The present invention relates to an automotive door latch device.
As one of the automotive door latch devices, there is an automotive door latch device described in, for example, Patent Document 1 below. In the automotive door latch device, a latch adapted to be pushed to rotate by a striker on a vehicle body side is housed in a housing part formed on one side of a body, and is rotatably supported via a first support shaft on a base plate adapted to be arranged so as to cover the housing part of the body on one side thereof and assembled to a door. Further, the latch is biased toward its return position by a latch return spring. A pawl engageable with the latch to inhibit the latch to pivot in a door opening direction is housed in the housing part of the body at a position below the latch, and is rotatably supported on the base plate via a second support shaft. Further, the pawl is biased toward its return position by a pawl return spring.
In the automotive door latch device described in the above-mentioned Patent Document 1, the pawl return spring is not arranged on an axial extension line of the pawl, but is arranged below the latch and the pawl in the housing part (space) of the body that houses the latch and the pawl. Therefore, the pawl return spring can be arranged with an ensured degree of freedom, which is suitable for a case where a mounting space for the pawl return spring is hard to be ensured on the axial extension line of the pawl.
In the automotive door latch device described in the above-mentioned Patent Document 1, however, the pawl return spring is arranged below the pawl in its vicinity in the housing part (space) of the body that houses the latch and the pawl. Therefore, dust or the like entering the housing part (space) of the body that houses the latch and the pawl is hindered by the pawl return spring from being discharged out of the body, and may consequently be deposited in the housing part (space) described above.
The present invention has been made to solve the above-mentioned problem, and therefore provides an automotive door latch device, including: a base plate adapted to be assembled to a door; a body including a housing part formed on one side thereof, the housing part being covered with the base plate on one side thereof; a latch housed in the housing part of the body and rotatably supported on the base plate via a first support shaft, the latch being adapted to be pushed to rotate by a striker on a vehicle body side; a latch return spring housed in the housing part of the body, for biasing the latch toward a return position thereof; a pawl housed in the housing part of the body at a position below the latch and rotatably supported on the base plate via a second support shaft, the pawl being engageable with the latch to inhibit the latch to pivot in a door opening direction; and a pawl return spring for biasing the pawl toward a return position thereof, in which the housing part of the body is opened downward at a position below the pawl, and in which the pawl return spring is assembled to a spring mounting part formed on another side of the body at a position spaced downward from a rotational support part of the pawl, the pawl return spring includes a pawl-side end part that enters the housing part of the body through a through hole provided in the body, and engages with the pawl.
In this case, the pawl return spring includes: a coil part provided at a middle portion thereof; the pawl-side end part provided at one end portion thereof; and a body-side end part provided at another end portion thereof. Further, the spring mounting part formed on the body includes: a retaining part for retaining the coil part; and a lock part engaging with the body-side end part. Further, the through hole may have a long hole shape elongated so as to allow movement of the pawl-side end part of the pawl return spring in a movement direction, in which the pawl-side end part moves when the pawl pivots to allow the pivot of the latch, beyond a range in which the pawl-side end part moves when the pawl pivots.
When carrying out the present invention described above, the second support shaft that rotatably supports the pawl may be made of a metal. Further, the automotive door latch device may further include a lift lever made of a metal, the lift lever including an insertion hole, through which the second support shaft is insertable, the lift lever being assembled to the second support shaft so as to be rotatable integrally with the pawl. Further, the body may be made of a resin, and further include an extending part, which extends along the second support shaft and is inserted through the insertion hole of the lift lever so that the extending part is interposed between the lift lever and the second support shaft and rotatably supports the lift lever. In this case, the extending part may be formed into a cylindrical shape, and surround an entire circumference of the second support shaft.
In those cases, the base plate may non-rotatably support the second support shaft on one end side thereof. Further, the automotive door latch device may further include a sub-base plate, which is assembled on the another side of the body and is positioned by the extending part, the sub-base plate non-rotatably supporting the second support shaft at another end portion thereof. Further, the pawl and the lift lever may be rotatably supported on the second support shaft. Further, the body may further include a support part extending in a circumferential direction from the extending part on the base plate side thereof. Further, the lift lever may be disposed between the support part of the body and the sub-base plate.
Further, in those cases, the lift lever may further include a projecting part bent toward the pawl to pass through the body. Further, the pawl may include a depressed part fittable to the projecting part. Further, the body may further include an opening part that allows passage and rotation of the projecting part. Further, the projecting part may pass through the opening part and be fitted to the depressed part so that the lift lever and the pawl are rotatable integrally with each other.
When carrying out the present invention described above, the pawl may further include an engagement projecting part. Further, the automotive door latch device may further include a stopper mounted to the body so as to be arranged above the engagement projecting part, the stopper abutting against the engagement projecting part to define the return position of the pawl.
In the automotive door latch device according to the present invention, the housing part of the body is opened downward at the position below the pawl. Further, the pawl return spring is assembled to the spring mounting part formed on another side of the body at the position spaced downward from the rotational support part of the pawl. The pawl-side end part of the pawl return spring enters the housing part of the body through the through hole provided in the body, and engages with the pawl. Therefore, the size of the opening formed below the housing part of the body is not reduced due to the pawl return spring and the spring mounting part of the body. Accordingly, an opening having a necessary and sufficient size can be formed in the body. Thus, dust or the like entering the housing part of the body can be discharged out of the body with higher efficiency, and thus troubles that may occur along with deposition of the dust or the like can be suppressed effectively.
Further, the pawl return spring is assembled to the spring mounting part formed on another side of the body at the position spaced downward from the rotational support part of the pawl. Accordingly, the pawl return spring can be arranged with a higher degree of freedom than in the case where the pawl return spring is coaxially assembled to the rotational support part (shaft part) of the pawl.
When carrying out the present invention described above, in the cases where the pawl return spring includes the coil part provided at the middle portion thereof, the body-side end part provided at one end portion thereof, and the pawl-side end part provided at another end portion thereof, and where the spring mounting part formed on the body includes the retaining part for retaining the coil part, and the lock part engaging with the body-side end part, under a sub-assembly state obtained by combining the components other than the pawl return spring (body, base plate, latch, pawl, support shaft of the latch, support shaft of the pawl, latch return spring, and the like), the pawl-side end part of the pawl return spring is passed through and inserted into the through hole of the body so that the pawl-side end part is engaged with the lock part of the pawl. Subsequently, the coil part of the pawl return spring is assembled to the retaining part of the spring mounting part formed on the body, and finally, the body-side end part of the pawl return spring is assembled to the lock part provided in the spring mounting part. Consequently, the pawl return spring can be assembled. Therefore, the biasing force of the pawl return spring does not hinder the assembly of the components when the sub-assembly is obtained by combining the components other than the pawl return spring, and thus the components can be assembled with satisfactory efficiency when the sub-assembly is obtained.
Further, when carrying out the present invention described above, in the case where the through hole provided in the body has the long hole shape as described above, the pawl-side end part of the pawl return spring is easily assembled to the body, and thus the pawl return spring can be assembled with enhanced efficiency.
Further, when carrying out the present invention described above, in the cases where the second support shaft is made of a metal, where the lift lever assembled so as to be rotatable integrally with the pawl is made of a metal, and where the body is made of a resin and includes the above-mentioned extending part, a bush (resin bearing) function can be imparted to the extending part of the body that is made of a resin, and thus metallic contact between the lift lever and the second support shaft can be eliminated without adding components. Therefore, noise due to the metallic contact occurring when the lift lever is actuated can be prevented. In that case, when the extending part is formed into a cylindrical shape and surrounds the entire circumference of the second support shaft, the above-mentioned noise due to the metallic contact can be prevented more suitably.
Further, when carrying out the present invention described above, in the cases where the base plate non-rotatably supports the second support shaft on one end side thereof, where the sub-base plate, which is assembled on the another side of the body and is positioned by the extending part, non-rotatably supports the second support shaft at another end portion thereof, where the pawl and the lift lever are rotatably supported on the second support shaft, where the body includes the support part extending in the circumferential direction from the extending part on the base plate side thereof, and where the lift lever is disposed between the support part of the body and the sub-base plate, the lift lever can be prevented from being sandwiched between the support part of the body and the sub-base plate, and thus smooth rotation of the lift lever can be guaranteed. Further, in that case, a part of the pawl and a part of the lift lever are fitted to each other in the axial direction. Accordingly, the pawl and the lift lever can be coupled to each other so as to be rotatable integrally with each other. Therefore, manufacturability can be enhanced as compared to a case where, for example, the pawl and the second support shaft are integrated, the lift lever is fixed to the second support shaft by caulking or the like, and the second support shaft is rotatably coupled to the base plate and the sub-base plate.
Further, when carrying out the present invention described above, in the cases where the lift lever includes the projecting part bent toward the pawl to pass through the body, where the pawl includes the depressed part fittable to the projecting part, where the body includes the opening part that allows the passage and rotation of the projecting part, and where the projecting part passes through the opening part and is fitted to the depressed part so that the lift lever and the pawl are rotatable integrally with each other, the pawl and the lift lever can be coupled to each other so as to be rotatable integrally with each other without providing a separate component, such as a coupling pin, to the lift lever, and thus the pawl and the lift lever can be formed simply at low cost.
Further, when carrying out the present invention described above, in the cases where the pawl includes the engagement projecting part, and where the stopper is mounted to the body so as to be arranged above the engagement projecting part, the engagement projecting part of the pawl abuts against the lower surface of the stopper to define the return position of the pawl. Therefore, dust or the like is not easily deposited between the engagement projecting part of the pawl and the stopper, and accordingly shift of the return position of the pawl due to the dust or the like can be suppressed. Thus, the function of the pawl (function of inhibiting the rotation of the latch in the door opening direction at a predetermined position) can be obtained stably for a long period of time.
Hereinafter, embodiments of the present invention are described with reference to the drawings.
As illustrated in
As illustrated in
The spring mounting part 11b is formed on another side of the body 11 at a position spaced obliquely downward from a rotational support part (support shaft 19) of the pawl 15, and as illustrated in
The striker insertion groove 11c is a groove where a known striker 30 (see the imaginary lines of
The three bolt insertion holes 11f, 11g, and 11h are insertion holes, through which, when the door latch device 10 is assembled to the door 20 with three bolts 21, 22, and 23 (see
As illustrated in
As illustrated in
The latch 14 is rotatably supported on the base plate 12 and the sub-base plate 13 via the support shaft 18. The latch 14 includes a fitting hole 14a, a striker retaining groove 14b, a half latch claw 14c, and a full latch claw 14d, and further includes a spring lock hole 14e and an engagement projecting part 14f. The latch 14 is pushed to rotate by the striker 30 when the door 20 is closed, and is biased by the latch return spring S1 toward the return position illustrated in
The fitting hole 14a is provided so as to rotatably assemble the latch 14 to the support shaft 18. As illustrated in
The half latch claw 14c slidably engages with an engagement part 15a of the pawl 15 under a state between a door open state illustrated in
The full latch claw 14d slidably engages with the engagement part 15a of the pawl 15 under a state between a nearly closed door state and a door close state illustrated in
The pawl 15 is rotatably supported on the base plate 12 and the sub-base plate 13 via the support shaft 19 together with the lift lever 17. The pawl 15 includes the engagement part 15a described above, and further includes a spring lock part 15b and an engagement projecting part 15c. Further, the pawl 15 is biased by the pawl return spring S2 toward the return position illustrated in
Note that, the pawl 15 and the support shaft 19 are integrally formed, and the lift lever 17 is assembled to the support shaft 19 so as to be rotatable integrally therewith. Therefore, when the lift lever 17 is rotated in a counterclockwise direction of
The pawl return spring S2 is assembled to the spring mounting part 11b formed on another side of the body 11 at a position spaced obliquely downward by a predetermined amount from the rotational support part (support shaft 19) of the pawl 15. The pawl return spring S2 includes the coil part S2a provided at a middle portion thereof, the body-side end part S2b provided at one end portion thereof, and the pawl-side end part S2c provided at another end portion thereof. The pawl-side end part S2c enters the housing part 11a2 of the body 11 through the through hole 11k provided in the body 11, and engages with the spring lock part 15b of the pawl 15. Thus, the pawl return spring S2 is supported on the body 11 under a state in which the coil part S2a is arranged outside the housing parts 11a1 and 11a2 (on another side of the body 11) partially covered with the base plate 12.
In the above-mentioned door latch device 10 of this embodiment, the cutout 11j of the body 11 that forms the opening part A together with the base plate 12 is provided at one lower side portion of the body 11, and the housing parts 11a1 and 11a2 of the body 11 that house the latch 14 and the pawl 15, respectively, are opened downward at the position below the pawl 15. Further, the pawl return spring S2 is assembled to the spring mounting part 11b formed on another side of the body 11 at the position spaced downward from the rotational support part of the pawl 15. The pawl-side end part S2c of the pawl return spring S2 enters the housing part 11a2 of the body 11 through the through hole 11k provided in the body 11, and engages with the spring lock part 15b of the pawl 15.
Therefore, the size of the opening (see the opening part A of
Further, the pawl return spring S2 is assembled to the spring mounting part 11b formed on another side of the body 11 at the position spaced obliquely downward from the rotational support part (support shaft 19) of the pawl 15. Accordingly, the pawl return spring S2 can be arranged with a higher degree of freedom than in the case where the pawl return spring is coaxially assembled to the rotational support part (support shaft 19) of the pawl 15.
Further, in the door latch device 10 of this embodiment, the pawl return spring S2 includes the coil part S2a provided at the middle portion thereof, the body-side end part S2b provided at one end portion thereof, and the pawl-side end part S2c provided at another end portion thereof. Further, the spring mounting part 11b formed on the body 11 includes the shaft part 11b1 and the arc-like wall part 11b2 (retaining part) for retaining the coil part S2a, and the lock part 11b3 engaging with the body-side end part S2b.
Accordingly, under a sub-assembly state obtained by combining the components other than the pawl return spring S2 (body 11, base plate 12, sub-base plate 13, latch 14, pawl 15, stopper 16, lift lever 17, support shaft 18 of the latch, support shaft 19 of the pawl, latch return spring S1, and the like), the pawl-side end part S2c of the pawl return spring S2 is passed through the through hole 11k of the body 11, and is inserted into the housing part 11a2 of the body 11 so that the pawl-side end part S2c is engaged with the spring lock part 15b of the pawl 15. Subsequently, the coil part S2a of the pawl return spring S2 is assembled to the retaining part (11b1 and 11b2) of the spring mounting part 11b formed on the body 11, and finally, the body-side end part S2b of the pawl return spring S2 is assembled to the lock part 11b3 provided in the spring mounting part 11b. Consequently, the pawl return spring S2 can be assembled. Therefore, the biasing force of the pawl return spring S2 does not hinder the assembly of the components when the sub-assembly is obtained by combining the components other than the pawl return spring S2, and thus the components can be assembled with satisfactory efficiency when the sub-assembly is obtained.
Further, in the door latch device 10 of this embodiment, as illustrated in
In the embodiment described above, the present invention is carried out by providing, in the spring mounting part 11b of the body 11, the shaft part 11b1 and the arc-like wall part 11b2 (retaining part) for retaining the coil part S2a of the pawl return spring S2, but the shape of the retaining part for retaining the coil part S2a of the pawl return spring S2 may be modified as appropriate, and the present invention may be carried out by omitting, for example, any one of the shaft part 11b1 and the arc-like wall part 11b2.
The body 111 includes a housing part 111a for housing the latch 114 and the pawl 115, respectively, and the housing part 111a is formed on one side of a longitudinal wall W (side on which the base plate 112 is assembled) interposed between the base plate 112 and the sub-base plate 113. The body 111 further includes a spring mounting part 111b for assembling the pawl return spring S12, and the spring mounting part 111b is formed on another side of the longitudinal wall W (side on which the sub-base plate 113 is assembled). Further, the body 111 includes a striker insertion groove 111c, two support shaft insertion holes 111d and 111e, three bolt insertion holes 111f, 111g, and 111h, and a stopper mounting part (formed similarly to the stopper mounting part 11i of the above-mentioned embodiment), and further includes a cutout 111j (see
As illustrated in
The striker insertion groove 111c is a groove where a known striker (not shown) assembled on a vehicle body side relatively enters and exits when the door is opened and closed, and is formed horizontally at a center of the body 111. The upper support shaft insertion hole 111d is a through hole, through which a support shaft 118 (first support shaft) made of a metal for rotatably supporting the latch 114 is inserted. On the other hand, the lower support shaft insertion hole 111e is a through hole, through which the support shaft 119 (second support shaft) which is made of a metal and rotatably supports the pawl 115 is inserted.
The three bolt insertion holes 111f, 111g, and 111h are insertion holes, through which, when the door latch device 110 is assembled to the door (20) with three bolts (see the bolts 21, 22, and 23 of
As illustrated in
The base plate 112 includes the bolt fixing hole parts (internal thread parts) described above, and further includes fitting holes 112d and 112e for non-rotatably supporting the support shafts 118 and 119 on one end side thereof (left end side in
The latch 114 is rotatably supported by the support shaft 118, which is non-rotatably supported by the base plate 112 and the sub-base plate 113. The latch 114 includes a fitting hole 114a (which is coated with a resin over its entire circumference) for rotatably assembling the latch 114 to the support shaft 118, and further includes a striker retaining groove, a half latch claw, a full latch claw, a spring lock hole, and an engagement projecting part corresponding to the striker retaining groove 14b, the half latch claw 14c, the full latch claw 14d, the spring lock hole 14e, and the engagement projecting part 14f of the above-mentioned embodiment. The latch 114 is pushed to rotate by the striker when the door is closed, and as in the above-mentioned embodiment, is biased by the latch return spring S11 toward the return position. The latch return spring S11 is coaxially assembled to the support shaft 118, and is housed in the housing part 111a of the body 111 together with the latch 114. One end of the latch return spring S11 is locked at the body 111 and another end thereof is locked at the spring lock hole of the latch 114.
The pawl 115 is rotatably supported by the support shaft 119, which is non-rotatably supported by the base plate 112 and the sub-base plate 113. The pawl 115 includes an engagement part, a spring lock part, and an engagement projecting part corresponding to the engagement part 15a, the spring lock part 15b, and the engagement projecting part 15c of the above-mentioned embodiment. Further, as in the above-mentioned embodiment, the pawl 15 is biased by the pawl return spring S12 toward the return position. The pawl 115 engages with the latch 114 at the engagement part (not shown) to inhibit the rotation of the latch 114 toward its return position (in the door opening direction). As in the above-mentioned embodiment (see
Further, in this embodiment illustrated in
The extending part 111n of the body 111 rotatably supports the lift lever 117. The extending part 111n extends along the support shaft 119, and is inserted through the insertion hole 117a of the lift lever 117 so that the extending part 111n is interposed between the lift lever 117 and the support shaft 119 and surrounds the entire circumference of the support shaft 119. The support part 111p of the body 111 extends in a radially outer direction and in an axial direction by a predetermined amount and extends in a circumferential direction from the extending part 111n on the base plate side thereof. Therefore, the lift lever 117 rotatably supported on the extending part 111n of the body 111 is disposed between the support part 111p of the body 111 and the sub-base plate 113. Further, the sub-base plate 113 is positioned in the axial direction by the extending part 111n of the body 111.
The projecting part 117b of the lift lever 117 passes through the opening part 111r of the body 111, and is fittable to a depressed part provided in an end surface of the pawl 115 on the sub-base plate 113 side (formed similarly to an I-shaped depressed part 15d provided in the pawl 15 of
In the embodiment configured as described above, which is illustrated in
Further, in this embodiment illustrated in
Further, in this embodiment illustrated in
Further, in this embodiment, a part of the pawl 115 (depressed part) and a part of the lift lever 117 (projecting part 117b) are fitted to each other in the axial direction. Accordingly, the pawl 115 and the lift lever 117 can be coupled to each other so as to be rotatable integrally with each other. Therefore, manufacturability can be enhanced as compared to a case where, for example, the pawl (115) and the support shaft (119) are integrated, the lift lever (117) is fixed to the support shaft (119) by caulking or the like, and the support shaft (119) is rotatably coupled to the base plate 112 and the sub-base plate 113.
Further, in this embodiment illustrated in
In the embodiment illustrated in
Number | Date | Country | Kind |
---|---|---|---|
2010-034847 | Feb 2010 | JP | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/JP2010/073332 | 12/24/2010 | WO | 00 | 8/29/2012 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2011/102057 | 8/25/2011 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
5758912 | Hamada | Jun 1998 | A |
6471260 | Weinerman et al. | Oct 2002 | B1 |
7152890 | Torkowski et al. | Dec 2006 | B2 |
7467815 | Larsen et al. | Dec 2008 | B2 |
7789440 | Graute et al. | Sep 2010 | B2 |
8235428 | Hunt et al. | Aug 2012 | B2 |
20040145191 | Watanabe | Jul 2004 | A1 |
20080060397 | Sato | Mar 2008 | A1 |
Number | Date | Country |
---|---|---|
2325271 | Nov 1998 | GB |
59-118968 | Jul 1984 | JP |
2-96077 | Apr 1990 | JP |
2006-37655 | Feb 2006 | JP |
2007326462 | Dec 2007 | JP |
2008-63908 | Mar 2008 | JP |
Entry |
---|
International Search Report (PCT/ISA/210) issued on Apr. 5, 2011, by the Japanese Patent Office as the International Searching Authority for International Application No. PCT/JP2010/073332. |
Written Opinion (PCT/ISA/237) issued on “Date WO issued ”, by the Japanese Patent Office as the International Searching Authority for International Application No. PCT/JP2010/073332. |
Office Action (Notification) issued on Feb. 28, 2014, by the Chinese Patent Office in corresponding Chinese Patent Application No.: 201080064052.5, and an English translation of the Office Action. (12 pages). |
Number | Date | Country | |
---|---|---|---|
20120313385 A1 | Dec 2012 | US |