The invention relates to an automotive milling machine as well as to a method for unloading milled material.
With an automotive milling machine, it is known to discharge the milled material onto no less than one transport vehicle with a loading surface.
The milling machine comprises a controller for the travelling and milling operation as well as a working drum for the milling of, for example, a road pavement. A transport conveyor device, for example, a transport conveyor device comprising no less than one transport conveyor is located in front of or behind the working drum as seen in the direction of travel. The transport conveyor device comprises a discharge end at which the milled material is discharged onto the loading surface of the no less than one transport vehicle via a flight path in the form of a parabolic trajectory that is attributable to the conveying speed. The last or single transport conveyor of the transport conveyor device as seen in the direction of transport may be slewed sideways, relative to the longitudinal axis of the milling machine, about a specifiable slewing angle to the left or right and may be adjustable in height via a specifiable elevation angle.
In practical operation, problems arise in coordinating the milling machine with the transport vehicle.
With a forward-loading milling machine, for example, the milled material is discharged towards the front onto the transport vehicle driving ahead. The operator of the milling machine needs to signal to the vehicle driver of the transport vehicle as to when the transport vehicle is to continue moving forward. This leads to problems because the operator basically needs to concentrate on the milling process and at the same time needs to avoid a collision with the transport vehicle driving ahead. The information is usually communicated by means of sounding a horn so that, as soon as the vehicle driver of the transport vehicle hears the horn sounding, the transport vehicle is moved forward by a certain distance. A problem arises in the situation where the vehicle driver of the transport vehicle fails to hear the horn alert or if another vehicle driving past emits a horn alert so that the vehicle driver of the transport vehicle erroneously believes to be required to move his vehicle forward. If the vehicle driver fails to hear the horn alert, this may cause a collision of the slewable transport conveyor of the transport conveyor device with the transport vehicle, or the operator of the milling machine needs to stop the continuous milling process.
An additional problem lies in the fact that the operator of the milling machine also needs to deal with loading the loading surface by adjusting the slewing angle, elevation angle and conveying speed of the last or single transport conveyor of the transport conveyor device as seen in the direction of transport and is thus distracted from his actual task of carrying out the milling operation. A correction of the slewing angle may be required, for example, when altering the steering direction of the milling machine.
In case of a rearward-loading milling machine, problems also arise in coordinating the milling machine with the transport vehicle especially as the transport vehicle needs to drive behind the milling machine in reverse travel. An even higher level of stress results for the operator of the milling machine as he needs to control the milling operation in forward travel on the one hand, and needs to monitor loading of the transport vehicle behind the milling machine as seen in the direction of travel, needs to control the slewing angle, elevation angle and/or conveying speed of the transport conveyor device, and needs to communicate the necessary information to the vehicle driver on the other.
It is therefore the object of the present invention to create an automotive milling machine as well as a method for unloading milled material of a milling machine which enables automatic coordination of the unloading procedure of the milling machine being in the process of milling with the movement of the transport vehicle.
The invention advantageously provides that the controller comprises a detection and control system which continuously locates the alterable position of the loading surface of the transport vehicle and of the last or single slewable transport conveyor of the transport conveyor device as seen in the direction of transport relative to the machine frame, or the alterable position of the loading surface of the transport vehicle relative to the slewable transport conveyor, and which continuously controls positioning of the point of impingement of the milled material automatically via the slewing angle and/or the elevation angle and/or the conveying speed of the slewable transport conveyor in such a way that the discharged milled material impinges within the loading surface.
Such controller enables the operator of the milling machine to concentrate on the milling operation and on travelling along a specified milling track. An automatic unloading procedure is thus realized which ensures automatic coordination of the unloading procedure with the movement of the milling machine and of the transport vehicle even when cornering. For example, the slewing angle of the last or single transport conveyor of the transport conveyor device as seen in the direction of transport may also be controllable in accordance with the steering angle of the automotive milling machine.
It is preferably intended for the detection and control system to continuously control positioning of the point of impingement of the milled material automatically in such a way that the discharged milled material impinges in the centre of the loading surface or at another specifiable point of impingement within the loading surface.
The loading surface may be located, and the position of the transport conveyor and the conveying speed of the slewable transport conveyor may be regulated in such a way that the point of impingement on the loading surface is always maintained at the position specified by the controller independent of the movements of the milling machine and the transport vehicle.
The detection and control system may comprise no less than one detector which continuously detects the position of the loading surface and/or of the slewable transport conveyor of the transport conveyor device, and/or may comprise additional detectors which detect the slewing angle, the elevation angle and/or the conveying speed of the transport conveyor.
A preferred embodiment provides for the detection and control system to continuously locate the position of the loading surface and/or of the last or single transport conveyor of the transport conveyor device as seen in the direction of transport by means of a first image-recording system or a non-optical electronic positioning system, in particular a radio-frequency identification system (RFID), which supplies data for determining the position of the loading surface in relation to the machine frame or to the slewable transport conveyor.
The detection and control system may compare the data for determining the position with specified target position data in order to, in the event of any deviations from the specified target position data, perform a continuous position control for the position of a discharge end and/or of the point of impingement of the milled material and/or a speed control for the conveying speed in accordance with a specified point of impingement.
The detection and control system may comprise a second image-recording system which detects and analyses the filling condition on the loading surface by evaluating the image data and which continuously controls the conveying speed and/or the position of a discharge end and/or of the point of impingement of the milled material relative to the loading surface in order to load the loading surface uniformly and/or in accordance with a specified loading programme. A second image-recording system may be omitted if an image-recording system is already used to locate the position of the loading surface, the image data of which can also be used for detection of the filling condition.
The detection and control system may locate the position of the loading surface as well as regulate the position of the last or single transport conveyor of the transport conveyor device as seen in the direction of transport or the position of the point of impingement and the conveying speed in such a way that the point of impingement on the loading surface is always maintained at the position within the loading surface specified by the controller independent of the movements of the milling machine and of the transport vehicle.
The first and/or second image-recording system or a detector for the radio-frequency identification system (RFID) may be arranged at the discharge end of the single or last transport conveyor as seen in the conveying direction of the milled material.
Arranging such positioning system at the discharge end of the transport conveyor enables the position of the transport vehicle relative to the last or single transport conveyor of the milling machine as seen in the direction of transport to be detected without it being necessary to additionally determine the position of the milling machine.
Furthermore, the image data may be analysed to determine how and to what extent the loading surface has been filled. Controlling the conveying speed and/or the position of the discharge end of the transport conveyor or of the point of impingement of the milled material respectively relative to the loading surface enables uniform loading of the loading surface. The filling condition on the loading surface may be detected and analysed by an image-recording system, and the conveying speed and/or the position of the discharge end of the transport conveyor relative to the loading surface may be continuously controlled in order to load the loading surface uniformly and/or in accordance with a specified loading programme.
It may also be of advantage, however, to vary the point of impingement on the loading surface in order to achieve uniform loading of the loading surface.
It is intended for the detection and control system to control the position of the discharge end of the transport conveyor device and thus the point of impingement on the loading surface by adjusting the lateral slewing angle of the slewable transport conveyor of the transport conveyor device relative to the direction of travel and by adjusting the elevation angle of the slewable transport conveyor of the transport conveyor device.
The detection and control system may emit a signal prior to or latest in the event of any deviation not rectifiable by means of control of the position of the loading surface relative to the position of the last or single transport conveyor of the transport conveyor device as seen in the direction of transport and/or relative to the machine frame. The signal may be used to cause a machine stoppage or take measures to prevent collisions between the vehicles.
In accordance with the loading surfaces of different transport vehicles and/or in accordance with different loading conditions of the loading surface for different positions and/or points of impingement within the position of a loading surface detected by the detection and control system, control data for the slewing angle, elevation angle and/or conveying speed may be stored in a map that is available to the detection and control system. An RFID system enables identification of, for example, loading surfaces of different transport vehicles.
No less than one point of the usually essentially rectangular loading surface or essentially cuboid-shaped loading volume respectively, may carry a marking detectable by the detection and control system.
A movement control signal, for example, a visual or an audible signal may be generated in accordance with the positioning signals. Movement control signals for the transport vehicle have been described in principle in DE 10 2009 041 842 A1.
In accordance with the method according to the present invention, it is intended that the alterable position of the loading surface of the transport vehicle and of the last or single transport conveyor of the transport conveyor device as seen in the direction of transport relative to the machine frame, or the alterable position of the loading surface of the transport vehicle relative to the last or single transport conveyor as seen in the direction of transport is continuously located by a detection and control system, and that positioning of the point of impingement of the milled material is continuously controlled automatically by the detection and control system via the slewing angle and/or the elevation angle and/or the conveying speed of the transport conveyor device in such a way that the milled material is discharged within the loading surface.
Positioning of the point of impingement of the milled material may be continuously controlled automatically by the detection and control system in such a way that the milled material is discharged in the centre of the loading surface or at another specifiable point of impingement within the loading surface.
The position of the loading surface and/or of the last or single transport conveyor of the transport conveyor device as seen in the direction of transport may be continuously located by means of an image-recording system or a non-optical electronic positioning system, in particular a radio-frequency identification system (RFID), which supplies data for determining the position of the loading surface in relation to the machine frame or to the last or single transport conveyor as seen in the direction of travel.
In one embodiment, an image for determining the position of the loading surface in relation to the discharge end of the transport conveyor and/or for determining the filling condition of the loading surface may be recorded and analysed by an image-recording system using a specified sampling frequency. The analysed data are compared with target position data, and the position of the discharge end of the transport conveyor and/or the conveying speed and/or the position of the transport vehicle may be controlled in the event of any deviations being determined.
The target position data may be determined by means of a teach-in procedure.
The position of the geometrical centre of the loading surface may be determined by means of image analysis or by means of the non-optical positioning system, and the position of the current point of impingement on the loading surface may be determined by means of image analysis, and a positioning control of the position of the discharge end and/or of the point of impingement of the milled material, as well as a speed control of the conveying speed of the transport conveyor may be performed in accordance with the desired position of the point of impingement so that a continuous regulation of the position of the current point of impingement is performed.
In the following, embodiments of the invention are explained in more detail with reference to the drawings.
The following is shown:
The road milling machine shown in
The milling machines 1a,1b may comprise tracked travelling drive units and/or wheels. The working drum may be adjustable in height via the lifting columns 5 supporting the machine frame 2 or relative to the machine frame 2.
Other designs of a milling machine 1b may also exhibit the working drum 22, for example, at the height of the rear tracked travelling drive units or wheels of the chassis 4.
The transport conveyor device with no less than one transport conveyor 11,12 for transporting away the milled material may also be arranged at the front end 7 or at the rear end 8 of the milling machine 1a,1b.
Provided that sufficient space is available on the side next to the milling machine 1a,1b, the transport vehicle 10 may also be moved next to the milling machine 1 in forward travel as shown in
The directions of travel of the respective vehicles in
In the embodiment shown in
The currently set elevation angle about a horizontal first axis 21 or slewing angle about a vertical second axis 23 respectively is reported to a detection and control system 24 additionally comprising no less than one detector 26 which continuously detects the position of the loading surface 15 and/or of the last or single transport conveyor 12 as seen in the direction of transport. Said detector 26 may be arranged either at the milling machine 1a,1b, at the end facing the transport conveyor device, or at the free end 13 of the transport conveyor 12.
The detection and control system 24 may be integrated into the controller 3 for the travelling and milling operation or may, as a minimum, be connected to the same in order to, should the need arise, also obtain data on the travel speed and/or a detected steering angle of the milling machine 1a,1b and the conveying speed of the transport conveyor 12.
The detection and control system 24 locates the alterable position of the loading surface 15 of the transport vehicle 10 and of the last or single transport conveyor 12 as seen in the direction of transport relative to the machine frame 2, and continuously and automatically controls positioning of the point of impingement 16 of the milled material 14 via the slewing angle and/or the elevation angle and/or the conveying speed of the transport conveyor device so that the discharged milled material 14 impinges, as a minimum, within the loading surface 15. Alternatively, the alterable position of the loading surface 15 of the transport vehicle 10 may also be continuously located relative to the last or single transport conveyor 12 as seen in the direction of transport in order to perform the control operation.
The detection and control system 24 may also undertake the task of filling the loading surface 15 in a uniform fashion. A loading programme may be intended for this purpose in order to load the loading surface 15 in accordance with a predetermined system. In this arrangement, the filling condition on the loading surface 15 may be detected and analysed by an image-recording system in order to continuously control the conveying speed and/or the position of the discharge end 13 of the last or single transport conveyor 12 as seen in the direction of transport relative to the loading surface 15.
Control data for different positions and/or points of impingement 16 may be stored in a map in accordance with the loading surfaces 15 of different transport vehicles 10 and/or in accordance with different loading conditions of the loading surface 15. Such map memory may be integrated in the detection and control system 24 or in the controller 3. The control data concern the slewing angle, the elevation angle and/or the conveying speed of the transport conveyor 12 for different positions and/or points of impingement 16 within the position of a loading surface 15 detected by the detection and control system 24.
The detection and control system 24 continuously detects the position of the loading surface 15 and/or of the last or single transport conveyor 12 as seen in the direction of transport by means of an image-recording system 28 or a non-optical electronic positioning system which supplies data for determining the position of the loading surface 15 in relation to the machine frame 2 or to the last or single transport conveyor 12 as seen in the direction of transport. The information provided by the image-recording system 28 may be evaluated by image-analysing methods known for themselves. One example of a non-optical electronic positioning system is a radio-frequency identification system (RFID) which additionally offers the possibility of identifying a particular loading surface 15 of a particular transport vehicle 10.
When localizing the loading surface 15 by means of RFID, permanently installed RFID tags are used at the transport vehicle 10 in particular at the loading surface 15.
When localizing with Bluetooth sensor nodes as an additional non-optical localization method, sensor nodes distributed in space are used as markings and the signal field strength, which is dependent on the distance, is measured.
It goes without saying that it is also possible to use a combination of different localization methods.
As a general rule, it is possible to use optical and quasi-optical (radio) measurement methods for length and angle, as well as different time measurement processes for time differences and propagation time differences.
The detection and control system 24 may compare the data for determining the position with specified position data in order to, in the event of any deviations from the specified target position data, perform a continuous position control for the position of the discharge end 13 and/or for the point of impingement 16 of the milled material 14 and/or a speed control for the conveying speed.
The target position data may be determined by means of a teach-in procedure in that the positions of the vehicles 1a,1b,10 are varied in accordance with realistic situations and the parameters required for each such situation, namely the slewing angle, elevation angle and conveying speed of the transport conveyor, are stored. In the same way, a loading programme may also be created. In doing so, variations in control arising, for example, during cornering may also be taken into account. In the process, the data read in by means of the reading operation may also differentiate as to whether the transport vehicle 10 is driving on the left or on the right next to the milling track or in the milling track of the milling machine 1a,1b.
Number | Date | Country | Kind |
---|---|---|---|
102012215013.7 | Aug 2012 | DE | national |
Number | Name | Date | Kind |
---|---|---|---|
3608968 | Burnett | Sep 1971 | A |
4221434 | Swisher et al. | Sep 1980 | A |
4376609 | Bohman et al. | Mar 1983 | A |
4863009 | Winkel et al. | Sep 1989 | A |
5575316 | Pollklas | Nov 1996 | A |
5749783 | Pollklas | May 1998 | A |
5857274 | Rudiger et al. | Jan 1999 | A |
5893677 | Haehn et al. | Apr 1999 | A |
6247510 | Diekhans et al. | Jun 2001 | B1 |
6366684 | Gerard et al. | Apr 2002 | B1 |
6682416 | Behnke et al. | Jan 2004 | B2 |
6943824 | Alexia et al. | Sep 2005 | B2 |
7831345 | Heino et al. | Nov 2010 | B2 |
7918512 | Mannebach et al. | Apr 2011 | B2 |
7976239 | Hall et al. | Jul 2011 | B2 |
8485755 | Menzenbach et al. | Jul 2013 | B2 |
8499537 | Correns et al. | Aug 2013 | B2 |
8511933 | Menzenbach et al. | Aug 2013 | B2 |
8528988 | Von Schönebeck et al. | Sep 2013 | B2 |
8590983 | Berning et al. | Nov 2013 | B2 |
8764341 | Menzenbach et al. | Jul 2014 | B2 |
9126776 | Von Schonebeck et al. | Sep 2015 | B2 |
9328467 | Forster et al. | May 2016 | B2 |
9562334 | Von Der Lippe et al. | Feb 2017 | B2 |
10208436 | Kötting et al. | Feb 2019 | B2 |
20030174207 | Alexia et al. | Sep 2003 | A1 |
20050179309 | Berning et al. | Aug 2005 | A1 |
20050207841 | Holl et al. | Sep 2005 | A1 |
20060045621 | Potts et al. | Mar 2006 | A1 |
20080153402 | Arcona et al. | Jun 2008 | A1 |
20080245042 | Brunnert et al. | Oct 2008 | A1 |
20080258535 | Berning et al. | Oct 2008 | A1 |
20090044505 | Huster et al. | Feb 2009 | A1 |
20090229233 | Pollklas et al. | Sep 2009 | A1 |
20090267402 | Berning et al. | Oct 2009 | A1 |
20100014917 | Willis et al. | Jan 2010 | A1 |
20100063692 | Madsen et al. | Mar 2010 | A1 |
20100070144 | Burke et al. | Mar 2010 | A1 |
20100296867 | Buschmann et al. | Nov 2010 | A1 |
20110061762 | Madsen et al. | Mar 2011 | A1 |
20110080034 | Schönebeck et al. | Apr 2011 | A1 |
20110123268 | Berning et al. | May 2011 | A1 |
20110213531 | Farley et al. | Sep 2011 | A1 |
20110307149 | Pighi et al. | Dec 2011 | A1 |
20130076101 | Simon | Mar 2013 | A1 |
20130080000 | Von der Lippe et al. | Mar 2013 | A1 |
20130322963 | Forster et al. | Dec 2013 | A1 |
20130341997 | Franzmann et al. | Dec 2013 | A1 |
20140077579 | Berning et al. | Mar 2014 | A1 |
20150091364 | Kötting et al. | Apr 2015 | A1 |
20150307911 | Urthaler et al. | Oct 2015 | A1 |
20160160454 | Berning et al. | Jun 2016 | A1 |
Number | Date | Country |
---|---|---|
2008201640 | Nov 2008 | AU |
102465486 | May 2012 | CN |
103282583 | Sep 2013 | CN |
155157 | May 1982 | DE |
3843480 | Mar 1990 | DE |
19628420 | Jan 1998 | DE |
102005035480 | Feb 2007 | DE |
202007005756 | Oct 2008 | DE |
102009041842 | Sep 2011 | DE |
102010050831 | May 2012 | DE |
245544 | Nov 1987 | EP |
666018 | Aug 1995 | EP |
1344445 | Sep 2003 | EP |
1574122 | Sep 2005 | EP |
2025812 | Feb 2009 | EP |
2100495 | Sep 2009 | EP |
2218823 | Aug 2010 | EP |
2301318 | Mar 2011 | EP |
2452551 | May 2012 | EP |
2573266 | Mar 2013 | EP |
2573267 | Mar 2013 | EP |
61257118 | Nov 1986 | JP |
09086672 | Mar 1997 | JP |
11050415 | Feb 1999 | JP |
2008163734 | Jul 2008 | JP |
2009263136 | Nov 2009 | JP |
9624725 | Aug 1996 | WO |
2005054578 | Jun 2005 | WO |
2009098284 | Aug 2009 | WO |
2012016573 | Feb 2012 | WO |
2012062456 | May 2012 | WO |
Entry |
---|
European Search Report for European Patent Application No. EP 17 20 4074, dated Apr. 18, 2018, 14 pages (not prior art). |
Office Action in U.S. Appl. No. 13/624,586 to Jorn Von der Lippe, dated Mar. 31, 2015, 28 pp. (not prior art). |
International Search Report of International Patent Application No. PCT/EP2013/067418, dated Oct. 30, 2013, 3 pp. (not prior art). |
Database Compendex XP-002538700, Engineering Information, Inc., Wolski Jan K, “Optimization of Bucket Wheel Excavator and Pit Parameters in Application to Overburden Stripping”, Conference Proceeding “Use of Computers in the Coal Industry”,1986, pp. 43-55. |
Database Compendex XP-002538699, Engineering Information, Inc., Gove et al. “Optimizing Truck-Loader Matching”, Mining Engineering, Oct. 1994, pp. 1179-1185, Soc. for Mining, Metallurgy & Exploration, Inc. |
Number | Date | Country | |
---|---|---|---|
20200109528 A1 | Apr 2020 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 15913971 | Mar 2018 | US |
Child | 16546949 | US | |
Parent | 15000161 | Jan 2016 | US |
Child | 15913971 | US | |
Parent | 14422238 | US | |
Child | 15000161 | US |