The present application claims the benefit of Chinese Patent Application No. 202010110455.4 filed on Feb. 21, 2020, the contents of which are incorporated herein by reference in their entirety.
The invention relates to the field of auto parts, in particular to an automobile inflatable pump.
At present, it is necessary to the piston of an automobile inflatable pump to adopt a two-way seal structure, usually including a sealing ring and a valve disc. The sealing ring is sleeved on the outer periphery of the piston, and is used to achieve seal between the piston and an inside wall of the cylinder block. The valve disc is arranged at the air inlet hole in a front end surface of the piston, and is used to control opening and closing of the air inlet duct of piston. This structure requires multiple processes to manufacture and assemble, so that the production cost is high. The valve disc is prone to failure, so that the structure has poor reliability.
An objective of the invention is to provide an automobile inflatable pump to overcome the shortcomings of the prior art, which can simplify the sealing structure of the piston, thereby reducing the cost and improving operational reliability.
In order to achieve the above objective, the invention provides an automobile inflatable pump which comprises:
a drive assembly;
a rocker arm, a rear end of which is mounted on a power output end of the drive assembly;
a cylinder block connected to the drive assembly, a piston cavity being defined within the cylinder block;
a piston provided on a front end of the rocker arm, the piston being movably received in the piston cavity to divide the piston cavity into a front cavity having an inflation inlet and a rear cavity communicating with external environment, the drive assembly driving the rocker arm to rotate so that the piston moves back and forth in a straight line, an outer periphery of the piston being provided with a first annular groove, a first sealing surface being defined in a rear end surface of the first annular groove, and a front end surface of the piston being provided with air inlet holes communicating with the first annular groove; and
a sealing ring provided in the first annular groove, a front end of the sealing ring protruding at least in part beyond an outer peripheral wall of the piston, a second sealing surface being defined in a rear end surface of the sealing ring, and an outer peripheral wall of the sealing ring being abutted against an inner peripheral wall of the cylinder block in a sealed manner;
wherein, when a pressure of the front cavity is greater than that of the rear cavity, the second sealing surface is abutted against the first sealing surface in a sealed manner, and the air inlet holes are not in communication with the rear cavity; when a pressure of the front cavity is smaller than that of the rear cavity, there is a gap between the second sealing surface and the first sealing surface, and the air inlet holes are in communication with the rear cavity through the gap.
In a preferable embodiment, the sealing ring includes an inner ring and an outer ring provided at an outer periphery of the inner ring, a rear end of the inner ring is connected to a rear end of the outer ring, and a second annular groove with an opening facing forward is defined between the inner ring and the outer ring; and
the second sealing surface is defined at a connection position between the inner ring and the outer ring, and the inner ring is received in the first annular groove.
In a preferable embodiment, a front end of the outer ring is more protuberant than a front end of the inner ring, and the front end of the outer ring is provided around the outer periphery of the piston.
In a preferable embodiment, a third sealing surface of the sealing ring has a convex arc surface.
In a preferable embodiment, both the rocker arm and the piston are plastic parts.
In a preferable embodiment, the rocker arm and the piston are integrally formed.
In a preferable embodiment, the front end surface of the piston is provided with a plurality of the air inlet holes at circumferential intervals.
In a preferable embodiment, the piston includes a piston body, a front end plate provided at a front end of the piston body, and a rear end plate provided at a rear end of the piston body; and
outer edges of the front end plate and the rear end plate are protruded from an outer edge of the piston body to define the first annular groove in the outer periphery of the piston, the air inlet holes are provided in the front end plate, and escape grooves are provided in the piston body corresponding to the respective air inlet holes, the escape grooves communicate with the air inlet holes and the first annular groove, so that the outer edge of the piston body is wavy-shaped as a whole.
In a preferable embodiment, the drive assembly includes a motor and a cam, the cam is mounted on a power output shaft of the motor, a rear end of the rocker arm is rotatably connected to an eccentric position of the cam, and the cylinder block is connected to a housing of the motor.
In a preferable embodiment, the automobile inflatable pump further includes a mounting base which comprises a first base body and a second base body connected to each other; and
the first base body is mounted on one end of the housing of the motor, the first base body is provided with a first mounting hole through which the power output shaft of the motor passes, and the cam is attached to an outer surface of the first base body; and
the second base body is provided with a second mounting hole for mounting the cylinder block.
Compared with the prior art, the automobile inflatable pump according to embodiments of invention has the following beneficial effects:
In the automobile inflatable pump according to embodiments of invention, the sealing structure of the piston includes only one sealing ring. The sealing ring can not only be used to achieve a constant seal between the piston and the inner wall of the cylinder block, but also can be elastically deformed by the change in air pressure in the piston cavity during the push-and-pull process of the rocker arm, so that the sealing ring can control the opening and closing of the air inlet holes, therefore air is periodically inhaled and compressed to complete an inflation process. The automobile inflatable pump has a simple structure, can effectively improve production efficiency and reduce costs.
In the figures: 1, a drive assembly; 11, a motor; 12, a cam; 2, a cylinder block; 21, a piston cavity; 211, a front cavity; 212, a rear cavity; 22, an inflation inlet; 3, a rocker arm; 4, a piston; 41, a piston body; 411, an avoidance groove; 42, a front end plate; 421, air inlet hole; 43, a rear end plate; 44, a first annular groove; 45, a first sealing surface; 5, a sealing ring; 51, a second sealing surface; 52, an inner ring; 53, an outer ring; 54, a second annular groove; 6, a mounting seat; 61, a first seat body; 611, a first mounting hole; 62, a second seat body; and 621, a second mounting hole.
The specific embodiments of the invention will be further described in detail below with reference to the accompanying drawings and embodiments. The following examples are used to illustrate the invention, but not to limit the scope of the invention.
It should be understood that, in the description of the invention, the terms “first”, “second”, and the like, are used in the invention to describe various kinds of information. However, the information should not be limited to these terms, and these terms are only used to distinguish the same type of information from each other. For example, without departing from the scope of the invention, “first” information may also be referred to as “second” information. Similarly, the “second” information may also be referred to as the “first” information.
In addition, it should be noted that in the embodiments, when the automobile inflatable pump is used to inflate, the end closer to the inflation inlet is defined as the “front end”, and the end facing away from the inflation inlet is defined as the “rear end”.
As shown in
During an inflation process, the drive assembly 1 drives the rocker arm 3 to push forward or pull back, which can change the air pressure in the front cavity 211. When the rocker arm 3 is pushed forward, the pressure in the front cavity 211 will be greater than that in the rear cavity 212, the high pressure in the front cavity 211 will act on a part of the front end of the sealing ring 5 which is more protuberant than the outer peripheral wall of the piston 4, so that the sealing ring 5 is elastically deformed, the second sealing surface 51 moves backward until it comes into contact with the first sealing surface 45 in a sealed manner, and air inlet holes 421 are not in communication with the rear cavity 212. Thus, the piston 4 compresses the air in the front cavity 211, and the compressed air is discharged from the inflation inlet 22 for inflation. When the rocker arm 3 is pulled backward and the pressure in the front cavity 211 is less than that in the rear cavity 212, the sealing ring 5 is recovered from deformed state, so that there is a gap between the second sealing surface 51 and the first sealing surfaces 45, and the air inlet holes 421 are in communication with the rear cavity 212 through the gap. Thus, air in the external environment enters the front cavity 211 through the rear cavity 212, the gap, and the air inlet holes 421 successively. The rocker arm 3 is pushed forward and pulled backwards periodically, so that air is compressed periodically and the compressed air enters a tire to be inflated, and the inflation process is completed.
Based on the above technical solution, in the automobile inflatable pump according to the embodiment of the invention, the sealing structure of the piston 4 includes only one sealing ring 5. During the entire inflation process, the sealing ring 5 can always maintain the sealing effect between the piston 4 and the inner peripheral wall of the cylinder block 2. Meanwhile, the pressure change generated in the front cavity 211 when the rocker arm 3 is pushed or pulled makes the sealing ring 5 to deform elastically, so that the sealing ring 5 can control the opening and closing of the air inlet holes 421, therefore, air is periodically inhaled and compressed to complete the inflation process. The automobile inflatable pump according to the embodiment has a simple structure and simple assembly, does not require any auxiliary tools or fixtures, which can effectively improve production efficiency, reduce production costs, and can reliably control communication and cutoff of the air inlet holes.
Preferably, in the embodiment, as shown in
Further, in order to make the sealing ring 5 flexibly control the opening and closing of the air inlet holes 421 while it is ensured that the sealing ring 5 always keeps abutting against the inner side wall of the cylinder block 2 in a sealed manner, a front end of the outer ring 53 is more protuberant than a front end of the inner ring 52 and a front end of the outer ring 53 is provided around the outer periphery of the piston 4.
For the same objective, it is more preferable that the outer ring 53 extends gradually away from the inner ring 52 from rear to front, and the outer ring 53 is in the shape of a circular table as a whole. The sealing ring 5 is abutted against the inner wall of the cylinder block 2 through a part of a lateral wall of the outer ring 53 which is close to the front end, which can ensure a reliable sealing contact between the sealing ring 5 and the cylinder block 2. The outer ring 53 extends gradually away from the inner ring 52 from back to front, which is convenient for the sealing ring 5 to deform elastically when the air pressure changes, to control the reliable contact or separation of the second sealing surface 51 and the first sealing surface 45.
In order to facilitate to mold and reduce production costs, the rocker arm 3 and the piston 4 in the embodiment are both plastic parts, and the rocker arm 3 and the piston 4 are integrally formed.
In the embodiment, in order to further flexibly control the opening and closing of the air inlet holes during the inflation process, the front end surface of the piston 4 is provided with a plurality of the air inlet holes 421 at circumferential intervals. Exemplarily, the air inlet holes are arranged uniformly.
Correspondingly, as specifically shown in
In the embodiment, more specifically, the drive assembly 1 includes a motor 11 and a cam 12. Specifically, as shown in
Back to
Exemplarily, the first base body 61 and the second base body 62 in the embodiment are integrally formed.
In conclusion, in the automobile inflatable pump according to embodiment, the sealing structure of the piston includes only one sealing ring. The sealing ring can not only be used to achieve a constant seal between the piston and the inner wall of the cylinder block, but also can be elastically deformed by the change in air pressure in the piston cavity during the push-and-pull process of the rocker arm, so that the sealing ring can control the opening and closing of the air inlet holes, therefore air is periodically inhaled and compressed to complete the inflation process. The automobile inflatable pump has a simple structure, can effectively improve production efficiency and reduce costs.
The above are only preferred embodiments of the invention. It should be noted that a number of improvements and replacements can be made by those of ordinary skill in the art without departing from the technical principles of the invention. These improvements and replacements should also fall into the protection scope of the invention.
Number | Date | Country | Kind |
---|---|---|---|
202010110455.4 | Feb 2020 | CN | national |
Number | Name | Date | Kind |
---|---|---|---|
6514058 | Chou | Feb 2003 | B1 |
20070292282 | Schuetzle | Dec 2007 | A1 |
20080240943 | Wang | Oct 2008 | A1 |
20210062489 | Gilde | Mar 2021 | A1 |
Number | Date | Country |
---|---|---|
09014141 | Jan 1997 | JP |
Number | Date | Country | |
---|---|---|---|
20210262459 A1 | Aug 2021 | US |