani et al. Oct 2008 A1
20080262990 Kapoor et al. Oct 2008 A1
20080262991 Kapoor et al. Oct 2008 A1
20080263150 Childers et al. Oct 2008 A1
20080266080 Leung et al. Oct 2008 A1
20080266257 Chiang Oct 2008 A1
20080271150 Boerger et al. Oct 2008 A1
20080284580 Babich et al. Nov 2008 A1
20080284587 Saigh et al. Nov 2008 A1
20080284592 Collins et al. Nov 2008 A1
20080288639 Ruppert et al. Nov 2008 A1
20080294588 Morris et al. Nov 2008 A1
20080295172 Bohacek Nov 2008 A1
20080297599 Donovan et al. Dec 2008 A1
20080303903 Bentley et al. Dec 2008 A1
20080313316 Hite et al. Dec 2008 A1
20080316024 Chantelou et al. Dec 2008 A1
20090003172 Yahata et al. Jan 2009 A1
20090003252 Salomone et al. Jan 2009 A1
20090003820 Law et al. Jan 2009 A1
20090007596 Goldstein et al. Jan 2009 A1
20090013210 McIntosh et al. Jan 2009 A1
20090018850 Abhyanker Jan 2009 A1
20090019141 Bush et al. Jan 2009 A1
20090022362 Gagvani et al. Jan 2009 A1
20090024493 Huang et al. Jan 2009 A1
20090036142 Yan Feb 2009 A1
20090036159 Chen Feb 2009 A1
20090041467 Carleton et al. Feb 2009 A1
20090042649 Hsieh et al. Feb 2009 A1
20090046664 Aso Feb 2009 A1
20090049094 Howell et al. Feb 2009 A1
20090049488 Stransky Feb 2009 A1
20090051769 Kuo et al. Feb 2009 A1
20090055760 Whatcott et al. Feb 2009 A1
20090057427 Geadelmann et al. Mar 2009 A1
20090063582 Anna et al. Mar 2009 A1
20090066534 Sivakkolundhu Mar 2009 A1
20090067395 Curtis et al. Mar 2009 A1
20090070692 Dawes et al. Mar 2009 A1
20090072988 Haywood Mar 2009 A1
20090076211 Yang et al. Mar 2009 A1
20090076879 Sparks et al. Mar 2009 A1
20090077623 Baum et al. Mar 2009 A1
20090079547 Oksanen et al. Mar 2009 A1
20090083167 Subbloie Mar 2009 A1
20090086660 Sood et al. Apr 2009 A1
20090086740 Al-Bakri et al. Apr 2009 A1
20090089822 Wada Apr 2009 A1
20090092283 Whillock et al. Apr 2009 A1
20090094671 Kurapati et al. Apr 2009 A1
20090100176 Hicks, III et al. Apr 2009 A1
20090100329 Espinoza Apr 2009 A1
20090100460 Hicks et al. Apr 2009 A1
20090100492 Hicks et al. Apr 2009 A1
20090109959 Elliott et al. Apr 2009 A1
20090113344 Nesse et al. Apr 2009 A1
20090119397 Neerdaels May 2009 A1
20090125708 Woodring et al. May 2009 A1
20090128365 Laskin May 2009 A1
20090144237 Branam et al. Jun 2009 A1
20090158189 Itani Jun 2009 A1
20090158292 Rattner et al. Jun 2009 A1
20090161609 Bergstrom Jun 2009 A1
20090172443 Rothman et al. Jul 2009 A1
20090177298 McFarland et al. Jul 2009 A1
20090177906 Paniagua et al. Jul 2009 A1
20090180430 Fadell Jul 2009 A1
20090182868 McFate et al. Jul 2009 A1
20090187297 Kish et al. Jul 2009 A1
20090189981 Siann et al. Jul 2009 A1
20090193373 Abbaspour et al. Jul 2009 A1
20090197539 Shiba Aug 2009 A1
20090202250 Dizechi et al. Aug 2009 A1
20090204693 Andreev et al. Aug 2009 A1
20090221368 Yen et al. Sep 2009 A1
20090224875 Rabinowitz et al. Sep 2009 A1
20090228445 Gangal Sep 2009 A1
20090240353 Songkakul et al. Sep 2009 A1
20090240730 Wood Sep 2009 A1
20090240787 Denny Sep 2009 A1
20090240814 Brubacher et al. Sep 2009 A1
20090240946 Yeap et al. Sep 2009 A1
20090254960 Yarom et al. Oct 2009 A1
20090256708 Hsiao et al. Oct 2009 A1
20090259515 Belimpasakis et al. Oct 2009 A1
20090260052 Bathula et al. Oct 2009 A1
20090260083 Szeto et al. Oct 2009 A1
20090260430 Zamfes Oct 2009 A1
20090265042 Mollenkopf et al. Oct 2009 A1
20090265193 Collins et al. Oct 2009 A1
20090270090 Kawamura Oct 2009 A1
20090271042 Voysey Oct 2009 A1
20090289787 Dawson et al. Nov 2009 A1
20090289788 Leblond Nov 2009 A1
20090292909 Feder et al. Nov 2009 A1
20090303100 Zemany Dec 2009 A1
20090307255 Park Dec 2009 A1
20090307307 Igarashi Dec 2009 A1
20090313693 Rogers Dec 2009 A1
20090316671 Rolf et al. Dec 2009 A1
20090319361 Conrady Dec 2009 A1
20090322510 Berger et al. Dec 2009 A1
20090324010 Hou Dec 2009 A1
20090327483 Thompson et al. Dec 2009 A1
20090327510 Edelman et al. Dec 2009 A1
20100000791 Alberty Jan 2010 A1
20100001812 Kausch Jan 2010 A1
20100004949 O'Brien Jan 2010 A1
20100008274 Kneckt et al. Jan 2010 A1
20100009758 Twitchell, Jr. Jan 2010 A1
20100011298 Campbell et al. Jan 2010 A1
20100013917 Hanna et al. Jan 2010 A1
20100023865 Fulker et al. Jan 2010 A1
20100026481 Oh et al. Feb 2010 A1
20100026487 Hershkovitz Feb 2010 A1
20100030578 Siddique et al. Feb 2010 A1
20100030810 Marr Feb 2010 A1
20100039958 Ge et al. Feb 2010 A1
20100041380 Hewes et al. Feb 2010 A1
20100042954 Rosenblatt et al. Feb 2010 A1
20100067371 Gogic et al. Mar 2010 A1
20100070618 Kim et al. Mar 2010 A1
20100071053 Ansari et al. Mar 2010 A1
20100074112 Derr et al. Mar 2010 A1
20100077111 Holmes et al. Mar 2010 A1
20100077347 Kirtane et al. Mar 2010 A1
20100082744 Raji et al. Apr 2010 A1
20100100269 Ekhaguere et al. Apr 2010 A1
20100102951 Rutledge Apr 2010 A1
20100121521 Kiribayashi May 2010 A1
20100122091 Huang et al. May 2010 A1
20100138758 Mizumori et al. Jun 2010 A1
20100138764 Hatambeiki et al. Jun 2010 A1
20100141762 Siann et al. Jun 2010 A1
20100145485 Duchene et al. Jun 2010 A1
20100150170 Lee et al. Jun 2010 A1
20100159898 Krzyzanowski et al. Jun 2010 A1
20100159967 Pounds et al. Jun 2010 A1
20100164736 Byers et al. Jul 2010 A1
20100165897 Sood Jul 2010 A1
20100174643 Schaefer et al. Jul 2010 A1
20100177749 Essinger et al. Jul 2010 A1
20100177750 Essinger et al. Jul 2010 A1
20100185857 Neitzel et al. Jul 2010 A1
20100191352 Quail Jul 2010 A1
20100197219 Issa et al. Aug 2010 A1
20100204839 Behm et al. Aug 2010 A1
20100210240 Mahaffey et al. Aug 2010 A1
20100212012 Touboul et al. Aug 2010 A1
20100217837 Ansari et al. Aug 2010 A1
20100218104 Lewis Aug 2010 A1
20100222069 Abraham et al. Sep 2010 A1
20100238286 Boghossian et al. Sep 2010 A1
20100241711 Ansari et al. Sep 2010 A1
20100241748 Ansari et al. Sep 2010 A1
20100248681 Phills Sep 2010 A1
20100267390 Lin et al. Oct 2010 A1
20100274366 Fata et al. Oct 2010 A1
20100275018 Pedersen Oct 2010 A1
20100277302 Cohn et al. Nov 2010 A1
20100279649 Thomas Nov 2010 A1
20100280637 Cohn et al. Nov 2010 A1
20100281135 Cohn et al. Nov 2010 A1
20100281161 Cohn et al. Nov 2010 A1
20100298024 Choi Nov 2010 A1
20100299556 Taylor et al. Nov 2010 A1
20100308990 Simon et al. Dec 2010 A1
20100321151 Matsuura et al. Dec 2010 A1
20100325107 Kenton et al. Dec 2010 A1
20100332164 Aisa et al. Dec 2010 A1
20110000521 Tachibana Jan 2011 A1
20110018998 Guzik Jan 2011 A1
20110029875 Milch Feb 2011 A1
20110030056 Tokunaga Feb 2011 A1
20110037593 Foisy et al. Feb 2011 A1
20110040415 Nickerson et al. Feb 2011 A1
20110040877 Foisy Feb 2011 A1
20110046792 Imes et al. Feb 2011 A1
20110051638 Jeon et al. Mar 2011 A1
20110058034 Grass Mar 2011 A1
20110061011 Hoguet Mar 2011 A1
20110068921 Shafer Mar 2011 A1
20110080267 Clare et al. Apr 2011 A1
20110087988 Ray et al. Apr 2011 A1
20110093799 Hatambeiki et al. Apr 2011 A1
20110096678 Ketonen Apr 2011 A1
20110102588 Trundle et al. May 2011 A1
20110107436 Cholas et al. May 2011 A1
20110125333 Gray May 2011 A1
20110125846 Ham et al. May 2011 A1
20110128378 Raji Jun 2011 A1
20110130112 Saigh et al. Jun 2011 A1
20110131226 Chandra et al. Jun 2011 A1
20110148572 Ku Jun 2011 A1
20110156914 Sheharri et al. Jun 2011 A1
20110169637 Siegler et al. Jul 2011 A1
20110187497 Chin Aug 2011 A1
20110197327 McElroy et al. Aug 2011 A1
20110200052 Mungo et al. Aug 2011 A1
20110208359 Duchene et al. Aug 2011 A1
20110212706 Uusilehto Sep 2011 A1
20110213869 Korsunsky et al. Sep 2011 A1
20110214157 Korsunsky et al. Sep 2011 A1
20110218777 Chen et al. Sep 2011 A1
20110219035 Korsunsky et al. Sep 2011 A1
20110230139 Nakahara Sep 2011 A1
20110230160 Felgate Sep 2011 A1
20110231510 Korsunsky et al. Sep 2011 A1
20110231564 Korsunsky et al. Sep 2011 A1
20110234392 Cohn et al. Sep 2011 A1
20110238660 Riggs Sep 2011 A1
20110238855 Korsunsky et al. Sep 2011 A1
20110246762 Adams et al. Oct 2011 A1
20110257953 Li et al. Oct 2011 A1
20110261195 Martin et al. Oct 2011 A1
20110276699 Pedersen Nov 2011 A1
20110283006 Ramamurthy Nov 2011 A1
20110289517 Sather et al. Nov 2011 A1
20110299546 Prodan et al. Dec 2011 A1
20110302497 Garrett et al. Dec 2011 A1
20110309929 Myers Dec 2011 A1
20110314515 Hernoud et al. Dec 2011 A1
20120001436 Sami et al. Jan 2012 A1
20120005276 Guo et al. Jan 2012 A1
20120014363 Hassan et al. Jan 2012 A1
20120016607 Cottrell et al. Jan 2012 A1
20120017268 Dispensa Jan 2012 A9
20120020060 Myer et al. Jan 2012 A1
20120023151 Bennett et al. Jan 2012 A1
20120030130 Smith et al. Feb 2012 A1
20120062370 Feldstein et al. Mar 2012 A1
20120066608 Sundermeyer et al. Mar 2012 A1
20120066632 Sundermeyer et al. Mar 2012 A1
20120075469 Oskin et al. Mar 2012 A1
20120081842 Ewing et al. Apr 2012 A1
20120084184 Raleigh et al. Apr 2012 A1
20120086552 Fast et al. Apr 2012 A1
20120143383 Cooperrider et al. Jun 2012 A1
20120150966 Fan et al. Jun 2012 A1
20120154126 Cohn et al. Jun 2012 A1
20120172027 Partheesh et al. Jul 2012 A1
20120182245 Hutton Jul 2012 A1
20120209951 Enns et al. Aug 2012 A1
20120214502 Qiang Aug 2012 A1
20120232788 Diao Sep 2012 A1
20120240185 Kapoor et al. Sep 2012 A1
20120242788 Chuang et al. Sep 2012 A1
20120257061 Edwards et al. Oct 2012 A1
20120259722 Mikurak Oct 2012 A1
20120265892 Ma et al. Oct 2012 A1
20120269199 Chan et al. Oct 2012 A1
20120278877 Baum et al. Nov 2012 A1
20120280790 Gerhardt et al. Nov 2012 A1
20120290740 Tewari et al. Nov 2012 A1
20120296486 Marriam et al. Nov 2012 A1
20120307646 Xia et al. Dec 2012 A1
20120309354 Du Dec 2012 A1
20120313781 Barker et al. Dec 2012 A1
20120314901 Hanson et al. Dec 2012 A1
20120315848 Smith et al. Dec 2012 A1
20120324566 Baum et al. Dec 2012 A1
20120327242 Barley et al. Dec 2012 A1
20120331109 Baum et al. Dec 2012 A1
20130002880 Levinson et al. Jan 2013 A1
20130038730 Peterson et al. Feb 2013 A1
20130038800 Yoo Feb 2013 A1
20130047123 May et al. Feb 2013 A1
20130057695 Huisking Mar 2013 A1
20130062951 Raji et al. Mar 2013 A1
20130073746 Singh et al. Mar 2013 A1
20130082835 Shapiro et al. Apr 2013 A1
20130082836 Watts Apr 2013 A1
20130085615 Barker Apr 2013 A1
20130086618 Klein et al. Apr 2013 A1
20130091213 Diab et al. Apr 2013 A1
20130094538 Wang Apr 2013 A1
20130103207 Ruff et al. Apr 2013 A1
20130111576 Devine et al. May 2013 A1
20130115972 Ziskind et al. May 2013 A1
20130120131 Hicks, III May 2013 A1
20130125157 Sharif-Ahmadi et al. May 2013 A1
20130136102 Macwan et al. May 2013 A1
20130147799 Hoguet Jun 2013 A1
20130154822 Kumar et al. Jun 2013 A1
20130155229 Thornton et al. Jun 2013 A1
20130162571 Tamegai Jun 2013 A1
20130163491 Singh et al. Jun 2013 A1
20130163757 Bellovin et al. Jun 2013 A1
20130173797 Poirer et al. Jul 2013 A1
20130174239 Kim et al. Jul 2013 A1
20130183924 Saigh et al. Jul 2013 A1
20130184874 Frader-Thompson et al. Jul 2013 A1
20130185026 Vanker et al. Jul 2013 A1
20130191755 Balog et al. Jul 2013 A1
20130205016 Dupre et al. Aug 2013 A1
20130218959 Sa et al. Aug 2013 A1
20130222133 Schultz et al. Aug 2013 A1
20130223279 Tinnakornsrisuphap et al. Aug 2013 A1
20130245837 Grohman Sep 2013 A1
20130257611 Lamb et al. Oct 2013 A1
20130258119 Kim et al. Oct 2013 A1
20130261821 Lu et al. Oct 2013 A1
20130266193 Tiwari et al. Oct 2013 A1
20130271270 Jamadagni et al. Oct 2013 A1
20130286942 Bonar et al. Oct 2013 A1
20130311146 Miller et al. Nov 2013 A1
20130314542 Jackson Nov 2013 A1
20130318231 Raji et al. Nov 2013 A1
20130318443 Bachman et al. Nov 2013 A1
20130325935 Kiley et al. Dec 2013 A1
20130331109 Dhillon et al. Dec 2013 A1
20130344875 Chowdhury Dec 2013 A1
20130346921 Shiplacoff et al. Dec 2013 A1
20140006660 Frei et al. Jan 2014 A1
20140024361 Poon et al. Jan 2014 A1
20140032034 Raptopoulos et al. Jan 2014 A1
20140033136 St Clair Jan 2014 A1
20140035726 Schoner et al. Feb 2014 A1
20140053246 Huang et al. Feb 2014 A1
20140068486 Sellers et al. Mar 2014 A1
20140075464 McCrea Mar 2014 A1
20140095630 Wohlert et al. Apr 2014 A1
20140098247 Rao et al. Apr 2014 A1
20140108151 Bookstaff Apr 2014 A1
20140109130 Sugimoto et al. Apr 2014 A1
20140112405 Jafarian et al. Apr 2014 A1
20140136242 Weekes et al. May 2014 A1
20140136847 Huang May 2014 A1
20140136936 Patel et al. May 2014 A1
20140140575 Wolf May 2014 A1
20140143695 Sundermeyer et al. May 2014 A1
20140143851 Baum et al. May 2014 A1
20140143854 Lopez et al. May 2014 A1
20140146171 Brady et al. May 2014 A1
20140153695 Yanagisawa et al. Jun 2014 A1
20140167928 Burd et al. Jun 2014 A1
20140172957 Baum et al. Jun 2014 A1
20140176797 Silva et al. Jun 2014 A1
20140180968 Song et al. Jun 2014 A1
20140188290 Steinberg et al. Jul 2014 A1
20140188729 Hong Jul 2014 A1
20140201291 Russell Jul 2014 A1
20140208214 Stern Jul 2014 A1
20140218517 Kim et al. Aug 2014 A1
20140233951 Cook Aug 2014 A1
20140236325 Sasaki et al. Aug 2014 A1
20140245014 Tuck et al. Aug 2014 A1
20140245160 Bauer et al. Aug 2014 A1
20140254896 Zhou et al. Sep 2014 A1
20140265359 Cheng et al. Sep 2014 A1
20140266678 Shapiro et al. Sep 2014 A1
20140266736 Cretu-Petra Sep 2014 A1
20140278281 Vaynriber et al. Sep 2014 A1
20140282048 Shapiro et al. Sep 2014 A1
20140282934 Miasnik et al. Sep 2014 A1
20140289384 Kao et al. Sep 2014 A1
20140289388 Ghosh et al. Sep 2014 A1
20140293046 Ni Oct 2014 A1
20140298467 Bhagwat et al. Oct 2014 A1
20140316616 Kugelmass Oct 2014 A1
20140317660 Cheung et al. Oct 2014 A1
20140319232 Gourlay et al. Oct 2014 A1
20140328161 Haddad et al. Nov 2014 A1
20140340216 Puskarich Nov 2014 A1
20140359524 Sasaki et al. Dec 2014 A1
20140368331 Cohn et al. Dec 2014 A1
20140369584 Fan et al. Dec 2014 A1
20140372599 Gutt et al. Dec 2014 A1
20140372811 Cohn et al. Dec 2014 A1
20140378110 Chingon et al. Dec 2014 A1
20150009325 Kardashov Jan 2015 A1
20150019714 Shaashua et al. Jan 2015 A1
20150022666 Kay et al. Jan 2015 A1
20150026796 Alan et al. Jan 2015 A1
20150054947 Dawes Feb 2015 A1
20150058250 Stanzione et al. Feb 2015 A1
20150074206 Baldwin Mar 2015 A1
20150074259 Ansari et al. Mar 2015 A1
20150077553 Dawes Mar 2015 A1
20150082414 Dawes Mar 2015 A1
20150088982 Johnson et al. Mar 2015 A1
20150097680 Fadell et al. Apr 2015 A1
20150097949 Ure et al. Apr 2015 A1
20150097961 Ure et al. Apr 2015 A1
20150100167 Sloo et al. Apr 2015 A1
20150106721 Cha et al. Apr 2015 A1
20150140954 Maier et al. May 2015 A1
20150142991 Zaloom May 2015 A1
20150143395 Reisman May 2015 A1
20150161875 Cohn et al. Jun 2015 A1
20150170447 Buzhardt Jun 2015 A1
20150192940 Silva et al. Jul 2015 A1
20150193127 Chai et al. Jul 2015 A1
20150205297 Stevens et al. Jul 2015 A1
20150205465 Robison et al. Jul 2015 A1
20150222601 Metz et al. Aug 2015 A1
20150227118 Wong Aug 2015 A1
20150256355 Pera et al. Sep 2015 A1
20150261427 Sasaki Sep 2015 A1
20150266577 Jones et al. Sep 2015 A1
20150287310 Deiiuliis et al. Oct 2015 A1
20150304804 Lotito Oct 2015 A1
20150319006 Plummer et al. Nov 2015 A1
20150319046 Plummer et al. Nov 2015 A1
20150325106 Dawes et al. Nov 2015 A1
20150331662 Ambourne Nov 2015 A1
20150334087 Dawes Nov 2015 A1
20150348554 Orr et al. Dec 2015 A1
20150350031 Burks et al. Dec 2015 A1
20150350735 Kser Dec 2015 A1
20150358359 Ghai et al. Dec 2015 A1
20150365217 Scholten et al. Dec 2015 A1
20150365933 Lee et al. Dec 2015 A1
20150371512 Bennett et al. Dec 2015 A1
20150373149 James Dec 2015 A1
20150379355 Kanga et al. Dec 2015 A1
20160004820 Moore Jan 2016 A1
20160012715 Raji et al. Jan 2016 A1
20160019778 Raji et al. Jan 2016 A1
20160023475 Bevier et al. Jan 2016 A1
20160027295 Raji et al. Jan 2016 A1
20160036944 Kitchen et al. Feb 2016 A1
20160037389 Tagg et al. Feb 2016 A1
20160042637 Cahill Feb 2016 A1
20160055573 Chen et al. Feb 2016 A1
20160062624 Sundermeyer et al. Mar 2016 A1
20160063642 Luciani et al. Mar 2016 A1
20160065413 Sundermeyer et al. Mar 2016 A1
20160065414 Sundermeyer et al. Mar 2016 A1
20160065653 Chen et al. Mar 2016 A1
20160068264 Ganesh et al. Mar 2016 A1
20160077935 Zheng et al. Mar 2016 A1
20160080365 Baker et al. Mar 2016 A1
20160087933 Johnson et al. Mar 2016 A1
20160094421 Bali et al. Mar 2016 A1
20160100348 Cohn et al. Apr 2016 A1
20160107749 Mucci Apr 2016 A1
20160116914 Mucci Apr 2016 A1
20160127641 Gove May 2016 A1
20160147919 Yabe et al. May 2016 A1
20160150433 Bergquist et al. May 2016 A1
20160156941 Alao et al. Jun 2016 A9
20160161277 Park et al. Jun 2016 A1
20160164923 Dawes Jun 2016 A1
20160171853 Naidoo et al. Jun 2016 A1
20160180719 Wouhaybi et al. Jun 2016 A1
20160183073 Saito et al. Jun 2016 A1
20160187995 Rosewall Jun 2016 A1
20160189509 Malhotra et al. Jun 2016 A1
20160189524 Poder et al. Jun 2016 A1
20160189527 Peterson et al. Jun 2016 A1
20160189549 Marcus Jun 2016 A1
20160191265 Cohn et al. Jun 2016 A1
20160191621 Oh et al. Jun 2016 A1
20160192461 Minsky Jun 2016 A1
20160196734 Hicks, III Jul 2016 A1
20160202695 Deroos et al. Jul 2016 A1
20160209072 Golden et al. Jul 2016 A1
20160225240 Voddhi et al. Aug 2016 A1
20160226732 Kim et al. Aug 2016 A1
20160231916 Dawes Aug 2016 A1
20160234075 Sirpal et al. Aug 2016 A1
20160241633 Overby et al. Aug 2016 A1
20160260135 Zomet et al. Sep 2016 A1
20160261932 Fadell et al. Sep 2016 A1
20160266579 Chen et al. Sep 2016 A1
20160274759 Dawes Sep 2016 A1
20160323731 Mohammed et al. Nov 2016 A1
20160363337 Steinberg et al. Dec 2016 A1
20160364089 Blackman et al. Dec 2016 A1
20160371961 Narang et al. Dec 2016 A1
20160371967 Narang et al. Dec 2016 A1
20160373453 Ruffner et al. Dec 2016 A1
20160378109 Raffa et al. Dec 2016 A1
20170004714 Rhee Jan 2017 A1
20170005818 Gould Jan 2017 A1
20170006107 Dawes et al. Jan 2017 A1
20170019644 K V et al. Jan 2017 A1
20170026440 Cockrell et al. Jan 2017 A1
20170039413 Nadler Feb 2017 A1
20170052513 Raji et al. Feb 2017 A1
20170054570 Hagins et al. Feb 2017 A1
20170054571 Kitchen et al. Feb 2017 A1
20170054594 Decenzo et al. Feb 2017 A1
20170063967 Kitchen et al. Mar 2017 A1
20170063968 Kitchen et al. Mar 2017 A1
20170068419 Sundermeyer et al. Mar 2017 A1
20170070361 Sundermeyer et al. Mar 2017 A1
20170070563 Sundermeyer et al. Mar 2017 A1
20170078298 Vlaminck et al. Mar 2017 A1
20170092138 Trundle et al. Mar 2017 A1
20170103646 Naidoo et al. Apr 2017 A1
20170109999 Cohn et al. Apr 2017 A1
20170111227 Papageorgiou et al. Apr 2017 A1
20170118037 Kitchen et al. Apr 2017 A1
20170124987 Kim et al. May 2017 A1
20170127124 Wilson et al. May 2017 A9
20170154507 Dawes et al. Jun 2017 A1
20170155545 Baum et al. Jun 2017 A1
20170180198 Baum et al. Jun 2017 A1
20170180306 Gutt et al. Jun 2017 A1
20170185277 Sundermeyer et al. Jun 2017 A1
20170185278 Sundermeyer et al. Jun 2017 A1
20170185281 Park et al. Jun 2017 A1
20170187993 Martch et al. Jun 2017 A1
20170192402 Karp et al. Jul 2017 A1
20170225336 Deyle et al. Aug 2017 A1
20170227965 Decenzo et al. Aug 2017 A1
20170244573 Baum et al. Aug 2017 A1
20170255452 Barnes et al. Sep 2017 A1
20170257257 Dawes Sep 2017 A1
20170278407 Lemmey et al. Sep 2017 A1
20170279629 Raji Sep 2017 A1
20170289323 Gelvin et al. Oct 2017 A1
20170289360 Baum et al. Oct 2017 A1
20170301216 Cohn et al. Oct 2017 A1
20170302469 Cohn et al. Oct 2017 A1
20170303257 Yamada et al. Oct 2017 A1
20170310500 Dawes Oct 2017 A1
20170330466 Demetriades et al. Nov 2017 A1
20170331781 Gutt et al. Nov 2017 A1
20170332055 Henderson Nov 2017 A1
20170337806 Cohn et al. Nov 2017 A1
20170353324 Baum et al. Dec 2017 A1
20180004377 Kitchen et al. Jan 2018 A1
20180012460 Heitz, III et al. Jan 2018 A1
20180019890 Dawes Jan 2018 A1
20180027517 Noonan Jan 2018 A9
20180045159 Patel Feb 2018 A1
20180054774 Cohn et al. Feb 2018 A1
20180063248 Dawes et al. Mar 2018 A1
20180063259 Connelly et al. Mar 2018 A1
20180069862 Cholas et al. Mar 2018 A1
20180069932 Tiwari et al. Mar 2018 A1
20180082575 El-Mankabady Mar 2018 A1
20180083831 Baum et al. Mar 2018 A1
20180092046 Egan et al. Mar 2018 A1
20180095155 Soni et al. Apr 2018 A1
20180096568 Cohn et al. Apr 2018 A1
20180107196 Bian et al. Apr 2018 A1
20180152342 Karaoguz et al. May 2018 A1
20180183668 Caldwell et al. Jun 2018 A1
20180191720 Dawes Jul 2018 A1
20180191740 Decenzo et al. Jul 2018 A1
20180191741 Dawes et al. Jul 2018 A1
20180191742 Dawes Jul 2018 A1
20180191807 Dawes Jul 2018 A1
20180197387 Dawes Jul 2018 A1
20180198688 Dawes Jul 2018 A1
20180198755 Domangue et al. Jul 2018 A1
20180198756 Dawes Jul 2018 A1
20180198788 Helen et al. Jul 2018 A1
20180198802 Dawes Jul 2018 A1
20180198841 Chmielewski et al. Jul 2018 A1
20180278701 Diem Sep 2018 A1
20180307223 Peeters et al. Oct 2018 A1
20180322759 Devdas et al. Nov 2018 A1
20190014413 Kallai et al. Jan 2019 A1
20190041547 Rolf et al. Feb 2019 A1
20190058720 Lindquist et al. Feb 2019 A1
20190073193 Krispin Mar 2019 A1
20190073534 Dvir et al. Mar 2019 A1
20190103030 Banga et al. Apr 2019 A1
20190158304 Sundermeyer et al. May 2019 A1
20190176985 Mucci Jun 2019 A1
20190197256 Lehnhardt et al. Jun 2019 A1
20190204836 Rezvani Jul 2019 A1
20190239008 Lambourne Aug 2019 A1
20190245798 Short et al. Aug 2019 A1
20190265694 Chen et al. Aug 2019 A1
20190289134 Dawes Sep 2019 A1
20190347924 Trundle et al. Nov 2019 A1
20190391545 Trundle et al. Dec 2019 A1
20200014675 Helms et al. Jan 2020 A1
20200026285 Perrone Jan 2020 A1
20200029339 Suzuki Jan 2020 A1
20200032887 McBurney et al. Jan 2020 A1
20200036635 Ohuchi Jan 2020 A1
20200076858 Apsangi et al. Mar 2020 A1
20200089378 Kitchen et al. Mar 2020 A1
20200094963 Myslinski Mar 2020 A1
20200127891 Johnson et al. Apr 2020 A9
20200137125 Patnala et al. Apr 2020 A1
20200162890 Spencer et al. May 2020 A1
20200186612 Saint Clair Jun 2020 A1
20200196213 Cheng et al. Jun 2020 A1
20200257721 McKinnon et al. Aug 2020 A1
20200273277 Kerning et al. Aug 2020 A1
20200279626 Ansari et al. Sep 2020 A1
20200322577 Raffa et al. Oct 2020 A1
20200328880 Bolotin et al. Oct 2020 A1
20200328887 Kostiainen et al. Oct 2020 A1
20200329136 Gerhardt et al. Oct 2020 A1
20200333780 Kerzner Oct 2020 A1
20200344309 Gutt et al. Oct 2020 A1
20200349786 Ho et al. Nov 2020 A1
20200366515 Dawes et al. Nov 2020 A1
20200380851 Farrand et al. Dec 2020 A1
20200394896 Cohn et al. Dec 2020 A1
20200409316 Raji et al. Dec 2020 A1
20200413320 Cohn et al. Dec 2020 A1
20210014312 Dawes et al. Jan 2021 A1
20210021710 Stepanian Jan 2021 A1
20210029547 Beachem et al. Jan 2021 A1
20210049895 Sundermeyer et al. Feb 2021 A1
20210053136 Rappl et al. Feb 2021 A1
20210068034 Juhasz et al. Mar 2021 A1
20210081553 Lemmey et al. Mar 2021 A1
20210099753 Connelly et al. Apr 2021 A1
20210149348 Raji et al. May 2021 A1
20210149466 Raji et al. May 2021 A1
20210152517 Dawes et al. May 2021 A1
20210153001 Eisner May 2021 A1
20210180815 Shamoon et al. Jun 2021 A1
20210191485 Raji et al. Jun 2021 A1
20210200430 Sundermeyer et al. Jul 2021 A1
20210226811 Kitchen et al. Jul 2021 A1
20210233384 Baum et al. Jul 2021 A1
20210250726 Jones Aug 2021 A1
20210326451 Nunez Di Croce Oct 2021 A1
20210335123 Trundle et al. Oct 2021 A1
20210367921 Baum et al. Nov 2021 A1
20210377230 Baum et al. Dec 2021 A1
20210383675 Cohn et al. Dec 2021 A1
20210407279 Baum et al. Dec 2021 A1
20220006779 Baum et al. Jan 2022 A1
20220021552 Ansari et al. Jan 2022 A1
20220027051 Kant et al. Jan 2022 A1
20220029994 Choyi et al. Jan 2022 A1
20220038440 Boynton et al. Feb 2022 A1
20220057917 Fulker et al. Feb 2022 A1
20220057925 Dawes Feb 2022 A1
20220060969 Cohn et al. Feb 2022 A1
20220070135 Gerald et al. Mar 2022 A1
20220070262 Kitchen et al. Mar 2022 A1
20220073052 Zhou et al. Mar 2022 A1
20220159334 Wang et al. May 2022 A1
20220247624 Johnson et al. Aug 2022 A1
20220415104 McLachlan et al. Dec 2022 A1
20230057193 Ansari et al. Feb 2023 A1
Foreign Referenced Citations (156)
Number Date Country
2005223267 Dec 2010 AU
2010297957 May 2012 AU
2011250886 Jan 2013 AU
2013284428 Feb 2015 AU
2011305163 Dec 2016 AU
2017201365 Mar 2017 AU
2017201585 Mar 2017 AU
1008939 Oct 1996 BE
2203813 Jun 1996 CA
2174482 Oct 1997 CA
2346638 Apr 2000 CA
2389958 Mar 2003 CA
2878117 Jan 2014 CA
2559842 May 2014 CA
2992429 Dec 2016 CA
2976682 Feb 2018 CA
2976802 Feb 2018 CA
1599999 Mar 2005 CN
102834818 Dec 2012 CN
102985915 Mar 2013 CN
102004027893 Jan 2006 DE
0295146 Dec 1988 EP
0308046 Mar 1989 EP
0591585 Apr 1994 EP
1117214 Jul 2001 EP
1119837 Aug 2001 EP
0978111 Nov 2001 EP
1738540 Jan 2007 EP
1881716 Jan 2008 EP
2112784 Oct 2009 EP
2188794 May 2010 EP
2191351 Jun 2010 EP
2327063 Jun 2011 EP
2483788 Aug 2012 EP
2569712 Mar 2013 EP
2619686 Jul 2013 EP
2868039 May 2015 EP
3031206 Jun 2016 EP
3285238 Feb 2018 EP
3308222 Apr 2018 EP
2584217 Jan 1987 FR
2661023 Oct 1991 FR
2793334 Nov 2000 FR
2222288 Feb 1990 GB
2273593 Jun 1994 GB
2286423 Aug 1995 GB
2291554 Jan 1996 GB
2319373 May 1998 GB
2320644 Jun 1998 GB
2324630 Oct 1998 GB
2325548 Nov 1998 GB
2335523 Sep 1999 GB
2349293 Oct 2000 GB
2370400 Jun 2002 GB
2442628 Apr 2008 GB
2442633 Apr 2008 GB
2442640 Apr 2008 GB
2428821 Jun 2008 GB
452015 Nov 2015 IN
042016 Jan 2016 IN
63-033088 Feb 1988 JP
05-167712 Jul 1993 JP
06-339183 Dec 1993 JP
08-227491 Sep 1996 JP
10-004451 Jan 1998 JP
11-234277 Aug 1999 JP
2000-006343 Jan 2000 JP
2000-023146 Jan 2000 JP
2000-278671 Oct 2000 JP
2001-006088 Jan 2001 JP
2001-006343 Jan 2001 JP
2001-069209 Mar 2001 JP
2002-055895 Feb 2002 JP
2002-185629 Jun 2002 JP
2003-085258 Mar 2003 JP
2003-141659 May 2003 JP
2003-281647 Oct 2003 JP
2004-192659 Jul 2004 JP
2006-094394 Apr 2006 JP
2007-529826 Oct 2007 JP
2009-213107 Sep 2009 JP
2010-140091 Jun 2010 JP
10-2005-0051577 Jun 2005 KR
20050052826 Jun 2005 KR
10-2006-0021605 Mar 2006 KR
10-0771941 Oct 2007 KR
I239176 Sep 2005 TW
201101243 Jan 2011 TW
201102976 Jan 2011 TW
201102978 Jan 2011 TW
1340934 Apr 2011 TW
201117141 May 2011 TW
I480839 Apr 2015 TW
I480840 Apr 2015 TW
I509579 Nov 2015 TW
I517106 Jan 2016 TW
8907855 Aug 1989 WO
8911187 Nov 1989 WO
9403881 Feb 1994 WO
9513944 May 1995 WO
9636301 Nov 1996 WO
9713230 Apr 1997 WO
9825243 Jun 1998 WO
9849663 Nov 1998 WO
9852343 Nov 1998 WO
9859256 Dec 1998 WO
9934339 Jul 1999 WO
WO-9934339 Jul 1999 WO
0021053 Apr 2000 WO
0036812 Jun 2000 WO
WO-0036812 Jun 2000 WO
0072598 Nov 2000 WO
0111586 Feb 2001 WO
0152478 Jul 2001 WO
0171489 Sep 2001 WO
0186622 Nov 2001 WO
0199078 Dec 2001 WO
0211444 Feb 2002 WO
0221300 Mar 2002 WO
0297584 Dec 2002 WO
2002100083 Dec 2002 WO
2003026305 Mar 2003 WO
0340839 May 2003 WO
0349379 Jun 2003 WO
WO-03098908 Nov 2003 WO
2004004222 Jan 2004 WO
WO-2004077307 Sep 2004 WO
2004098127 Nov 2004 WO
2004107710 Dec 2004 WO
WO-2005047990 May 2005 WO
2005091218 Sep 2005 WO
2007038872 Apr 2007 WO
2007124453 Nov 2007 WO
2008056320 May 2008 WO
2009006670 Jan 2009 WO
2009023647 Feb 2009 WO
2009029590 Mar 2009 WO
2009029597 Mar 2009 WO
2009064795 May 2009 WO
2009145747 Dec 2009 WO
2010019624 Feb 2010 WO
2010025468 Mar 2010 WO
2010127009 Nov 2010 WO
2010127194 Nov 2010 WO
2010127200 Nov 2010 WO
2010127203 Nov 2010 WO
2011038409 Mar 2011 WO
2011063354 May 2011 WO
2011143273 Nov 2011 WO
2012040653 Mar 2012 WO
2014004911 Jan 2014 WO
2015021469 Feb 2015 WO
2015134520 Sep 2015 WO
2015176775 Nov 2015 WO
2016201033 Dec 2016 WO
201302668 Jun 2014 ZA
Non-Patent Literature Citations (343)
Entry
US Patent Application filed Mar. 22, 2021, entitled “Premises Management Configuration and Control”, U.S. Appl. No. 17/208,866.
US Patent Application filed Apr. 4, 2022, entitled “Control System User Interface”, U.S. Appl. No. 17/712,911.
US Patent Application filed Apr. 6, 2022, entitled “Hardware Configurable Security, Monitoring and Automation Controller Having Modular Communication Protocol Interfaces”, U.S. Appl. No. 17/714,499.
US Patent Application filed Apr. 8, 2021, entitled “System for Data Routing in Networks”, U.S. Appl. No. 17/301,605.
US Patent Application filed Apr. 14, 2022, entitled “Premises Management Configuration and Control”, U.S. Appl. No. 17/659,259.
US Patent Application filed Apr. 14, 2022, entitled “Premises System Automation”, U.S. Appl. No. 17/721,192.
US Patent Application filed Apr. 17, 2020, entitled “Method and System for Providing Alternate Network Access”, U.S. Appl. No. 16/852,072.
US Patent Application filed Apr. 17, 2020, entitled “Networked Touchscreen With Integrated Interfaces”, U.S. Appl. No. 16/852,058.
US Patent Application filed Apr. 18, 2022, entitled “Method and System for Processing Security Event Data”, U.S. Appl. No. 17/723,101.
US Patent Application filed Apr. 22, 2022, entitled “Communication Protocols in Integrated Systems”, U.S. Appl. No. 17/727,470.
US Patent Application filed Apr. 23, 2019, entitled “Control System User Interface”, U.S. Appl. No. 16/391,625.
US Patent Application filed Apr. 26, 2019, entitled “Custom Content for Premises Management”, U.S. Appl. No. 16/396,368.
US patent application filed May 2, 2018, entitled “Automation System With Mobile Interface”, U.S. Appl. No. 15/969,514.
US Patent Application filed May 4, 2022, entitled “Premises Management Configuration and Control”, U.S. Appl. No. 17/736,408.
US Patent Application filed May 10, 2021, entitled “Management of a Security System at a Premises”, U.S. Appl. No. 17/316,402.
US Patent Application filed May 11, 2020, entitled “Control System User Interface”, U.S. Appl. No. 16/871,151.
US Patent Application filed May 12, 2020, entitled “IP Device Discovery Systems and Methods”, U.S. Appl. No. 15/930,029.
US Patent Application filed May 19, 2020, entitled “User Interface in a Premises Network”, U.S. Appl. No. 16/878,099.
US Patent Application filed May 23, 2018, entitled “Networked Touchscreen With Integrated Interfaces”, U.S. Appl. No. 15/987,638.
US Patent Application filed May 23, 2022, entitled “Premise Management Systems and Methods”, U.S. Appl. No. 17/664,524.
US Patent Application filed May 26, 2020, entitled “Premises Management Configuration and Control”, U.S. Appl. No. 16/882,876.
US Patent Application filed Jun. 1, 2012, entitled “Gateway Registry Methods and Systems”, U.S. Appl. No. 13/486,276.
US Patent Application filed Jun. 1, 2022, entitled “Integrated Cloud System for Premises Automation”, U.S. Appl. No. 17/804,941.
US Patent Application filed Jun. 8, 2022, entitled “Methods and Systems for Data Communication”, U.S. Appl. No. 17/835,394.
US Patent Application filed Jun. 9, 2021, entitled “Premises Management Configuration and Control”, U.S. Appl. No. 17/343,315.
US Patent Application filed Jun. 10, 2020, entitled “Method and System for Communicating With and Controlling an Alarm System From a Remote Server”, U.S. Appl. No. 16/898,146.
US Patent Application filed Jun. 10, 2022, entitled “Media Content Management”, U.S. Appl. No. 17/838,046.
US Patent Application filed Jun. 10, 2022, entitled “Method, System and Apparatus for Automated Reporting of Account and Sensor Zone Information to a Central Station”, U.S. Appl. No. 17/806,341.
US Patent Application filed Jun. 18, 2021, entitled “Controlling Data Routing Among Networks”, U.S. Appl. No. 17/304,342.
US Patent Application filed Jun. 22, 2022, entitled “Activation of Gateway Device”, U.S. Appl. No. 17/808,146.
US Patent Application filed Jun. 22, 2022, entitled “Automation System User Interface With Three-Dimensional Display”, U.S. Appl. No. 17/808,275.
US Patent Application filed Jun. 22, 2022, entitled “Communication Protocols in Integrated Systems”, U.S. Appl. No. 17/808,118.
US Patent Application filed Jun. 24, 2020, entitled “Method and System for Processing Security Event Data”, U.S. Appl. No. 16/910,967.
US Patent Application filed Jun. 27, 2018, entitled “Activation of Gateway Device”, U.S. Appl. No. 16/020,499.
US Patent Application filed Jul. 1, 2022, entitled “Forming a Security Network Including Integrated Security System Components”, U.S. Appl. No. 17/856,448.
US Patent Application filed Jul. 2, 2019, entitled “Communication Protocols in Integrated Systems”, U.S. Appl. No. 16/460,712.
US Patent Application filed Jul. 3, 2018, entitled “WIFI-To-Serial Encapsulation In Systems”, U.S. Appl. No. 16/026,703.
US Patent Application filed Jul. 9, 2020, entitled “Automation System With Mobile Interface”, U.S. Appl. No. 16/925,026.
US Patent Application filed Jul. 12, 2018, entitled “Integrated Security System with Parallel Processing Architecture”, U.S. Appl. No. 16/034,132.
US Patent Application filed Jul. 20, 2018, entitled “Cross-Client Sensor User Interface in an Integrated Security Network”, U.S. Appl. No. 16/041,291.
US Patent Application filed Jul. 26, 2019, entitled “Device Integration Framework”, U.S. Appl. No. 16/522,949.
US Patent Application filed Jul. 26, 2021, entitled “Notification of Event Subsequent to Communication Failure With Security System”, U.S. Appl. No. 17/443,427.
US Patent Application filed Jul. 28, 2016, entitled “Method and System for Automatically Providing Alternate Network Access for Telecommunications”, U.S. Appl. No. 15/222,416.
US Patent Application filed Jul. 30, 2021, entitled “Gateway Integrated With Premises Security System”, U.S. Appl. No. 17/390,222.
US Patent Application filed Aug. 3, 2022, entitled “Premises Management Networking”, U.S. Appl. No. 17/817,210.
US Patent Application filed Aug. 8, 2016, entitled “Security, Monitoring and Automation Controller Access and Use of Legacy Security Control Panel Information”, U.S. Appl. No. 15/231,273.
US Patent Application filed Aug. 9, 2016, entitled “Controller and Interface for Home Security, Monitoring and Automation Having Customizable Audio Alerts for SMA Events”, U.S. Appl. No. 15/232,135.
US Patent Application filed Aug. 9, 2018, entitled “Method and System for Processing Security Event Data”, U.S. Appl. No. 16/059,833.
US Patent Application filed Aug. 10, 2021, entitled “Media Content Management”, U.S. Appl. No. 17/398,939.
US Patent Application filed Aug. 11, 2022, entitled “Security Network Integrating Security System and Network Devices”, U.S. Appl. No. 17/819,083.
K. Lee, D. Murray, D. Hughes and W. Joosen, “Extending sensor networks into the Cloud using Amazon Web Services,” 2010 IEEE International Conference on Networked Embedded Systems for Enterprise Applications, 2010.
Lagotek Wireless Home Automation System, May 2006 [retrieved on Aug. 22, 2012].
Network Working Group, Request for Comments H.Schulzrinne Apr. 1998.
Non-Final Office Action dated Apr. 4, 2013 for U.S. Appl. No. 12/197,931, filed Aug. 25, 2008.
Non-Final Office Action dated Mar. 4, 2013 for U.S. Appl. No. 13/400,477, filed Feb. 20, 2012.
Non-Final Office Action dated May 5, 2010 for U.S. Appl. No. 12/189,780, filed Aug. 11, 2008.
Non-Final Office Action dated May 5, 2010 for U.S. Appl. No. 12/189,785, filed Aug. 11, 2008.
Non-Final Office Action dated Feb. 7, 2012 for U.S. Appl. No. 12/637,671, filed Dec. 14, 2009.
Non-Final Office Action dated Feb. 7, 2013 for U.S. Appl. No. 12/970,313, filed Dec. 16, 2010.
Non-Final Office Action dated Feb. 8, 2012 for U.S. Appl. No. 12/630,092, filed Dec. 3, 2009.
Non-Final Office Action dated Apr. 9, 2012 for U.S. Appl. No. 12/771,624, filed Apr. 30, 2010.
Non-Final Office Action dated Aug. 10, 2012 for U.S. Appl. No. 12/771,471, filed Apr. 30, 2010.
Non-Final Office Action dated Oct. 11, 2012 for U.S. Appl. No. 12/019,568, filed Jan. 24, 2008.
Non-Final Office Action dated Apr. 12, 2012 for U.S. Appl. No. 12/770,365, filed Apr. 29, 2010.
Non-Final Office Action dated Jul. 12, 2012 for U.S. Appl. No. 12/691,992, filed Jan. 22, 2010.
Non-Final Office Action dated Oct. 12, 2012 for U.S. Appl. No. 12/630,092, filed Dec. 3, 2009.
Non-Final Office Action dated Sep. 12, 2012 for U.S. Appl. No. 12/952,080, filed Nov. 22, 2010.
Non-Final Office Action dated Jul. 13, 2010 for U.S. Appl. No. 12/019,568, filed Jan. 24, 2008.
Non-Final Office Action dated Nov. 14, 2012 for U.S. Appl. No. 13/531,757, filed Jun. 25, 2012.
Non-Final Office Action dated Sep. 14, 2010 for U.S. Appl. No. 11/084,232, filed Mar. 16, 2005.
Non-Final Office Action dated Sep. 16, 2011 for U.S. Appl. No. 12/539,537, filed Aug. 11, 2009.
Non-Final Office Action dated Sep. 17, 2012 for U.S. Appl. No. 12/189,780, filed Aug. 11, 2008.
Non-Final Office Action dated Aug. 18, 2011 for U.S. Appl. No. 12/197,958, filed Aug. 25, 2008.
Non-Final Office Action dated Feb. 18, 2011 for U.S. Appl. No. 12/630,092, filed Dec. 3, 2009.
Non-Final Office Action dated Jan. 18, 2012 for U.S. Appl. No. 12/771,071, filed Apr. 30, 2010.
Non-Final Office Action dated Jul. 21, 2010 for U.S. Appl. No. 12/630,092, filed Dec. 3, 2009.
Non-Final Office Action dated Dec. 22, 2010 for U.S. Appl. No. 12/197,931, filed Aug. 25, 2008.
Non-Final Office Action dated Jul. 22, 2013 for U.S. Appl. No. 12/630,092, filed Dec. 3, 2009.
Non-Final Office Action dated Jan. 26, 2012 for U.S. Appl. No. 12/019,568, filed Jan. 24, 2008.
Non-Final Office Action dated Nov. 26, 2010 for U.S. Appl. No. 12/197,958, filed Aug. 25, 2008.
Non-Final Office Action dated Jun. 27, 2013 for U.S. Appl. No. 12/019,568, filed Jan. 24, 2008.
Non-Final Office Action dated Dec. 30, 2009 for U.S. Appl. No. 11/084,232, filed Mar. 16, 2005.
Non-Final Office Action dated May 30, 2008 for U.S. Appl. No. 11/084,232, filed Mar. 16, 2005.
Non-Final Office Action dated Apr. 13, 2010 for U.S. Appl. No. 11/761,745, filed Jun. 12, 2007.
Non-Final Office Action dated Feb. 21, 2013 for U.S. Appl. No. 12/771,372, filed Apr. 30, 2010.
Non-Final Office Action dated Jan. 5, 2010 for U.S. Appl. No. 12/019,554, filed Jan. 24, 2008.
Non-Final Office Action dated May 23, 2013 for U.S. Appl. No. 13/104,932, filed May 10, 2011.
Non-Final Office Action dated May 23, 2013 for U.S. Appl. No. 13/104,936, filed May 10, 2011.
Notice of Allowance dated May 14, 2013 for U.S. Appl. No. 12/637,671, filed Dec. 14, 2009.
Notice of Allowance dated Oct. 25, 2012 for U.S. Appl. No. 11/084,232, filed Mar. 16, 2005.
Oxford Dictionary, Definition of “application”, 2021, 2 pages (Year: 2021).
PCT Application filed on Jun. 9, 2016, entitled “Virtual Device Systems and Methods”, PCT/US2016/036674.
PCT Application filed on Jun. 29, 2016, entitled “Integrated Cloud System for Premises Automation”, PCT/US2016/040046.
PCT Application filed on Jun. 30, 2016, entitled “Integrated Cloud System with Lightweight Gateway for Premises Automation”, PCT/US2016/040451.
PCT Application filed on Jul. 7, 2016, entitled “Automation System User Interface with Three-Dimensional Display”, PCT/US2016/041353.
PCT Application filed on Aug. 16, 2016, entitled “Automation System User Interface”, PCT/US2016/047172.
PCT Application filed on Aug. 17, 2016, entitled “Automation System User Interface”, PCT/US2016/047262.
PCT Application filed on Oct. 13, 2016, entitled “Coordinated Control of Connected Devices in a Premise”, PCT/US2016/056842.
PCT Application filed on Nov. 17, 2016, entitled “Mobile Premises Automation Platform”, PCT/US2016/062519.
US Patent Application filed Sep. 22, 2022, entitled “Forming a Security Network Including Integrated Security System Components and Network Devices”, U.S. Appl. No. 17/934,443.
US Patent Application filed Nov. 29, 2022, entitled “Communication Protocols Over Internet Protocol (IP) Networks”, U.S. Appl. No. 18/059,604.
US Patent Application filed Nov. 30, 2022, entitled “Custom Content for Premises Management”, U.S. Appl. No. 18/060,374.
US Patent Application filed Dec. 1, 2022, entitled “Controlling Data Routing in Premises Management Systems”, U.S. Appl. No. 18/073,514.
Requirement for Restriction/Election dated Jan. 22, 2013 for U.S. Appl. No. 13/104,932, filed May 10, 2011.
Requirement for Restriction/Election dated Jan. 22, 2013 for U.S. Appl. No. 13/104,936, filed May 10, 2011.
Requirement for Restriction/Election dated Oct. 24, 2012 for U.S. Appl. No. 12/750,470, filed Mar. 30, 2010.
Security for the Future, Introducing 5804B0—Advanced two-way wireless remote technology, Advertisement, Ademco Group, Syosset, NY, circa 1997.
Shang, Wei-Lai, “Study on Application Embedded Intelligent Area System”, Journal of Anyang Institute of Technology, Dec. 2010, vol. 9, No. 6, pp. 56-57 and 65.
South African Patent App. No. 2013/02668, corresponds to WO2012/040653.
Supplemental European Search Report for Application No. EP05725743.8 dated Sep. 14, 2010, 2 pages.
Supplementary European Search Report for Application No. EP10819658, dated Mar. 10, 2015, 2 pages.
Supplementary European Search Report for Application No. EP11827671, dated Mar. 10, 2015, 2 pages.
Supplementary Partial European Search Report for Application No. EP09807196, dated Nov. 17, 2014, 5 pages.
Supplementary European Search Report for Application No. EP2191351, dated Jun. 23, 2014, 2 pages.
Supplementary Non-Final Office Action dated Oct. 28, 2010 for U.S. Appl. No. 12/630,092, filed Dec. 3, 2009.
Topalis E., et al., “A Generic Network Management Architecture Targeted to Support Home Automation Networks and Home Internet Connectivity, Consumer Electronics, IEEE Transactions,” 2000, vol. 46 (1), pp. 44-51.
United States Patent and Trademark Office—Before the Patent Trial and Appeal Board, Alarm.com (U.S. Pat. No. 8,350,694B1) (inventors Stephen Scott Trundle & Alison Jane Slavin) V iControl Networks, Inc. (U.S. Appl. No. 13/311,365) (Inventors. Poul j. Dawes, Jim Fulker, Carolyn Wales, Reza Raji, and Gerald Gutt), Patent Interference 106,001 (HHB) (Technology Center 24000), Mar. 31, 2015.
US Patent Application filed Jan. 3, 2019, entitled “Methods and Systems for Data Communication”, U.S. Appl. No. 16/239,114.
US Patent Application filed Jan. 11, 2021, entitled “Premise Management Systems and Methods”, U.S. Appl. No. 17/145,773.
US Patent Application filed Jan. 14, 2022, entitled “Mobile Premises Automation Platform”, U.S. Appl. No. 17/576,336.
US Patent Application filed Jan. 22, 2019, entitled “Data Model for Home Automation”, U.S. Appl. No. 16/254,535.
US Patent Application filed Jan. 22, 2019, entitled “Premises System Automation”, U.S. Appl. No. 16/254,480.
US Patent Application filed Jan. 23, 2020, entitled “Forming a Security Network Including Integrated Security System Components and Network Dev”, U.S. Appl. No. 16/750,976.
US Patent Application filed Jan. 25, 2019, entitled Communication Protocols in Integrated Systems, U.S. Appl. No. 16/257,706.
US Patent Application filed Jan. 28, 2019, entitled “Automation System User Interface With Three-Dimensional Display”, U.S. Appl. No. 16/258,858.
US Patent Application filed Feb. 6, 2020, entitled “Activation of Gateway FDevice”, U.S. Appl. No. 16/784,159.
US Patent Application filed Feb. 8, 2022, entitled “Server-Based Notification of Alarm Event Subsequent to Communication Failure With Armed Security System”, U.S. Appl. No. 17/650,324.
US Patent Application filed Feb. 9, 2021, entitled “Premises Management Networking”, U.S. Appl. No. 17/171,398.
US Patent Application filed Mar. 2, 2017, entitled “Generating Risk Profile Using Data of Home Monitoring and Security System”, U.S. Appl. No. 15/447,982.
US Patent Application filed Mar. 2, 2020, entitled “Communication Protocols in Integrated Systems”, U.S. Appl. No. 16/807,100.
US Patent Application filed Mar. 2, 2020, entitled “Coordinated Control of Connected Devices in a Premise”, U.S. Appl. No. 16/807,028.
US Patent Application filed Mar. 7, 2014, entitled “Activation of Gateway Device”, U.S. Appl. No. 14/201,162.
US Patent Application filed Mar. 7, 2014, entitled “Communication Protocols in Integrated Systems”, U.S. Appl. No. 14/200,921.
US Patent Application filed Mar. 7, 2014, entitled “Device Integration Framework”, U.S. Appl. No. 14/201,227.
US Patent Application filed Mar. 7, 2014, entitled “Integrated Security and Control System With Geofencing”, U.S. Appl. No. 14/201,189.
US Patent Application filed Mar. 7, 2014, entitled “Security System Integrated With Social Media Platform”, U.S. Appl. No. 14/201,133.
US Patent Application filed Mar. 10, 2014, entitled “Communication Protocols in Integrated Systems”, U.S. Appl. No. 14/202,573.
US Patent Application filed Mar. 10, 2014, entitled “Communication Protocols in Integrated Systems”, U.S. Appl. No. 14/202,592.
US Patent Application filed Mar. 10, 2014, entitled “Communication Protocols in Integrated Systems”, U.S. Appl. No. 14/202,627.
US Patent Application filed Mar. 10, 2014, entitled “Communication Protocols in Integrated Systems”, U.S. Appl. No. 14/202,685.
US Patent Application filed Mar. 10, 2014, entitled “Communication Protocols in Integrated Systems”, U.S. Appl. No. 14/203,077.
US Patent Application filed Mar. 10, 2014, entitled “Communication Protocols in Integrated Systems”, U.S. Appl. No. 14/203,084.
US Patent Application filed Mar. 10, 2014, entitled “Communication Protocols in Integrated Systems”, U.S. Appl. No. 14/203,128.
US Patent Application filed Mar. 10, 2014, entitled “Communication Protocols in Integrated Systems”, U.S. Appl. No. 14/203,141.
US Patent Application filed Mar. 10, 2014, entitled “Communication Protocols in Integrated Systems”, U.S. Appl. No. 14/203,219.
US Patent Application filed Mar. 10, 2014, entitled “Communication Protocols Over Internet Protocol (IP) Networks”, U.S. Appl. No. 14/202,505.
US Patent Application filed Mar. 10, 2014, entitled “Communication Protocols Over Internet Protocol (IP) Networks”, U.S. Appl. No. 14/202,579.
US Patent Application filed Mar. 10, 2022, entitled “Virtual Device Systems and Methods”, U.S. Appl. No. 17/691,774.
US Patent Application filed Mar. 11, 2020, entitled “Management of a Security System at a Premises”, U.S. Appl. No. 16/816,134.
US Patent Application filed Mar. 15, 2021, entitled “Automation System User Interface”, U.S. Appl. No. 17/202,279.
US Patent Application filed Mar. 17, 2021, entitled “Communication Protocols Over Internet Protocol (IP) Networks”, U.S. Appl. No. 17/204,068.
US Patent Application filed Mar. 18, 2019, entitled “Server-Based Notification of Alarm Event Subsequent to Communication Failure With Armed Security System”, U.S. Appl. No. 16/356,742.
US Patent Application filed Mar. 20, 2020, entitled “Security, Monitoring and Automation Controller Access and Use of Legacy Security Control Panel Information”, U.S. Appl. No. 16/825,099.
Fujii et al., “Community security platform for individually maintained home computers: The Vigilante Network Project”, Proceedings of the 21st IEEE Instrumentation and Measurement Technology Conference, 2004, vol. 2, pp. 891-894.
Kobayashi et al., “Creating worldwide community safety with present technology and privacy protection: The e-JIKEI Network project”, Procedia—Social and Behavioral Sciences, 2010, vol. 2, pp. 6-13.
Non-Final Rejection dated Jan. 20, 2023 for U.S. Appl. No. 17/712,911, 8 pages.
Prashyanusorn et al., “Sustainable tourism using security cameras with privacy protecting ability”, Journal of Information Security, 2010, vol. 1, pp. 68-73.
US Patent Application filed Jan. 5, 2023, entitled “Systems and Methods for Device Communication”, U.S. Appl. No. 18/150,316.
US Patent Application filed Jan. 13, 2023, entitled “Communication Protocols in Integrated Systems”, U.S. Appl. No. 18/154,590.
Wang et al, “A Large Scale Video Surveillance System with Heterogeneous Information Fusion and Visualization for Wide Area Monitoring,” 2012 Eighth International Conference on Intelligent Information Hiding and Multimedia Signal Processing, Piraeus, 2012, pp. 178-181.
Wilkinson, S: “Logitech Harmony One Universal Remote” Ultimate AV magazine May 2008 (May 2008), XP002597782 Retrieved from the Internet : Original URL: http://www.ultimateavmag.com/remotecontrols/508logi) [retrieved on Aug. 23, 2010] the whole document; Updated URL: https://www.soundandvision.com/content/logitech-harmony-one-universal-remote, Retrieved from internet on Jan. 11, 2018.
Windows, Newton's Telecom Dictionary, 21st Edition, Mar. 2005, 937-938.
Wireless, Battery-Powered Smoke Detectors, Brochure, SafeNight Technology, Inc. Roanoke, VA, 1995.
WLS906 Photoelectric Smoke Alarm, Data Sheet, DSC Security Products, Ontario, Canada, Jan. 1998.
X10—ActiveHome, Home Automation Made Easy [retrieved on Nov. 4, 2003], 3 pages.
Yanni Zhai et al., Design of Smart Home Remote Monitoring System Based on Embedded System, 2011 IEEE 2nd International Conference on Computing, Control and Industrial Engineering, vol. 2, pp. 41-44.
“Indicate”. Memam-Webster.com Dictionary, Merriam-Webster, https://web.archive.org/web/20061209080613/https://www.merriam-webster.com/dictionary/indicate. Dec. 9, 2006.
“Application” The Authoritative Dictionary of IEEE Standard Terms. 7th ed. 2000.
“Modular programming”, The Authoritative Dictionary of IEEE Standard Terms. 7th ed. 2000.
3rd Generation Partnership Project! Technical Specification Group Services and System Aspects! Architecture enhancements to facilitate communications with packet data networks and application, Mar. 2015, 3GPP TS 23.682 V12.3.0, pp. 8-10. (Year: 2015).
6270 Touch Screen Keypad Notes, Honeywell, Sep. 2006.
Alarm.com—Interactive Security Systems, Elders [retrieved on Nov. 4, 2003], 1 page.
Alarm.com—Interactive Security Systems, Frequently Asked Questions [retrieved on Nov. 4, 2003], 3 pages.
Alarm.com—Interactive Security Systems, Overview [retrieved on Nov. 4, 2003], 2 pages.
Alarm.com—Interactive Security Systems, Product Advantages [retrieved on Nov. 4, 2003], 3 pages.
Associate. Merriaim-Webster.com Dictionary, Merriam-Webster, https://web.archive.org/web/20061209213742/https://www.merriam-webster.com/dictionary/associate. Dec. 9, 2006.
AU application filed on Feb. 28, 2017, entitled “Control System User Interface”, 2017201365.
AU application filed on Mar. 8, 2017, entitled “Integrated Security Network with Security Alarm Signaling System”, 2017201585.
CA application filed on Aug. 15, 2017, entitled “Automation System User Interface”, 2976682.
CA application filed on Aug. 16, 2017, entitled “Automation System User Interface”, 2976802.
Chapter 6, Securing TCP/IP, pp. 135-164, Oct. 12, 2004.
Condry M et al., Open Service Gateway architecture overview, Industrial Electronics Society, 1999, IECON '99 Proceedings, The 25th Annual Conference of the IEEE, San Jose, CA, USA, Nov. 29-Dec. 3, 1999, Piscataway, NJ, USA, IEEE, US, vol. 2, Nov. 29, 1999 (Nov. 29, 1999), pp. 735-742, XP010366642.
Control Panel Standard—Features for False Alarm Reduction, The Security Industry Association, SIA 2009, pp. 1-48.
CorAccess Systems, Companion 6 User Guide, Jun. 17, 2002.
Court action filed for U.S. Pat. Nos: 7,262,690; 7,911,341; 8,073,931; 8,335,842; 8,473,619; 8,478,844 in U.S. District Court, Estern District of Virginia, Case No. 1:13-CV-00834, between iControl Networks, Inc. (Plaintiff) vs Alarm.com Incorporated et al. (Defendant) on Jul. 10, 2013.
Diaz, Redondo R P et al., Enhancing Residential Gateways: OSGI Service Composition, IEEE Transactions on Consumer Electronics, IEEE Service Center, New York, NY, US, vol. 53, No. 1, Feb. 1, 2007 (Feb. 1, 2007), pp. 87-95, XP011381790.
Dragging The Authoritative Dictionary of IEEE Standard Terms. 7th ed. 2000, p. 337.
Elwahab et al. ; Device, System and . . . Customer Premises Gateways, Sep. 27, 2001; WO 01/71489.
EP application filed on Jun. 9, 2016, entitled, “Data Model for Flome Automation”, 16808247.7.
EP application filed on Aug. 16, 2017, entitled, “Automation System User Interface”, 17186497.8.
EP examination report issued in EP08797646.0, dated May 17, 2017, 11 pages.
Examination Report under Section 18(3) re for UK Patent Application No. GB0620362.4, dated Aug. 13, 2007.
Examination Report under Section 18(3) re for UK Patent Application No. GB0724248.0, dated Jun. 4, 2008.
Examination Report under Section 18(3) re for UK Patent Application No. GB0724248.0, dated Jan. 30, 2008.
Examination Report under Section 18(3) re for UK Patent Application No. GB0724760.4, dated Jan. 30, 2008.
Examination Report under Section 18(3) re for UK Patent Application No. GB0800040.8, dated Jan. 30, 2008.
Faultline, “AT&T Targets video home security as next broadband market”; Nov. 2, 2006; The Register; 2 Pages.
File, The Authoritative Dictionary of IEEE Standard Terms. 7th ed. 2000, pp. 432.
Final Office Action dated Aug. 1, 2011 for U.S. Appl. No. 12/630,092, filed Dec. 3, 2009.
Final Office Action dated Jun. 1, 2009 for U.S. Appl. No. 11/084,232, filed Mar. 16, 2005.
Final Office Action dated Jun. 5, 2012 for U.S. Appl. No. 12/771,071, filed Apr. 30, 2010.
Final Office Action dated May 9, 2013 for U.S. Appl. No. 12/189,780, filed Aug. 11, 2008.
Final Office Action dated May 9, 2013 for U.S. Appl. No. 12/952,080, filed Nov. 22, 2010.
Final Office Action dated Jan. 10, 2011 for U.S. Appl. No. 12/189,785, filed Aug. 11, 2008.
Final Office Action dated Jun. 10, 2011 for U.S. Appl. No. 11/084,232, filed Mar. 16, 2005.
Final Office Action dated Jan. 13, 2011 for U.S. Appl. No. 12/189,780, filed Aug. 11, 2008.
Final Office Action dated Oct. 17, 2012 for U.S. Appl. No. 12/637,671, filed Dec. 14, 2009.
Final Office Action dated Sep. 17, 2012 for U.S. Appl. No. 12/197,958, filed Aug. 25, 2008.
Final Office Action dated Mar. 21, 2013 for U.S. Appl. No. 12/691,992, filed Jan. 22, 2010.
Final Office Action dated Jul. 23, 2013 for U.S. Appl. No. 13/531,757, filed Jun. 25, 2012.
Final Office Action dated Feb. 26, 2013 for U.S. Appl. No. 12/771,471, filed Apr. 30, 2010.
Final Office Action dated Jun. 29, 2012 for U.S. Appl. No. 12/539,537, filed Aug. 11, 2009.
Final Office Action dated Dec. 31, 2012 for U.S. Appl. No. 12/770,365, filed Apr. 29, 2010.
Final Office Action dated Oct. 31, 2012 for U.S. Appl. No. 12/771,624, filed Apr. 30, 2010.
Final Office Action dated Feb. 16, 2011 for U.S. Appl. No. 12/019,568, filed Jan. 24, 2008.
Final Office Action dated Jul. 12, 2010 for U.S. Appl. No. 12/019,554, filed Jan. 24, 2008.
United States Patent and Trademark Office—Before the Patent Trial and Appeal Board, Alarm.com (U.S. Pat. No. 8,350,69461) (inventors Stephen Scott Trundle & Alison Jane Slavin) V iControl Networks, Inc. (U.S. Appl. No. 13/311,365) (Inventors. Poul j. Dawes, Jim Fulker, Carolyn Wales, Reza Raji, and Gerald Gutt), Patent Interference 106,001 (HH6) (Technology Center 24000), Mar. 31, 2015.
US Patent Application filed Oct. 7, 2022, entitled “Security System With Networked Touchscreen”, U.S. Appl. No. 18/045,018.
Final Office Action dated Sep. 14, 2011 for U.S. Appl. No. 12/197,931, filed Aug. 25, 2008.
Foreign communication from a related counterpart application—International Preliminary Examination Report, App No. PCT/US02/14450, dated Mar. 2, 2004, 4 pgs.
Foreign communication from a related counterpart application—International Search Report, App No. PCT/US02/14450, dated Dec. 17, 2002, 6 pgs.
Foreign communication from a related counterpart application—Written Opinion, App No. PCT/US02/14450, dated Oct. 21, 2003, 4 pgs.
Form PCT/ISA/210, “PCT International Search Report for the Application No. PCT/US05/08766,” dated May 23, 2006, 2 pages.
Form PCT/ISA/210, “PCT International Search Report for the Application No. PCT/US08/72831,” dated Nov. 4, 2008, 2 pages.
Form PCT/ISA/210, “PCT International Search Report for the Application No. PCT/US08/74246,” dated Nov. 14, 2008, 2 pages.
Form PCT/ISA/210, “PCT International Search Report for the Application No. PCT/US08/74260,” dated Nov. 13, 2008, 2 pages.
Form PCT/ISA/210, “PCT International Search Report for the Application No. PCT/US08/83254,” dated Jan. 14, 2009, 2 pages.
Form PCT/ISA/210, “PCT International Search Report for the Application No. PCT/US09/53485,” dated Oct. 22, 2009, 2 pages.
Form PCT/ISA/210, “PCT International Search Report for the Application No. PCT/US09/55559,” dated Nov. 12, 2009, 2 pages.
Form PCT/ISA/210, “PCT International Search Report for the Application No. PCT/US10/50585,” dated Dec. 30, 2010, 2 pages.
Form PCT/ISA/210, “PCT International Search Report for the Application No. PCT/US10/57674,” dated Mar. 2, 2011, 2 pages.
Form PCT/ISA/210, “PCT International Search Report for the Application No. PCT/US11/34858,” dated Oct. 3, 2011, 2 pages.
Form PCT/ISA/210, “PCT International Search Report for the Application No. PCT/US11/35994,” dated Sep. 28, 2011, 2 pages.
Form PCT/ISA/210, “PCT International Search Report for the Application No. PCT/US11/53136,” dated Jan. 5, 2012, 2 pages.
Form PCT/ISA/220, “PCT Notification of Transmittal of the International Search Report and the Written Opinion fo the International Searching Authority, or the Declaration for the Application No. PCT/US08/74260,” dated Nov. 13, 2008, 1 page.
Form PCT/ISA/220, “PCT Notification of Transmittal of the International Search Report and the Written Opinion of the International Searching Authority, or the Declaration for the Application No. PCT/US08/72831,” dated Nov. 4, 2008, 1 page.
Form PCT/ISA/220, “PCT Notification of Transmittal of the International Search Report and the Written Opinion of the International Searching Authority, or the Declaration for the Application No. PCT/US08/74246” dated Nov. 14, 2008, 1 page.
Form PCT/ISA/220, “PCT Notification of Transmittal of the International Search Report and the Written Opinion of the International Searching Authority, or the Declaration for the Application No. PCT/US08/83254,” dated Jan. 14, 2009, 1 page.
Form PCT/ISA/220, “PCT Notification of Transmittal of the International Search Report and the Written Opinion of the International Searching Authority, or the Declaration for the Application No. PCT/US09/53485,” dated Oct. 22, 2009, 1 page.
Form PCT/ISA/220, “PCT Notification of Transmittal of the International Search Report and the Written Opinion of the International Searching Authority, or the Declaration for the Application No. PCT/US09/55559,” dated Nov. 12, 2009, 1 page.
Form PCT/ISA/220, “PCT Notification of Transmittal of the International Search Report and the Written Opinion of the International Searching Authority, or the Declaration for the Application No. PCT/US10/50585,” dated Dec. 30, 2010, 1 page.
Form PCT/ISA/220, “PCT Notification of Transmittal of the International Search Report and the Written Opinion of the International Searching Authority, or the Declaration for the Application No. PCT/US10/57674,” dated Mar. 2, 2011, 1 page.
Form PCT/ISA/220, “PCT Notification of Transmittal of the International Search Report and the Written Opinion of the International Searching Authority, or the Declaration for the Application No. PCT/US11/35994,” dated Sep. 28, 2011, 1 page.
Form PCT/ISA/220, PCT Notification of Transmittal of the International Search Report and the Written Opinion of the International Searching Authority, or the Declaration for the Application No. PCT/US05/08766, dated May 23, 2006, 1 page.
Form PCT/ISA/237, “PCT Written Opinion ofthe International Searching Authority for the Application No. PCT/US05/08766,” dated May 23, 2006, 5 pages.
Form PCT/ISA/237, “PCT Written Opinion of the International Searching Authority for the Application No. PCT/US08/72831,” dated Nov. 4, 2008, 6 pages.
Form PCT/ISA/237, “PCT Written Opinion of the International Searching Authority for the Application No. PCT/US08/74246,” dated Nov. 14, 2008, 6 pages.
Form PCT/ISA/237, “PCT Written Opinion of the International Searching Authority for the Application No. PCT/US08/74260,” dated Nov. 13, 2008, 6 pages.
Form PCT/ISA/237, “PCT Written Opinion of the International Searching Authority for the Application No. PCT/US09/53485,” dated Oct. 22, 2009, 8 pages.
Form PCT/ISA/237, “PCT Written Opinion of the International Searching Authority for the Application No. PCT/US09/55559,” dated Nov. 12, 2009, 6 pages.
Form PCT/ISA/237, “PCT Written Opinion of the International Searching Authority for the Application No. PCT/US10/50585,” dated Dec. 30, 2010, 7 pages.
Form PCT/ISA/237, “PCT Written Opinion of the International Searching Authority for the Application No. PCT/US10/57674,” dated Mar. 2, 2011, 6 pages.
Form PCT/ISA/237, “PCT Written Opinion of the International Searching Authority for the Application No. PCT/US11/34858,” dated Oct. 3, 2011, 8 pages.
Form PCT/ISA/237, “PCT Written Opinion of the International Searching Authority for the Application No. PCT/US11/35994,” dated Sep. 28, 2011, 11 pages.
Form PCT/ISA/237, “PCT Written Opinion of the International Searching Authority for the Application No. PCT/US11/53136,” dated Jan. 5, 2012.
Form PCT/ISA/237, “PCT Written Opinion ofthe International Searching Authority of the Application No. PCT/US08/83254,” dated Jan. 14, 2009, 7 pages.
Gateway Registry Methods and Systems, U.S. Appl. No. 13/486,276, filed Jun. 1, 2012.
Genex OmniEye http://www.qenextech.com/prod01.htm, 1999 5 pages.
Genex Technologies, Genex OmniEye, www.aviq.com/avcat/images/documents/pdfs/omnieye%20nightwatchbrochure.pdf; webpage accessed Jan. 10, 2018.
Gong, Li, A Software architecture for open service gateways, Internet Computing, IEEE 5.1, Jan.-Feb. 2001, 64-70.
GrayElectronics, “Digitizing TV cameras on TCP/IP Computer Networks,” http://www.grayelectronics.com/default.htm, printed on Oct. 12, 1999 (2 pages).
GrayElectronics, http//:www.grayelectronics.com/default.htm.
Gutierrez J.A., “On the Use of IEEE 802.15.4 to Enable Wireless Sensor Networks in Building Automation,” Personal, Indoor and Mobile Radio Communications (PIMRC), 15th IEEE International Symposium, 2004, vol. 3, pp. 1865-1869.
Indian Patent App. No. 10698/DELNP/2012, corresponds to WO2011/143273.
Indian Patent App. No. 3687/DELNP/2012, corresponds to WO2011/038409 filed on Sep. 28, 2010.
International Search Report for Application No. PCT/US13/48324, dated Jan. 14, 2014, 2 pages.
International Search Report for Application No. PCT/US2014/050548, dated Mar. 18, 2015, 4 pages.
J. David Eisenberg, SVG Essentials: Producing Scalable Vector Graphics with XML. O'Reilly & Associates, Inc., Sebastopol, CA 2002.
U.S. Appl. No. 16/925,026, filed Jul. 8, 2020.
U.S. Appl. No. 15/969,514, filed May 1, 2018.
U.S. Appl. No. 15/078,786, filed Mar. 22, 2016.
U.S. Appl. No. 13/718,851, filed Dec. 17, 2012.
U.S. Appl. No. 11/084,232, filed Mar. 15, 2005.
US Patent Application filed Aug. 16, 2021, entitled “Control System User Interface”, U.S. Appl. No. 17/403,526.
US Patent Application filed Aug. 21, 2018, entitled “Premises System Management Using Status Signal”, U.S. Appl. No. 16/107,568.
US Patent Application filed Aug. 23, 2019, entitled “Premises System Management Using Status Signal”, U.S. Appl. No. 16/549,837.
US Patent Application filed Aug. 23, 2021, entitled “Method and System for Providing Alternate Network Access”, U.S. Appl. No. 17/409,528.
US Patent Application filed Aug. 26, 2020, entitled “Automation System User Interface With Three-Dimensional Display”, U.S. Appl. No. 17/003,550.
US Patent Application filed Aug. 31, 2021, entitled “Networked Touchscreen With Integrated Interfaces”, U.S. Appl. No. 17/463,267.
US Patent Application filed Sep. 6, 2018, entitled “Takeover of Security Network”, U.S. Appl. No. 16/123,695.
US Patent Application filed Sep. 7, 2021, entitled “Gateway Registry Methods and Systems”, U.S. Appl. No. 17/468,188.
US Patent Application filed Sep. 8, 2021, entitled “User Interface in a Premises Network”, U.S. Appl. No. 17/469,417.
US Patent Application filed Sep. 9, 2021, entitled “Premises System Management Using Status Signal”, U.S. Appl. No. 17/470,732.
US Patent Application filed Sep. 10, 2020, entitled “Security System With Networked Touchscreen”, U.S. Appl. No. 17/017,519.
US Patent Application filed Sep. 11, 2020, entitled “Management of Applications for a Device Located at a Premises”, U.S. Appl. No. 17/018,901.
US Patent Application filed Sep. 17, 2018, entitled “Integrated Security System With Parallel Processing Architecture”, U.S. Appl. No. 16/133,135.
US Patent Application filed Sep. 27, 2019, entitled “Control System User Interface”, U.S. Appl. No. 16/585,481.
US Patent Application filed Sep. 28, 2018, entitled “Control System User Interface”, U.S. Appl. No. 16/146,715.
US Patent Application filed Sep. 28, 2018, entitled “Forming a Security Network Including Integrated Security System Components and Network Devices”, U.S. Appl. No. 16/147,044.
US Patent Application filed Sep. 11, 18, entitled “Premises Management Networking”, U.S. Appl. No. 16/128,089.
US Patent Application filed Oct. 1, 2018, entitled “Integrated Security System With Parallel Processing Architecture”, U.S. Appl. No. 16/148,387.
US Patent Application filed Oct. 1, 2018, entitled “Integrated Security System with Parallel Processing Architecture”, U.S. Appl. No. 16/148,411.
US Patent Application filed Oct. 1, 2018, entitled “User Interface in a Premises Network”, U.S. Appl. No. 16/148,572.
US Patent Application filed Oct. 3, 2018, entitled “Activation of a Home Automation Controller”, U.S. Appl. No. 16/150,973.
US Patent Application filed Oct. 8, 2020, entitled “Communication Protocols in Integrated Systems”, U.S. Appl. No. 17/065,841.
US Patent Application filed Oct. 10, 2018, entitled “Method and System for Providing Alternate Network Access”, U.S. Appl. No. 16/156,448.
US Patent Application filed Oct. 12, 2020, entitled “Integrated Security System With Paralle Processing Architecture”, U.S. Appl. No. 17/068,584.
US Patent Application filed Oct. 13, 2017, entitled “Notification of Event Subsequent to Communication Failure With Security System”, U.S. Appl. No. 15/783,858.
US Patent Application filed Oct. 18, 2018, entitled “Generating Risk Profile Using Data of Home Monitoring and Security System”, U.S. Appl. No. 16/164,114.
US Patent Application filed Oct. 18, 2019, entitled “Wifi-To-Serial Encapsulation in Systems”, U.S. Appl. No. 16/656,874.
US Patent Application filed Oct. 25, 2021, entitled “Forming a Security Network Including Integrated Security System Components and Network Devices”, U.S. Appl. No. 17/510,022.
US Patent Application filed Oct. 27, 2017, entitled “Security System With Networked Touchscreen”, U.S. Appl. No. 15/796,421.
US Patent Application filed Nov. 10, 2020, entitled “Integrated Cloud System for Premises Automation”, U.S. Appl. No. 17/094,120.
US Patent Application filed Nov. 15, 2021, entitled “Communication Protocols in Integrated Systems”, U.S. Appl. No. 17/526,915.
US Patent Application filed Nov. 15, 2021, entitled “Integrated Cloud System With Lightweight Gateway for Premises Automation”, U.S. Appl. No. 17/455,005.
US Patent Application filed Nov. 19, 2019, entitled “Integrated Cloud System With Lightweight Gateway for Premises Automation”, U.S. Appl. No. 16/688,717.
US Patent Application filed Nov. 23, 2021, entitled “Security, Monitoring and Automation Controller Access and Use of Legacy Security Control Panel Information”, U.S. Appl. No. 17/534,088.
US Patent Application filed Nov. 25, 2020, entitled “Premises Management Networking”, U.S. Appl. No. 17/105,235.
US Patent Application filed Nov. 26, 2019, entitled “Communication Protocols Over Internet Protocol (IP) Networks”, U.S. Appl. No. 16/696,657.
US Patent Application filed Nov. 28, 2017, entitled “Forming a Security Network Including Integrated Security System Components”, U.S. Appl. No. 15/824,503.
US Patent Application filed Nov. 29, 18, entitled “Premise Management Systems and Methods”, U.S. Appl. No. 16/204,442.
US Patent Application filed Nov. 30, 2017, entitled “Controller and Interface for Home Security, Monitoring and Automation Having Customizable Audio Alerts for SMA Events”, U.S. Appl. No. 15/828,030.
US Patent Application filed Dec. 3, 2021, entitled “Communication Protocols in Integrated Systems”, U.S. Appl. No. 17/542,302.
US Patent Application filed Dec. 3, 2021, entitled “Control System User Interface”, U.S. Appl. No. 17/457,463.
US Patent Application filed Dec. 3, 2021, entitled “Method and System for Managing Communication Connectivity”, U.S. Appl. No. 17/542,310.
US Patent Application filed Dec. 9, 2020, entitled “Integrated Security System With Parallel Processing Architecture”, U.S. Appl. No. 17/115,936.
US Patent Application filed Dec. 14, 2018, entitled “Communication Protocols Over Internet Protocol (IP) Networks”, U.S. Appl. No. 16/221,299.
US Patent Application filed Dec. 17, 2021, entitled “Cross-Client Sensor User Interface in an Integrated Security Network”, U.S. Appl. No. 17/644,935.
US Patent Application filed Dec. 23, 2021, entitled “Defining and Implementing Sensor Triggered Response Rules”, U.S. Appl. No. 17/645,889.
US Patent Application filed Dec. 27, 2018, entitled “Communication Protocols in Integrated Systems”, U.S. Appl. No. 16/233,913.
US Patent Application filed Dec. 27, 2019, entitled “Premises Management Systems”, U.S. Appl. No. 16/728,608.
Valtchev, D., and I. Frankov. “Service gateway architecture for a smart home.” Communications Magazine, IEEE 40.4 (2002): 126-132.
Visitalk, Communication with Vision, http://www.visitalk.jimbo.com; website accessed Jan. 10, 2018.
US Patent Application filed Jan. 19, 2023, entitled “Premises Management Configuration and Control”, U.S. Appl. No. 18/157,030.
US Patent Application filed Jan. 24, 2023, entitled “Server-Based Notification of Alarm Event Subsequent to Communication Failure With Armed Security System”, U.S. Appl. No. 18/158,876.
US Patent Application filed Jan. 26, 2023, entitled “System for Data Routing in Networks”, U.S. Appl. No. 18/159,869.
US Patent Application filed Feb. 8, 2023, entitled “Management of a Security System at a Premises”, U.S. Appl. No. 18/166,052.
US Patent Application filed Feb. 8, 2023, entitled “Premises Management Configuration and Control”, U.S. Appl. No. 18/166,046.
US Patent Application filed Feb. 13, 2023, entitled “Premise Management Systems and Methods”, U.S. Appl. No. 18/168,314.
US Patent Application filed Apr. 12, 2023, entitled “Integrated Security System With Parallel Processing Architecture”, U.S. Appl. No. 18/299,394.
US Patent Application filed Apr. 17, 2023, entitled “Integrated Cloud System for Premises Automation”, U.S. Appl. No. 18/301,626.
US Patent Application filed Apr. 17, 2023, entitled “Server-Based Notification of Alarm Event Subsequent to Communication Failure With Armed Security System”, U.S. Appl. No. 18/301,923.
US Patent Application filed Apr. 18, 2023, entitled “Method and System for Providing Alternate Network Access”, U.S. Appl. No. 18/302,661, U.S. Appl. No. 18/302,661.
US Patent Application filed Apr. 27, 2023, entitled “Integrated Cloud System With Lightweight Gateway for Premises Automation”, U.S. Appl. No. 18/307,985.
US Patent Application filed May 1, 2023, entitled “Premises System Management Using Status Signal”, U.S. Appl. No. 18/310,294.
US Patent Application filed May 8, 2023, entitled “Communication Protocols in Integrated Systems”, U.S. Appl. No. 18/314,002.
US Patent Application filed May 8, 2023, entitled “Integrated Cloud System With Lightweight Gateway for Premises Automation”, U.S. Appl. No. 18/313,728.
US Patent Application filed May 8, 2023, entitled “Security Network Integrating Security System and Network Devices”, U.S. Appl. No. 18/313,817.
US Patent Application filed May 12, 2023, entitled “Virtual Device Systems and Methods”, U.S. Appl. No. 18/316,580.
X. Li, R. Lu, X. Liang, X. Shen, J. Chen and X. Lin, “Smart community: an internet of things application,” in IEEE Communications Magazine, vol. 49, No. 11, pp. 68-75, Nov. 2011, doi: 10.1109/MCOM.2011.6069711. (Year: 2011).
U.S. Patent Application filed Jul. 13, 2023, entitled “Methods and Systems for Data Communication”, U.S. Appl. No. 18/351,636.
U.S. Patent Application filed Jul. 14, 2023, entitled “Bidirectional Security Sensor Communication for a Premises Security System”, U.S. Appl. No. 18/352,803.
U.S. Patent Application filed Jul. 21, 2023, entitled “Communication Protocols in Integrated Systems”, U.S. Appl. No. 18/356,337.
Related Publications (1)
Number Date Country
20220390908 A1 Dec 2022 US
Provisional Applications (3)
Number Date Country
60652475 Feb 2005 US
60553934 Mar 2004 US
60553932 Mar 2004 US
Continuations (5)
Number Date Country
Parent 16925026 Jul 2020 US
Child 17744858 US
Parent 15969514 May 2018 US
Child 16925026 US
Parent 15078786 Mar 2016 US
Child 15969514 US
Parent 13718851 Dec 2012 US
Child 15078786 US
Parent 11084232 Mar 2005 US
Child 13718851 US