The technology described herein relates to coolant circulation pumps, mainly in an automotive context, and to the type of pump in which movable vanes are used for controlling flow through the pump.
Patent publication WO-04/59142, to which attention is directed, discloses a coolant pump of the above type.
Exemplary embodiments of the invention will now be described with reference to the accompanying drawings, in which:
a-7d are diagrams showing the phases of orientation movement of the vanes within the module, from open to closed.
a,9b,9c,9d show other ways in which the vanes can be sealed.
a,12b are plan views of some of the components of the module of
a,13b are diagrams showing the system of
a is a sectioned plan of another pump module.
b,14c are the same view as
a is a sectioned side view of the module of
b is a different sectioned side view of the module of
c is a close-up of a portion of
a is a sectioned plan of another pump module.
b is the same view as
c is a close-up of a flap-valve of
a,19b show a system which includes the provision of a conventional thermostat.
a shows another design of vane
b is an exploded view of an apparatus that uses the vane of
c is a section of a portion of the apparatus of
The apparatuses shown in the accompanying drawings and described below are examples. It should be noted that the scope of the patent protection sought is defined by the accompanying claims, and not necessarily by specific features of exemplary embodiments.
Included in the module M is a thermal sensor T. Coolant emerging from the engine E washes over the thermal sensor T. A thermal actuator, being the stem S, is attached to the thermal sensor T, and the stem S moves (in the up/down sense in
The stem S is configured, when it moves up/down, to cause vanes-drive-ring 23 to rotate. This rotary movement of the vanes-drive-ring in turn moves the several vanes 24, which in turn dictates the angle at which coolant emerging from the radiator R enters the impeller blades on the pump rotor. (The impeller is not shown in
The module M normally receives coolant from the radiator. When the coolant is cold, the thermal sensor T holds the stem S in the up position, and the system is designed such that, in this position, the vanes close together, and completely block flow from the radiator R. When the coolant is cold, a bypass flow reaches the impeller through the bypass port 22, and thus circulates around the engine. Thus, the module M in
Thus far, the system described in
The structure of the module M (being module 20 in
The vanes 24 (fifteen of them in this case—see
The vanes-drive-ring 23 of the module is mounted and guided for pivoting rotation with respect to the top and bottom plates 27,28. Vane-slots 30 in the vanes-drive-ring 23 pick up vane-pegs 32 in the vanes 24, whereby the vanes 24, in unison, undergo pivoting movement, as driven by the rotation of the vanes-drive-ring 23. The rotation of the vanes-drive-ring 23 is controlled by the thermal actuator.
Concentric with the vanes-drive-ring 23 lies a sealing-plate 34. The sealing-plate 34 is located in place by the vane-spindles 26, and thus is constrained against rotational movement in the housing 29. The sealing-plate 34 is, however, free to float vertically. Springs 35 urge the sealing-plate 34 down into touching contact with the top faces 36 of the several vanes 24. The bottom faces 37 of the vanes are urged down, in reaction to the springs 35, into contact with the bottom plate 28.
The springs 35 provide a force constantly urging touching contact between the sealing-plate 34 and the top faces 36 of the vanes 24, and between the bottom faces 37 of the vanes and the bottom plate 28. The sealing plate 34 is flat, and smooth, as is the bottom plate 28, and as are the top and bottom surfaces 36,37 of the vanes—so much so, that coolant liquid is prevented from passing over or under the vanes. Thus, the designer can now expect to realise, or almost realise, the ideal that, when the vanes are oriented to the closed position (which happens when the coolant is cold), substantially no liquid can pass through or by the vanes.
When the vanes 24 are closed, i.e when the coolant is cold, the vanes have to seal against each other.
These figures also show a particularly-preferred profile of the vanes. The port through which coolant entering the vanes from the radiator may be characterised as heart-shaped in at least some of the apparatuses depicted herein. Thus, the coolant entering through the vanes on the left side tend to have a more direct path through the vanes than coolant entering from the right side, which has to undergo more of a change of direction. To minimise the effects of this difference, the vanes should be profiled as shown, with a substantially semi-circular entry profile, which serves to receive the coolant almost uniformly from all angles of approach. Also, the vanes should be pitched such that, at least approximately, the spaces between the vanes are equal to the thicknesses of the vanes, when measured on the circle that includes the thickest part of the vanes. The vanes should also be profiled such that, at the
The vanes 24 do have to be carefully engineered such that, when they are closed, they seal together to a more-or-less watertight extent. This is accomplished, in the illustrated structure, by precision manufacture. It has been found that the components can indeed be manufactured so exactly that there is (virtually) no leakage between, nor over and under, the closed vanes.
However, it is also the case, with a large-area face-to-face contact, that dirt particles might become trapped between the two (large) facets. It will be understood that the vanes close together as the coolant cools down, after the engine has been switched off (perhaps an hour after, in some cases), and when the coolant liquid is perfectly still. Thus, if there are any particles of dirt in the coolant, they will not tend to be flushed out from between the facets, as they might if the coolant were flowing, i.e moving, at the time of closure.
Accordingly, some designers may prefer to provide line-contact between the vanes 24, at closure, rather than the face-to-face contact between large facets. Vanes in line-contact are less likely to be held slightly apart by dirt than are face-to-face contact facets.
a,9b,9c show other ways in which the vanes can be engineered to ensure more or less completely sealed closure. In
In
d shows a complete set of vanes, in which profiled strips of sealing material are dovetailed into the vanes, the convex faces 18a of the strips engaging corresponding concave surfaces 18b in the sides of the vanes. In this version, the seals only cater for the sides of the vanes, of course; the tops and bottoms of the vanes are sealed between the flat surfaces of the sealing-plate 34 and the bottom-plate 28.
It should be noted that the elastomeric seals are not subjected to highly demanding pressures or severe rubbing and abrasion. Thus, the seal material does not especially need to be hard-wearing, although it should be resistant to the kinds of chemicals likely to be encountered in automotive coolant. The seals can be made of soft, easily-conformable material; even a resilient cellular elastomeric material.
Another approach to the design task of ensuring that all the vanes lie fully closed together, when the coolant is cold, is shown in
There are numerous other ways in which compliance can be built into the vane-drive-ring, whereby the designer can provide for the forces that drive the respective vanes each into full closure to be at least semi-independent of the forces driving the rest of the vanes into full closure.
Details of the thermal actuator of the module 20 will now be described. The task of the thermal actuator is to cause the vanes-drive-ring 23 to rotate in response to a change in temperature as sensed by the thermal sensor. The thermal sensor in this case comprises basically the same basic unit as is found in a traditional wax-type automotive thermostat 60 (
The nature of the mechanical drive between the thermal unit and the vanes-drive-ring 23 is shown in FIGS. 4,5. A mounting plate 64 is fastened to the top-plate 27, and the wax thermostat unit 60 is clamped into the mounting plate 64. A lever 65 is pivoted in the mounting-plate, and the lever receives the movements of the stem 62 of the thermostat unit on a face 67 of the lever.
The other end of the lever 65 carries a drive-peg 68. The drive-peg 68 engages in a slot 69 in the vanes-drive-ring 23. (In fact, the slot 69 lies between two of the drive-slots 30 which engage the vane-pegs 32 of the vanes.) The lever 65 lies above the top-plate 27, but an aperture 70 in the mounting-plate 64 (and in the top-plate 27) enables the movement of the drive-peg 68 to be transmitted through to the vanes-drive-ring 23 underneath the top-plate 27.
As mentioned, incoming coolant from the engine/heater sets the temperature of the bulb 63, whereby the angle of the vanes (and hence the flowrate produced by the pump) is proportional to the coolant temperature.
The stem 62 pushes the vanes-drive-ring 23 to rotate, against the action of a torsion spring 73. The torsion spring 73 returns the components to their cold position as the coolant cools down.
The structure of the module 20 described above is modular, in the sense that the components thereof are manufactured and assembled as a separate unit, i.e separate from the rest of the coolant pump or engine. The module is designed so that the module can be finish-assembled to a sufficient degree that the module can be finished, as a functional unit, and can be fully tested, and can then be shipped, as a unit, to the engine assembly line, where it can be installed (manually or automatically) into a suitable receptacle that has been machined in the coolant pump housing, engine block, cylinder head, etc, without having to be re-tested, and without requiring skilled assembly or adjustment.
In order to form a complete module that can be tested, transported, and handled, as a single integrated unitary structure, the components of the module 20 as shown in
The (large) components of the FIGS. 4,5 module 20 are formed mainly as sheet metal stampings. Designers might alternatively prefer to form the components of the module mainly as plastic mouldings.
Apart from the general materials difference, another difference between the module 80 of
In the module 80, again the components include a top plate 82 and a bottom plate 83, now done as plastic mouldings. The module also includes a moulded spacer 84. The spacer 84 is solid with the top and bottom plates upon assembly of the module. Snap clips are used to snap the plates 82,83 to the spacer 84, whereby the components, once assembled, cannot be separated. (If separation is desired, the clips could be made accessible.)
The spacer 84 is shaped (
Of course, the designer might find that some of the components are better done in metal, and some are better done in plastic. The point here is that the modularity aspect can be engineered with components in both materials.
The module 80 differs from the module 20 also as to the manner in which the rotary motion of the vanes-drive-ring 89 is transmitted to the vanes 87. Referring to
In the module 80, the pump rotor, including the pump impeller 96, is shown as being an integrated component of the module. The rotor runs in a bearing/seal shown diagrammatically at 97. A drive pulley 98 receives power via a suitable belt drive. The module 20, by contrast, did not include the rotor, although it could alternatively have done so, in an equivalent manner to that shown in
The module 80 differs from the module 20 also in another respect. In
Thus, module 20 differs from module 80 in that module 80 uses resilient elastomeric material 103 where module 20 uses coil springs 35. Another difference is that in module 20 the vanes are resiliently loaded against the solid bottom-plate 28, whereas in module 80 the vanes float between two opposed resiliences. Again, these differences can be interchanged.
The resilient cellular material 103 functions not only to provide a resilience, but functions also to provide a seal, in itself. Consequently, the cellular material should be of the non-interconnected-cell, or closed-cell, type.
It might be considered, in relation to
However, although the seal-plate must have an adequate service life, the seal-plate is not called upon to support heavy forces or abrasion, and the seal-plate could alternatively be made of a (rigid) plastic material. In fact, a plastic seal-plate can be formed as an engineered hard skin on elastomeric cellular material, and that can reduce manufacturing costs.
The seal-plate should be flat and smooth and hard, and relatively rigid (compared with the resilience supplied by the springs or elastomeric material), and thus be able to guide the vanes to reside all at the same level, and all in the same plane, i.e with none of the vanes protruding above or below the others by any more than its (tiny) manufacturing differences. The seal-plate should not be so thin and flimsy as would affect that capability. Thus, the function of the resilience is to enable the vanes to float; the function of the seal-plate is to urge all the vanes to remain in one single plane, while floating.
The resilience (springs, elastomeric cellular material, etc) should be arranged to press against the seal-plate evenly, around its circumference. If pressing at isolated points, these should be at least four in number, and preferably more. One preferred manner in which the required resilience can be provided is in the form of a wave-spring. Here, a continuous ring of thin sheet metal is stamped and formed into an undulating multi-waved configuration. Again, preferably there should be at least four points of contact between the wave-spring and the seal-plate. Use of a wave-spring is shown in
The pump rotor 96 is driven to revolve by a suitable driver, which in the examples is a drivebelt from the crankshaft or camshaft. Alternatively the rotor can be gear-driven from the engine, or it can be driven by an electric motor. (The impeller typically is driven at a faster speed than the engine crankshaft.)
As was disclosed in the said WO/-04/59142, by the use of the thermally-controlled vanes, the thermostat typically found in automotive engines can be eliminated. The thermostat function is simply added to the motion of the single thermal actuator, which is provided in any event to operate the vanes. In the present case, the single thermal actuator has been harnessed to perform yet another task, as will now be described.
In
The movement of the stem S can be used to control yet other functions. Alternatively, or additionally, for example, the movement of the stem can be arranged to block the heater flow right off at very cold temperatures, in which case the thermal-sensor then senses only the temperature of the bypass flow; once the bypass flow is warm, now the heater flow can commence. Alternatively again, when the cooling circuit includes a heater-bypass, the designer can arrange for the thermal-sensor and thermal-actuator to open/close the heater-bypass at an appropriate temperature. It will be understood that it becomes possible to provide these sophisticated functions at more or less zero cost, because the mechanism is already provided, to control the movement of the vanes.
The thermal sensor and thermal actuator have been combined, in the above examples, in wax-type conventional automotive thermostat element, as described. Other types of thermostat element are conventional, for example the bi-metal type, which can be utilised also. Alternatively, the thermal sensor and thermal actuator functions can be provided in other ways, for example the sensor function can be derived from information available on the data bus of the engine/vehicle, and the thermal actuator can be provided in the form of a suitable servo mechanism.
In the modules as described, the vanes as shown have spindles that lie parallel to the rotor axis, and parallel to each other. It is possible for the designer to arrange that the vanes spindles be oriented differently—that the spindles lie aligned radially with respect to the rotor axis, for example.
As shown in
As shown diagrammatically in
As shown in more mechanical detail in FIGS. 13A,13B, the blocker unit B includes a bypass-port 150, and a bypass-port-blocker. The bypass-port includes an aperture 152 and the bypass-port-blocker takes the form of a valve-plate 151 which is engageable with the aperture 152. The valve-plate 151 is carried on stem 153. At the upper end of the stem 153 is a wax-bulb thermal unit 154, which is bathed by the coolant emerging from the engine E, in the conduit 155. The thermal sensor/activator unit 154 is fixed into the housing 156 of the blocker unit, and the stem 153 protrudes from the thermal unit 154 by a distance that changes in accordance with the temperature of the engine coolant. In
The designer's intent, at these cold temperatures, is that the coolant should warm up as rapidly as possible.
As shown in
In an alternative cooling circuit, the flow through the heater H also is blocked at cold-start temperatures. In that case, flow through the heater is only enabled after the coolant is (somewhat) warmed up. Again, the heater-blocker is activated from the same stem that modulates the vanes, and again, control of the heater blocker is accomplished virtually for nothing.
As shown in FIGS. 13A,13B, the vanes 24 do not completely encircle the impeller 157. Rather, flow through the bypass-port 150 enters the impeller 157 through a circumferential gap in the vanes, as will be understood from the drawings. In
Another arrangement may be termed the split-level arrangement, an example of which is shown in FIGS. 14A,14B,14C. Here, coolant from the engine enters through the in-from-engine port 162, and passes to the radiator through the out-to-radiator port 163. The cooled return from the radiator enters through the in-from-radiator port 164. This radiator-cooled flow is modulated by passing through the set 23 of vanes 24, and enters the rotary impeller 165. Then, the impelled coolant emerges underneath the impeller (i.e underneath the plane of the drawing) and is thence transferred back into the engine.
The in-from-heater port 166 receives incoming coolant from the heater. The auxiliary ports 167,168 receive incoming coolant from auxiliary circuits. (Such auxiliary circuits might include de-gas, transmission oil cooler, engine oil cooler, exhaust gas recirculation, etc, circuits.)
In the FIGS. 14A,14B,14C apparatus, the vanes 24 completely encircle the impeller 165. The bypass port 169, the in-from-heater port 166, and the auxiliary ports 167,168, are all located at a level that is raised above the plane of the vanes, as shown by the cutaway portions of FIGS. 14A,14B,14C, and in the two sectioned views of the same apparatus, in FIGS. 15A,15B. These latter drawings show that the in-from-radiator port 164, and the vanes, are at what may be termed the vanes-level 170, just above the impeller-level 171. The other incoming ports 166,167,168 are located at what may be termed the bypass-level 172, which is stacked above the vanes-level 170 and the impeller-level 171.
A post 178 carried by the stem 176 is in engagement with the vanes-drive-ring 179, such that, as the stem 176 moves to the left (which it does when the thermal sensor/actuator 175 gets hotter), the vanes-drive-ring 179 rotates clockwise. Pegs 180 on the vanes engage with the ring 179, whereby when the ring 179 rotates clockwise the vanes 24 pivot clockwise about their respective pivots 181.
In the hot condition shown in
It will be understood that it is a simple matter to engineer the correct interaction between the two movements that are produced by the extension of the stem 176, i.e both the rotation of the vanes-drive-ring 179 and the closing of the bypass-port-blocker 183.
Another split-level design is shown in axial section in FIGS. 16A,16B, and in side section in
Once the coolant has been warmed (
A variant to the design that was shown in FIGS. 16A,16B,17 will now be described. It will be understood that the designer can arrange for the vanes-drive-ring 194 to lie a little further clockwise, when the coolant is extremely cold. Thus, when the coolant is merely cold, the ports 197,198 are aligned, as shown in
When the coolant is extremely cold, it can be advantageous for the designer to arrange to block the coolant from circulating around the engine. Engine designers are aware that an efficient way to reduce engine emissions is to bring engine metal temperatures up as rapidly as possible. Therefore, the designer aims to have the engine warm up as rapidly as possible from a cold start. By halting the circulation flow of coolant when the engine is extremely cold, a reduction in warm-up time can be achieved. The variant as just described is aimed at providing this extra function.
Of course, blocking the circulation of coolant through the engine can be dangerous, in that hotspots might develop and might damage the engine. The designer should take precautions: for example, the designer might arrange that the blocking of the bypass circulation only lasts while the coolant is extremely cold—the designer should see to it that, if the coolant is merely cold, the bypass port is unblocked, allowing bypass-flow to take place. If the designer arranges for the change from bypass-blocked to bypass-unblocked to depend on a temperature measurement, the temperature measurement had better be taken from a location in the engine where hotspots would be likely to occur—for example in or near the valve bridge area.
The function of blocking the bypass flow when the coolant is very cold can also be accomplished by means of the flap-valve 205 which is shown in FIGS. 16A,16B, and in detail in
When the engine is idling, the pump impeller 201 being driven from the engine, the impeller is creating only a small pressure and flowrate for circulating the coolant through the engine. While still cold, if the engine is working at higher revs, the pressure and flowrate are higher, which opens the flap-valve. The flap-valve 205, and the flap-spring 207, can be designed to be closed when the engine is working at low speeds, including idling, and to open when the engine is working at higher speeds.
The operation of the flap-valve facility is as follows. When starting from cold, the ports 197,198 are aligned, as shown in
Again, if the coolant is not circulating, even if the coolant is very cold, the danger is that hotspots might develop and might damage the engine. But that danger is practically non-existent if the engine is idling, and the flap-valve functions to allow the bypass flow to commence if the engine were to be revved.
However, the prudent designer might wish to take further precautions, to guard against the possible dangers arising from blocking the bypass-flow. When the thermal-sensor comprises an electrical or electronic temperature sensor (or several sensors) it is a simple matter for the sensor(s) to be located in a hot-spot-prone location of the engine. Engine computers are routinely employed to receive the readings from various sensors, engine speed indicator, etc, to arrive at the decision whether to block the bypass flow. As show in
It will be understood that the other embodiments and designs as described herein can likewise be so modified as to be able to adopt a very-cold position in which the coolant bypass port is closed. Again, the designer arranges for the bypass port to be open when the coolant is cold—but to be closed when the coolant is very cold, and to be closed also when the coolant is warm or hot.
In some cases, the designer might wish to retain the traditional engine thermostat. FIGS. 19A,19B show such an arrangement. In
(In the FIGS. 19A,19B apparatus, the in-from-heater port 226 remains open all the time, allowing a heater-flow to pass through the impeller and into the engine. Therefore, flow through the FIGS. 19A,19B engine is never altogether zero.)
As the coolant warms up slightly, that fact is sensed by the thermal sensor(s), and the stem 224 extends (downwards in
In fact, in FIGS. 19A,19B, the set of vanes 23 is operated by an electrical servo 227. Temperature sensors, which dictate the movement of the stem 224, are located in suitable places in the engine. The computer that controls the operation of the servo is programmed to minimise the warm-up time, and to minimise the exposure of the engine to the danger of local overheating, as described.
The apparatuses as described herein are shown with conventional wax-bulb thermostat units, whereby the thermal-sensor and the thermal-actuator are mechanically combined. As mentioned, the thermal-sensor can comprise one or more temperature sensors that output to a data bus, and the thermal-actuator in that case can comprise a servo unit (which may be a simple solenoid or stepper motor) to create the required mechanical movement. Generally, the different types of thermal-sensor and thermal-actuator should be regarded as interchangeable.
a shows a variant on the design of the vane. In this variant, the vane 230 is formed with a socket 231, which is shaped to receive a drive-peg that is fixed into the vanes-drive-ring. This may be contrasted with the apparatuses of the other drawings, in which the drive-peg is in the vane and the slot is in the vanes-drive-ring. Also, in the vane 230, the vane-spindle is separate from the vane itself, being inserted into the through-hole 232 in the vane. Also, in the vane 230, elastomeric seal material is directly moulded-into the (plastic) material of the vane. Thus, all of the seal material, as illustrated by the hatched areas 233,234, is unitary with the vane itself.
The apparatus 239 depicted in
The bottom-stator-ring 240, the top-stator-ring 243, and the vanes 230, form a stack, which is a sub-assembly that is locked together by the engagement of the headed stalks 242 with the shaped sockets 244. Each headed stalk 242 is split, at 245, so that the head of the stalk 242 can deflect inwards, to enable the head to pass through the hole 246 in the socket 244. When the headed stalks have snapped through into their respective sockets, the sub-assembly becomes a unitary stack.
In the stack, the vanes 230 can pivot about the respective vane-spindles 241 for the purposes of adopting the thermally-dictated orientations as described. The vane-spindles provide a solid base about which vanes can move, by the fact that each vane-spindle is held securely at both ends by its tight engagement with the top- and bottom-stator-rings. The vanes 230 also are sealed between the two stator-rings 240,243 by the contact between the elastomeric seal material 233 and the stator-rings. The vanes 230 seal to each other (when they are in the closed orientation) by the engagement of the vanes with the respective sealing areas 234 on adjacent vanes.
The orientations of the vanes 230 are controlled by the engagement of pegs with the slots 231. The drive-pegs 248 on the vanes-drive-ring 249 perform this function. The vanes-drive-ring 249 fits outside the bottom-stator-ring 240, and is rotatable relative to it. The vanes-drive-ring 249 is caused to rotate by the engagement of the tab 250 thereon with a complementary pickup in a stem (not shown in
The vanes-drive-ring 249 and the bottom-stator-ring 240 have respective slotted skirts 251,252, which interact with each other in the same manner as in
Some of the components of the apparatuses depicted herein, although shown only in one of or some of the apparatuses, are intended to be interchangeable between the different apparatuses, unless otherwise indicated. The skilled designers of coolant systems will understand that it is not practicable to draw all the variants in which the components might be interchanged, but will understand that that can be done.
Skilled designers of automatic coolant systems will understand that the nomenclatures “top”, “bottom”, etc, as used herein are not intended to be limiting as to orientation of the physical structures, in use. Rather, the nomenclatures should be construed as applying to a design of an apparatus as represented on paper that is oriented appropriately, in which those terms can be applied coherently.
Number | Date | Country | Kind |
---|---|---|---|
0517583.1 | Aug 2005 | GB | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/CA06/01419 | 8/30/2006 | WO | 00 | 2/27/2008 |