The invention relates to fuel systems and more particularly to a fuel system for an internal combustion engine (ICE) wherein the objective is to improve fuel economy.
Positive crankcase ventilation (PCV) circuits/systems and similar vacuum intake systems are in common use in gasoline burning internal combustion engines for automobiles in the United States and elsewhere. It is well known that the purpose and function of such systems is to collect blow-by from the engine crankcase and deliver it to the engine. In and of themselves, these systems do little or nothing to improve engine efficiency or fuel economy.
U.S. Pat. No. 7,117,859 discloses a system for metering fuel through a needle valve into fluid which is diverted from an automotive PCV circuit, and thoroughly vaporizing the fuel in one or more vaporization chambers before delivering the vaporized fuel/fluid mixture to the vehicle intake. It has been found that the end result of the use of this system is a surprising and significant increase in fuel economy.
An objective of the present invention is to provide pre-vaporized auxiliary fuel to an ICE during operation thereof. This may be achieved via connection of an auxiliary source to a PCV circuit or by auxiliary direct injection or by other means. As hereinafter described, we have found it advantageous to use electronic metering of fuel into the vaporization chamber.
A control circuit is provided to operate a fuel metering injector at a constant frequency but with an “on/off” time ratio which can be varied. In this way, the injected fuel quantity can be calibrated to engines of different displacements and fuel utilization rates. The control circuit is configured so as to be controlled by an external source such as the on-board diagnostic computer or a separate computer so as to set the duration of the “ON” time. Using suitably encrypted software, this makes it difficult for persons to tamper with the system.
For some engines, the control circuit may be actively controlled by engine operation data produced by a manifold absolute pressure (MAP) sensor or flow rate sensor or other source to vary the “ON” time of a fixed frequency cycle during which fuel is metered into the system.
In one embodiment of the system, particularly suitable for larger, e.g., 6 or 8 cylinder automotive engines, a switch provides a shutoff function under high load conditions. A pressure switch, for example, detects a high vacuum condition indicative of high load/full throttle engine operation. In this embodiment, a pressure switch shuts off the fuel metering device entirely, but resumes operation after the high vacuum condition abates. For other engine types, the high load, high rpm condition causes progressively more fuel to be metered into the vaporization chamber and the shut off function may be eliminated.
A second aspect of the invention hereinafter described is a method of operating an internal combustion engine of the type having a fluid circuit between the crankcase and the engine power-generation areas wherein the method comprises the steps of injecting fuel into the fluid flowing in the circuit, vaporizing the fuel in the fluid and delivering the vaporized fuel to the engine for consumption by the vehicle. This can be done by delivering the vaporization chamber fluid to an intake manifold, or by using another fuel delivery system such as a direct injection system having its own fuel lines connected to individual cylinders. We have found that the practice of this method causes the oxygen sensor of a conventionally equipped motor vehicle to signal the OEM fuel delivery system computer to reduce the primary fuel flow rate to return to the 14.7:1 ratio of air-to-fuel used in the operation of motor vehicle engines today. This leads to improved engine operation and a significant improvement in fuel economy.
We have also found it to be beneficial in all embodiments to heat the fuel entering or leaving the vaporization chamber. This can be done in various ways. Further, operation of the entire system is preferably delayed until the engine has reached a predetermined operating temperature.
In another embodiment of the invention, ideally suited as an OEM installation, the vaporization chamber output is delivered via multiple lines and injectors directly to the cylinder heads and combustion chambers. Moreover, the system senses engine load demand through, for example, a MAP sensor and increases the injection of the vaporized fluid either linearly with load or rpm or in discrete steps. In this embodiment, the cut-off switch may or may not be used.
The present invention has proved capable of providing surprising and substantial improvements in fuel economy for internal combustion engines of various kinds including not only those utilizing gasoline available at commercial stations but also other fuels such as ethanol, alcohol, blends of gasoline and ethanol and other bio-fuels. In addition, the invention can be used not only in conventional automobiles; but also in boats, trucks, SUV's, RV's, tractors, and other engine-driven devices.
Other advantages, features and characteristics of the present invention, as well as methods of operation and functions of the related elements of the structure, and the combination of parts and economies of manufacture, will become more apparent upon consideration of the following detailed description and the appended claims with reference to the accompanying photographs, the latter being briefly described hereinafter. As used herein the term “PCV system” does not necessarily imply the presence of a PCV valve.
The description herein makes reference to the accompanying drawings wherein like reference numerals refer to like parts throughout the several views and wherein:
Referring now to
The engine 10 is also provided with a crankcase 18 which, in conventional fashion, provides a lubricant reservoir which typically splash-lubricates the crankshaft (not shown) of the engine 10. A positive crankcase ventilation (PCV) system shown here comprises a circuit 20 including a PCV valve 22 of conventional design connected between the crankcase 18 and the engine via the intake manifold 12. As stated above, not all PCV systems have the valve 22.
In accordance with the invention, the conduit 24 delivers the fluid in the PCV circuit 20 to a vaporization chamber 26 in the form of, for example, a stainless steel or fuel-safe plastic bottle, to input a hydrocarbon/air mixture of PCV fluid to the vaporization chamber 26. An output circuit 28 from the vaporization chamber runs from the bottom of the chamber 26 back to the intake manifold 12.
Mounted to and in operable association with the vaporization chamber 26 is an electronic fuel injector system 30 having a fuel supply line 32 which is tapped into the primary fuel delivery line 16 at a tap point 34. The injector system 30, which may be of the conventional piezoelectric injector type, operates to inject fuel into the vaporization chamber 26 at a high point so that such injected fuel can be thoroughly mixed into the fluid delivered to the chamber 26 by way of input line 24 and thoroughly vaporized within the chamber to the extent possible as well as downstream of the chamber in the line 28 as necessary. We have found that line 28 should be between about 30 and 145 inches in length to help in the vaporization process, the actual length depending on engine size and vacuum level.
The chamber 26 includes in operative association therewith a vacuum sensor 38 which is connected to supply a signal to a switch 40 which is electrically connected to the injector in the injector system 30 to shut the injector off at a predetermined pressure setting as sensed by the sensor 38. That setting is typically minus 5.7 in. Hg; however, the setting used in a given application may be higher or lower than −5.7 in. We place mesh screens in the vaporization chamber to enhance the process.
The circuit 42 can be operated in either of the two different modes. In the first mode, a conventional USB computer port 48 is used to receive inputs from a digital computer 55 so as to set the circuit 46 to produce a fixed ON time or, to put it another way, a fixed ratio between the ON and OFF times of the fixed frequency injector 30A. This ON time setting is chosen in accordance with the displacement and/or horsepower range of the engine 10, smaller displacement engines having shorter ON times and larger displacement engines having longer ON times. As will be apparent to those skilled in the art, the shorter ON times of the injector 30A represent smaller quantities of fuel injected into the vaporization chamber 26 whereas longer ON times represent greater quantities of fuel injected into the vaporization chamber 26.
According to the second manner or mode of operation, the circuit 46 is connected to receive an input from a pressure sensor 56 mounted in association with the engine PCV circuit or otherwise to actively vary the ON time according to engine operating conditions.
Whichever mode or manner of operation is chosen, for 6 and 8 cylinder engines not using direct injection and for retrofit situations, the switch 40 is connected to the injector 40A to shut off all fuel injection into the vaporization chamber which forms part of the PCV diversion circuit during high load/high throttle setting conditions where the PCV circuit becomes essentially non-functional.
The invention works as described above; i.e., the fuel-rich mixture delivered from the vaporization chamber is detected by the O2 sensor 13 as a departure from the 14.7:1 air-to-fuel ratio used by most manufacturers and signals the computer 15 to reduce fuel flow via the conventional fuel delivery system 17.
The invention can be supplied as a kit and used to retrofit existing vehicles or installed as OEM equipment.
A suitable device which satisfies the requirements of switch 40 is available from World Magnetics of Traverse City, Mich. and comprises a Teflon diaphragm in a polycarbonate case. The control circuit may be implemented as an Arduino nano U3.0 Gravitech-US circuit board having a Panasonic 1000 mA solid state relay with the ability to retrieve engine data. The port 48 may be a conventional multi-pin computer port such as a USB.
This application is a continuation-in-part of application Ser. No. 13/178,891 filed Jul. 8, 2011 to which priority is claimed as to all common patentable subject matter.
Number | Date | Country | |
---|---|---|---|
Parent | 13178891 | Jul 2011 | US |
Child | 13542016 | US |