AUTOMOTIVE VEHICLE COMPOSITE BODY STRUCTURE

Information

  • Patent Application
  • 20120104799
  • Publication Number
    20120104799
  • Date Filed
    May 06, 2011
    13 years ago
  • Date Published
    May 03, 2012
    12 years ago
Abstract
An automotive vehicular structure includes a composite roof frame and elongated composite support members extending from the roof frame. The support members may be integral to the roof frame as a single piece. A method of assembling a vehicle is also provided.
Description
BACKGROUND AND SUMMARY

The present invention generally pertains to body structures for vehicles and, more particularly, to composite body structures for vehicles.


A vehicle is supported by a chassis that carries various loads. The loads include an unloaded weight of the vehicle and cargo loads generated by passengers and other items added to the vehicle. The loads also include aerodynamic loads and road loads input through a suspension as the vehicle is maneuvered over a road.


In some configurations, a body of the vehicle forms part of the chassis. In such configurations, a structure of the body designed to carry the loads is typically composed of steel. Steel is most often employed because parts of the structure can be produced in high volume, at low cost, using conventional methods. However, steel body constructions are relatively heavy.


In accordance with the present invention, an automotive vehicular structure for a passenger compartment is provided. A method of assembling a vehicle is also provided. In one aspect, an automotive vehicular structure includes a composite roof frame. A further aspect provides elongated composite support members integral to and extending from the roof frame as a single piece. Additional aspects employ an elongated lateral member between ends of the elongated composite support members.


The present automotive vehicular body structure is advantageous over other body structures. For example, the automotive vehicular structure provides an all composite reinforcement structure that is of high strength and low weight. The reinforcement structure further provides structural sections and cross-sections, for example, A-pillar, B-pillar, rocker, and floor pan sections and cross-sections. The various sections and cross sections are created by composite panels and are advantageously resistive to impacts that occur, for example in a vehicle accident.


Additional advantages and features of the present invention will be found in the following description and accompanying claims, as well as in the appended drawings.





DRAWINGS


FIG. 1 is a perspective view showing a vehicle according to the present disclosure;



FIG. 2 is a perspective view showing a composite body structure of the vehicle shown in FIG. 1;



FIG. 3 is a top view of the composite body structure shown in FIG. 2;



FIG. 4 is a bottom view of the composite body structure shown in FIG. 2;



FIG. 5 is an exploded perspective view of the composite body structure shown in FIG. 2;



FIG. 6 is an exploded perspective view of the composite body structure shown in FIG. 2;



FIG. 7 is an exploded perspective view of the composite body structure shown in FIG. 2;



FIG. 8 is a perspective view of an underbody sub-assembly illustrating the composite body structure shown in FIG. 2 in a partially assembled state;



FIG. 9 is a perspective view of the underbody sub-assembly illustrating the composite body structure shown in FIG. 2 in a partially assembled state;



FIG. 10 is a perspective view of the underbody sub-assembly illustrating the composite body structure shown in FIG. 2 in a partially assembled state;



FIG. 11 is a fragmentary top view of a portion of the underbody sub-assembly illustrating the composite body structure shown in FIG. 2 in a partially assembled state;



FIG. 12 is a perspective view illustrating the composite body structure shown in FIG. 2 in a partially assembled state;



FIG. 13 is a fragmentary perspective view illustrating a portion of the composite body structure shown in FIG. 2 in a partially assembled state;



FIG. 14 is a fragmentary top view illustrating a portion of the composite body structure shown in FIG. 2 in a partially assembled state;



FIG. 15 is a fragmentary top view illustrating a portion of the composite body structure shown in FIG. 2 in a partially assembled state;



FIG. 16 is a fragmentary front view of a portion of the composite body structure shown in FIG. 2 in a partially assembled state;



FIG. 17 is a rear view of the composite body structure shown in FIG. 2 illustrating a cowl panel;



FIG. 18 is a fragmentary cross-sectional view of the composite body structure taken along line 18-18 shown in FIG. 3 illustrating a dash/cowl section;



FIG. 19 is a cross-sectional view of a portion of the composite body structure taken along line 19-19 shown in FIG. 3 illustrating a front header section;



FIG. 20 is a cross-sectional view of a portion of the composite body structure taken along line 20-20 shown in FIG. 3 illustrating a rear header section;



FIG. 21 is a fragmentary cross-sectional view of the composite body structure taken along line 21-21 shown in FIG. 3 illustrating a tail section;



FIG. 22 is a fragmentary cross-sectional view of the composite body structure taken along line 22-22 shown in FIG. 3 illustrating a rocker section;



FIG. 23 is a fragmentary cross-sectional view of the composite body structure taken along line 23-23 shown in FIG. 3 illustrating an A-pillar section;



FIG. 24 is a fragmentary cross-sectional view of the composite body structure taken along line 24-24 shown in FIG. 12 illustrating a B-pillar section;



FIG. 25 is a fragmentary cross-sectional view of the composite body structure taken along line 25-25 shown in FIG. 12 illustrating a B-pillar section;



FIG. 26 is a fragmentary cross-sectional view of the composite body structure taken along line 26-26 shown in FIG. 3 illustrating an A-pillar section;



FIG. 27 is a fragmentary cross-sectional view of the composite body structure taken along line 27-27 shown in FIG. 3 illustrating an A-pillar section;



FIG. 28 is a fragmentary cross-sectional view of the composite body structure taken along line 28-28 shown in FIG. 3 illustrating a quarter/sail section;



FIG. 29 is a fragmentary cross-sectional view of a portion of the composite body structure taken along line 29-29 shown in FIG. 4 illustrating a floor panel section;



FIG. 30 is a schematic cross-sectional view illustrating a method of applying adhesive between two panels of the composite body structure shown in FIG. 2;



FIG. 31 is a fragmentary perspective view of a composite body panel including a honeycomb core material and a layered fiber reinforcement;



FIG. 32 is a schematic view of composite material arrangements for a composite body panel; and



FIG. 33 is a fragmentary cross-sectional view illustrating composite body panels joined by a bolted connection.





Corresponding reference numerals indicate corresponding parts throughout the several views of the drawings.


DETAILED DESCRIPTION

An embodiment of a composite body structure is illustrated in FIGS. 1-29. Referring to FIG. 1, an exemplary vehicle 10 according to the present disclosure is shown. Generally, vehicle 10 is a two door, three-wheeled electric vehicle having a front-wheel drive layout. However, it will be appreciated from the following description that the present invention is not limited to vehicles having a particular powerplant, layout, or number of wheels. For example, the present invention applies equally to vehicles having an internal combustion engine used alone or in combination with an electric machine (i.e., hybrid vehicles) to provide drive torque, although various advantages may not be realized. The present invention also applies equally to front-wheel drive and rear-wheel drive vehicles, although various advantages may not be realized.


Vehicle 10 includes a front-end module 20, a rear-end module 22, and a composite body structure 24. Vehicle 10 further includes various body closures, including doors 30, 32, a rear hatch 34, a windshield 36, rear side glass windows 38, 40, and a roof panel 42. Together, front-end module 20, rear-end module 22, and body structure 24 serve as a chassis of vehicle 10. In particular, front-end module 20, rear-end module 22, and body structure 24 provide the structure that supports vehicle 10. Together, body structure 24 and the body closures define a passenger compartment 44 within vehicle 10.


Front-end module 20 includes a front-end structure 50, a front suspension 52, an electric drive motor 54, and outer body panels 56. Front-end structure 50 is mounted to body structure 24 and may be mounted according to various methods. In the present example, front-end structure 50 is mounted on first mounting surfaces provided by body structure 24 via bolted connections (not shown). The first mounting surfaces are provided at four locations identified by reference numerals 60a-d (FIG. 2).


Front suspension 52 includes two front wheels 62. Electric drive motor 54 is mounted to front-end structure 50 and is part of a drivetrain that drives front wheels 62. An energy storage system including a rechargeable battery 64 provides energy to electric drive motor 54. Battery 64 is mounted to an underside of body structure 24 as described in further detail below. Outer body panels 56 are mounted to front-end structure 50 and hide or cover portions of front-end module 20. Outer body panels 56 include a hood 66 providing selective access to components housed within front-end module 20, such as electric drive motor 54.


Rear-end module 22 is separate from front-end module 20 and includes a rear-end structure 70, a rear suspension 72, and outer body panels 74. Rear-end structure 70 is mounted to body structure 24 and may be mounted according to various methods. In the present example, rear-end structure 70 is mounted on second mounting surfaces provided by body structure 24 via bolted connections (not shown). The second mounting surfaces are provided at three locations identified by reference numerals 76a-c (FIG. 4). Rear suspension 72 includes a rear wheel 78. Outer body panels 74 are mounted to rear-end structure 70 and hide or cover portions of rear-end module 22. Outer body panels 74 include an access panel 80 providing selective access to components housed within rear-end module 22, such as rear wheel 78.


Doors 30, 32 and hatch 34 are mounted to body structure 24 within door openings 82, 84 and rear hatch opening 86 (FIGS. 2-3), respectively, via bolted hinge connections (not shown). Doors 30, 32 are mounted on third and fourth mounting surfaces, respectively, and hatch 34 is mounted on fifth mounting surfaces. The third, fourth, and fifth mounting surfaces are provided by body structure 24. The third mounting surfaces are provided at two locations identified by reference numerals 88a-b (FIG. 6). The fourth mounting surfaces are provided at two locations identified by reference numerals 90a-b (FIG. 2). The fifth mounting surfaces are provided at two locations identified by reference numerals 92a-b (FIG. 3). Windshield 36 is mounted to body structure 24 within a windshield opening 94 (FIG. 2). Rear side glass windows 38, 40 are mounted to body structure 24 within side openings 96, 98, respectively (FIG. 2).


With additional reference to FIGS. 2-7, body structure 24 includes a monocoque construction 100 that provides a primary structure that supports vehicle 10. In particular, body structure 24 carries loads generated by passengers and other cargo within passenger compartment 44. Composite body structure 24 also connects front suspension 52 and rear suspension 72 and carries suspension loads generated by vehicle 10. Composite body structure 24 further supports various body closures, such as doors 30, 32, rear hatch 34, windshield 36, and rear side glass windows 38, 40, and carries loads transmitted by the body closures.


Generally, monocoque construction 100 includes various composite panels joined by a structural adhesive. Various structural adhesives may be used. In the present example, the adhesive is a two-part methacrylate adhesive. The composite panels include contoured outer panels defining portions of an exterior of vehicle 10 and contoured inner panels defining portions of passenger compartment 44. The inner and outer panels typically include flanges where the panels join. The outer panels provide mounting surfaces and attachment points for various exterior components, such as the body closures. The inner panels provide mounting surfaces and attachment points for various interior components of vehicle 10, such as seats (not shown), an instrument panel (not shown), and interior trim (not shown). A construction and a thickness of the composite panels varies to provide a desired surface finish and desired structural characteristics, such as a desired strength. Exemplary constructions and thicknesses are illustrated in the drawings and discussed in further detail below.


Monocoque construction 100 includes a floor pan 110, an inner reinforcement frame structure or spider 112, a first outer panel 114, a second outer panel 116, a first closeout panel 118, a second closeout panel 120, and a cowl panel 122. Floor pan 110 extends along a longitudinal axis 130 and includes a lower surface 132 generally facing an underside of vehicle 10 and an upper surface 134 opposite lower surface 132 generally facing upward and toward an interior of vehicle 10.


Floor pan 110 includes a floor 140, a front wall 142, side walls 144, 146, and a rear wall 148. Floor pan 110 defines a majority of a lower portion of passenger compartment 44. Floor 140 is a single piece part (i.e., unitary) including raised sections including a first section 150, a second section 152, tunnel sections 154, 156, and seat rail sections 158, 160, 162, 164. First section 150 is a multi-sided construction defining a suspension well 170. First section 150 includes a front wall 172 and a top wall 174 on two sides providing the mounting surfaces for the rear suspension 72. Second section 152 is a multi-sided construction defining a battery well 180. Second section 152 includes a front wall 182, a ridge 184, and a top wall 186. Ridge 184 extends between front wall 182 and top wall 186 in a longitudinal direction and between sides of second section 152.


Tunnel sections 154, 156 define a longitudinally extending tunnel 190. Tunnel section 154 longitudinally extends between and connects front wall 142 and front wall 182. With additional reference to FIG. 26, tunnel section 154 includes side walls 192 and a top wall 194. Tunnel section 156 longitudinally extends between and connects first section 150 and second section 152. Tunnel section 156 includes side walls 196 extending from a top wall 198.


Seat rail sections 158, 160 laterally extend between and connect side wall 144 and tunnel section 154. Seat rail sections 162, 164 laterally extend between and connect side wall 146 and tunnel section 154. Seat rail sections 158, 160 can be substantially similar to seat rail sections 162, 164, respectively. For brevity, seat rail sections 158, 160 will be described with the understanding that the following description applies equally to seat rail sections 162, 164. Seat rail section 158 is longitudinally spaced apart from seat rail section 160. With additional reference to FIG. 29, seat rail section 158 includes side walls 200 and a top wall 202. Seat rail section 160 includes side walls 204 and a top wall 206. Top walls 202, 206 and side walls 200 and 204 provide mounting surfaces for a seat (not shown) at locations identified by reference numerals 207a-h in FIG. 4.


Spider 112 is mounted on floor pan 110 and surrounds a majority of an upper portion of passenger compartment 44. Spider 112 is a single piece part including an inner surface 208 generally facing the interior and an outer surface 209 opposite inner surface 208 generally facing the exterior. Spider 112 further includes a frame 210, vertically extending support members 212, 214, 216, 218, and laterally extending support member 220. Together, frame 210 and support members 212, 214, 216, 218, 220 define a roof bond flange 222, an inner windshield bond flange 224, and inner body side opening flanges 226, 228. Roof bond flange 222 surrounds and defines part of a roof opening 230. Inner windshield bond flange 224 surrounds and defines part of windshield opening 94. Inner body side opening flanges 226, 228 surround and define parts of door openings 82, 84, respectively.


Frame 210 includes header rails 232, 234, and side rails 236, 238. Header rail 232 extends laterally between and connects support members 212, 214 and creates part of a front header section as illustrated in FIG. 19. As best seen in FIG. 19, the front header section has a closed, multi-sided or box cross-section created by header rail 232 and one or both first and second outer panels 114, 116 when joined. Header rail 232 includes a contoured section 240, a forward flange 242, a rearward flange 244. Contoured section 240 extends between flanges 242, 244 and has a generally U-shape cross-section.


Header rail 234 extends laterally between and connects support members 216, 218 and creates part of a rear header section as illustrated in FIG. 20. As best seen in FIG. 20, the rear header section has a closed, multi-sided or box cross-section created by header rail 234 and one or both first and second outer panels 114, 116 when joined. Header rail 234 includes a contoured section 246, a forward flange 248, and a rear flange 250. Contoured section 246 extends between flanges 248, 250 and has a generally U-shape cross-section.


Side rail 236 longitudinally extends between and connects support members 212, 216 and includes a contoured section 252, an outer flange 254, and an inner flange 256. Contoured section 252 extends between flanges 254, 256 and has a generally U-shape cross-section. Side rail 238 longitudinally extends between and connects support members 214, 218 and includes a contoured section 258, an outer flange 260, and an inner flange 262. Contoured section 258 extends between flanges 260, 262 and has a generally U-shape cross-section.


Support members 212, 214 create parts of corresponding A-pillar sections as illustrated in FIG. 23 for support member 214. As best seen in FIG. 23, the right side A-pillar section has a closed, multi-sided or box cross-section created by support member 214 and second outer panel 116 when joined. Similarly, the left side A-pillar section has a closed, multi-sided or box cross-section created by support member 212 and first outer panel 114 when joined. Support member 212 includes a contoured section 264, an outer flange 266, and an inner flange 268. Contoured section 264 extends between flanges 266, 268 and has a generally U-shape cross-section. Support member 214 includes a contoured section 270, an outer flange 272, and an inner flange 274. Contoured section 270 extends between flanges 272, 274 and has a generally U-shape cross-section.


Support members 216, 218 create parts of corresponding B- pillar sections as illustrated in FIGS. 24-25 for support member 216. Support member 216 includes a contoured section 276, a forward flange 278, and a rearward flange 280. Contoured section 276 extends between flanges 278, 280 and has a generally U-shape cross-section. Contoured section 276 includes a vertical wall 282. Vertical wall 282 is joined to a complementary side wall of second section 152.


Support member 218 includes a contoured section 284, a forward flange 286, and a rearward flange 288. Contoured section 284 extends between flanges 286, 288 and has a generally U-shape cross-section. Contoured section 284 includes a vertical wall 289. Vertical wall 289 is joined to a complementary side wall of second section 152.


Support member 220 extends laterally between and connects ends of support members 212, 214 opposite frame 210 and creates part of a dash/cowl section as illustrated in FIG. 18. As best seen in FIG. 18, the dash/cowl section has a closed, multi-sided or box cross-section created by support member 220, cowl panel 122, and one or both first and second outer panels 114, 116 when joined. Support member 220 includes an upper flange 290, a lower flange 292, a contoured section 294, and end caps 296, 298. Contoured section 294 extends between upper and lower flanges 290, 292 and end caps 296, 298 and generally has a U-shape cross-section. Upper flange 290 is joined to first outer panel 114. Lower flange 292 is joined to floor pan 110. End caps 296, 298 include vertical walls that are joined to floor pan 110. End cap 296 is joined to front wall 142 and side wall 144. End cap 298 is joined to front wall 142 and side wall 146.


First outer panel 114 is joined to floor pan 110 and spider 112. First outer panel 114 hides or covers portions of floor pan 110 and spider 112 when viewed from the exterior (see e.g., FIGS. 3, 12). First outer panel 114 is a single piece part including an inner surface 320 and an outer surface 322. Outer surface 322 includes portions having a Class-A surface. Although first outer panel 114 may be a single part as discussed herein, first outer panel 114 may be segmented into more than one part. For example, first outer part 114 may include a first part including the Class-A surface and a second part including a non-Class-A surface.


First outer panel 114 further includes an A-pillar part 330, a roof panel part 332, a quarter panel part 334, and a rocker panel part 336. Together, A-pillar part 330, roof panel part 332, quarter panel part 334, and rocker panel part 336 create contiguous portions of an outer windshield bond flange 338, an outer door opening flange 339, a rear hatch sealing flange 340, and a lower bonding flange 341. Outer windshield bond flange 338 defines windshield opening 94. Outer door opening flange 339 defines door opening 82. Rear hatch sealing flange 340 defines rear hatch opening 86. Lower bonding flange 341 extends along a lower portion of first outer panel 114 and is used to bond first outer panel 114 to floor pan 110.


A-pillar part 330 extends from forward ends of roof panel part 332 and rocker panel part 336 and includes a portion of inner and outer surfaces 320, 322. In alternate implementations, A-pillar part 330 can be a separate part joining roof panel part 332 and rocker panel part 336. A-pillar part 330 includes a first section 342 at an upper end and a second section 344 at a lower end. First section 342 creates part of an A-pillar section substantially similar to the A-pillar section illustrated in FIG. 23. First section 342 includes a contoured section 346 and flanges 348, 350 (see FIG. 12). Second section 344 extends from first section 342 and includes adjoining wall sections 352, 354, and a tie rail 356. Second section 344 further includes the lower mounting surface for door 30 at location 88b (FIG. 6). Tie rail 356 extends from wall sections 352, 354 and includes a stepped flange 358 at an end opposite wall sections 352, 354.


Roof panel part 332 extends from A-pillar part 330 to an upper end of quarter panel part 334 and includes a portion of inner and outer surfaces 320, 322. Roof panel part 332 further includes a contoured section 380, flanges 382, 384, 386 and tie rails 388, 390. Contoured section 380 extends between flanges 382, 384, 386 and tie rails 388, 390. Contoured section 380 includes the upper mounting surface for door 30 at location 88a (FIG. 6). Flange 382 includes a portion of outer windshield bond flange 338. Flange 384 includes a portion of outer door opening flange 339. Flange 386 defines a portion of roof opening 230. Tie rails 388, 390 include stepped flanges 392, 394, respectively, that join to complementary portions of second outer panel 116 and create a contiguous surface between first and second outer panels 114, 116.


Quarter panel part 334 extends from ends of roof panel part 332 and rocker panel part 336 to rear wall 148 of floor pan 110 and includes a portion of inner and outer surfaces 320, 322. Quarter panel part 334 further includes a contoured section 400, flanges 402, 404, 406, 408, and a tie rail 410. Contoured section 400 extends between flanges 402, 404, 406, 408, and tie rail 410. Contoured section 400 includes an access pocket 412 for receiving a plug (not shown) for charging battery 64. Flange 402 includes a portion of outer door opening flange 339. Flange 404 includes a portion of lower bonding flange 341. Flange 406 includes a portion of rear hatch sealing flange 340. Flange 408 includes a portion of a bonding flange for side glass window 38. Tie rail 410 laterally extends from a rear end of quarter panel part 334 and includes a stepped flange 414 at an inboard end. Stepped flange 414 is joined to complementary portions of second outer panel 116 and creates a contiguous surface between first and second outer panels 114, 116.


Rocker panel part 336 extends between A-pillar part 330 and quarter panel part 334 and creates a rocker section as illustrated in FIG. 22. As best seen in FIG. 22, the rocker section has a closed, multi-sided or box cross-section created by rocker panel part 336 and side wall 144 when joined. The rocker section extends rearward to a location adjacent a rear end of second section 152. Rocker panel part 336 includes a portion of inner and outer surfaces 320, 322. Rocker panel part 336 further includes a contoured section 430 and flanges 432, 434. Contoured section 430 extends between flanges 432, 434. Flange 432 includes a portion of outer door opening flange 339. Flange 434 includes portions of lower bonding flange 341.


Second outer panel 116 is joined to floor pan 110 and spider 112. Second outer panel 116 hides or covers portions of floor pan 110 and spider 112 when viewed from the exterior (see e.g., FIGS. 2-3). Generally, second outer panel 116 is a mirror image of first outer panel 114. Second outer panel 116 is a single piece part including an inner surface 460 and an outer surface 462. First outer panel 114 further includes an A-pillar part 470, a roof panel part 472, a quarter panel part 474, and a rocker panel part 476. Together, A-pillar part 470, roof panel part 472, quarter panel part 474, and rocker panel part 476 create a contiguous second portion of outer windshield bond flange 338 and a contiguous second portion of rear hatch sealing flange 340. A-pillar part 470, roof panel part 472, quarter panel part 474, and rocker panel part 476 further create an outer door opening flange 480 and a lower bonding flange 482. Outer door opening flange 480 defines portions of door opening 84. Lower bonding flange 482 extends along a lower portion of second outer panel 116 and joins a lower portion of second outer panel 116 to floor pan 110.


A-pillar part 470, roof panel part 472, quarter panel part 474, and rocker panel part 476 include features substantially similar to the features of A-pillar part 330, roof panel part 332, quarter panel part 334, and rocker panel part 336 discussed above. Accordingly, for brevity, the differences will be discussed. A-pillar part 470 includes a tie rail 490 substantially similar to tie rail 356, except an end of tie rail 490 is complementary to stepped flange 358. Similarly, roof panel part 472 includes tie rails 492, 494 having ends complementary to stepped flanges 392, 394 of tie rails 388, 390, respectively. Quarter panel part 474 includes a tie rail 496 having an end complementary to stepped flange 414 of tie rail 410.


First closeout panel 118 is joined to floor pan 110, spider 112, and first outer panel 114. Together, first closeout panel 118, floor pan 110, and spider 112 create a B-pillar section as illustrated in FIG. 25. The B-pillar section is coupled to the rocker section created by floor pan 110 and first outer panel 114 illustrated in FIG. 22. As best seen in FIGS. 24-25, the B-pillar section is one of multiple adjoining closed, multi-sided or box cross-sections created by one or more of first closeout panel 118, floor pan 110, spider 112, and first outer panel 114 when joined.


First closeout panel 118 includes a contoured section 500, flanges 502, 504, and a front wall 506. Contoured section 500 extends between flanges 502, 504, and front wall 506. Flange 502 is located at an outboard side and is joined to a complementary portion of inner surface 320. Flange 504 is located at a lower portion and is joined to a complementary adjoining portion of upper surface 134. Front wall 506 extends vertically and is joined to a complementary portion of inner surface 208.


Second closeout panel 120 is joined to floor pan 110, spider 112, and second outer panel 116. Together, second closeout panel 120, floor pan 110, spider 112, and second outer panel 116 create portions of a B-pillar section substantially similar to the B-pillar section illustrated in FIG. 25. The B-pillar section is coupled to a rocker section created by floor pan 110 and second outer panel 116 substantially similar to the rocker section illustrated in FIG. 22.


Second closeout panel 120, when joined along with one or more of floor pan 110, spider 112, and second outer panel 116, creates portions of multiple adjoining closed, multi-sided or box cross-sections similar to those illustrated in FIGS. 24-25 for first closeout panel 118. Second closeout panel 120 includes a contoured section 520, flanges 522, 524, and a front wall 526. Contoured section 520 extends between flanges 522, 524 and front wall 526. Flange 522 is located at an outboard side and is joined to inner surface 460. Flange 524 is located at a lower portion and is joined to a complementary portion of upper surface 134.


Cowl panel 122 extends in a lateral direction and is joined to spider 112, first outer panel 114, and second outer panel 116, thereby creating a portion of a dash/cowl section as illustrated in FIG. 18. Cowl panel 122 includes a contoured section 550 and flanges 552, 554. Contoured section 550 extends between flanges 552, 554. Flange 552 extends along an upper portion and is joined to inner surfaces 320, 460. Flange 554 extends along a lower portion and is joined to support member 220.


Referring to FIGS. 8-17, a preferred method of joining the various panels during assembly of monocoque construction 100 is illustrated. The preferred method includes directly attaching the panels to one another using a structural adhesive. First, as shown in FIG. 8, spider 112 is joined to floor pan 110, thereby creating an underbody assembly 600. More specifically, an adhesive 602 joins front and side portions of support member 220 to complementary portions of front wall 142 and side walls 144, 146. An adhesive 604 joins flanges 278, 280 to side walls 144 and vertical wall 282 to complementary sidewalls of second section 152. Although not specifically shown in FIG. 8, adhesive joins support 218 to floor pan 110 in a similar manner as adhesive 604.


Next, as shown in FIGS. 9-12, first outer panel 114 is joined to floor pan 110 and spider 112. Adhesive 610, 612, 614 joins forward portions of underbody assembly 600 to complementary portions of A-pillar part 330. Adhesive 612, 614 and adhesive 616, 618 joins an upper portion of underbody assembly 600 to roof panel part 332. Adhesive 614, 616 and adhesive 620, 622 joins a portion of underbody assembly 600 to quarter panel part 334.


Next, second outer panel 116 is joined to floor pan 110, spider 112, and first outer panel 114. Second outer panel 116 is joined to the floor pan 110 and spider 112 using structural adhesive in a substantially similar way as described above for first outer panel 114 and thus will not be described in detail. Referring back to FIG. 3, structural adhesive 630, 632, 634, 636 joins tie rails 356, 388, 390, 410 to tie rails 490, 492, 494, 496, respectively.


Next, as shown in FIGS. 13-14, first closeout panel 118 is joined to floor pan 110, spider 112, and first outer panel 114. An adhesive 650 joins flange 502 to inner surface 320. An adhesive 652 joins flange 504 to upper surface 134. An adhesive 654 joins front wall 506 to inner surface 208.


Next, as shown in FIG. 15, second closeout panel 120 is joined to floor pan 110, spider 112, and second outer panel 116. An adhesive 660 joins flange 522 to inner surface 460. An adhesive 662 joins flange 524 to upper surface 134. An adhesive 664 joins front wall 526 to inner surface 208.


Next, with reference to FIGS. 16-17, cowl panel 122 is joined to spider 112, first outer panel 114, and second outer panel 116. An adhesive 670 joins flange 552 to inner surface 320. An adhesive 672 joins flange 554 to inner surface 460.


The present invention is not limited to a particular method for adhesively joining the composite panels of composite body structure 24. Referring now to FIG. 30, a preferred method for joining two panels of composite body structure 24 will now be described. First, two panels 700, 702 to be joined are brought into close proximity using fixtures or tooling 704. While fixtures 704 hold panels 700, 702 in place, a through hole 706 is drilled in one of panels 700, 702 in an area where adhesive is to be used, for example, along a flange. Hole 706 may be drilled by hand using a drill fixture (not shown) or, alternatively, by automated methods. It is also contemplated that hole 706 may be preformed in one of panels 700, 702. A head of an adhesive dispenser 708 is inserted in hole 706 and a desired amount of adhesive 710 is pumped into a gap between panels 700, 702. Once the desired amount is delivered, adhesive dispenser 708 may be removed from panel 702 and adhesive 710 is cured. Depending on the location of adhesive, it may be desired to remove a portion 720 of panels 700, 702 and adhesive 710 to provide a finished surface 722. Additional holes spaced along the area where the adhesive is to be used can be used to create a continuous structural joint between panels 700, 702. The holes can be spaced so that adhesive pumped into the gaps between adjacent holes flows together, creating a continuous bead.


Referring to FIGS. 26-27, cross-sectional views taken along lines 26-26, 27-27 of FIG. 3 illustrate additional A-pillar sections showing a cross-car beam 750 mounted to composite body structure 24 via connections 752. Cross-car beam 750 serves as a support for an instrument panel (not shown) and provides additional lateral structure for resisting a side impact. Cross-car beam 750 can be composed of various materials. For example, cross-car beam can be composed of various metals, such as steel and aluminum. Alternately, or additionally, cross-car beam 750 can be composed of a composite material. Cross-car beam 750 includes a tubular structure 760 extending between and connected to end plates 762. Connections 752 are bolted connections in which portions of floor pan 110, spider 112, and first and second outer panels 114, 116 are held between end plates 762 and hinges 770 supporting doors 30, 32. For example, on the right side of vehicle 10, portions of floor pan 110, spider 112, and second outer panel 116 are held between corresponding end plates 762 and hinges 770 as shown. Bolts 772 secure the connection.


Referring now to FIGS. 31-33, an automotive vehicle composite panel 800 is shown as a multi-layer structure including varying arrangements of a core layer 802 and reinforcement layers 804. During manufacture, reinforcement layers 804 are stacked around core layer 802 and then impregnated with an epoxy resin 806, so as to provide a composite structure having enhanced structural properties. In various implementations, core layer 802 may include a non-woven, polyester polymer having a honeycomb configuration created by high density columnar formations interconnected by low density channels. The low density channels provide pathways for impregnating epoxy resin 806. Alternate core materials and configurations can be employed, such as a low resin consumption fabric, a random-dot printed fabric, a polyethylene, a polypropylene, a polyvinyl chloride, a thermoformable foam, a nylon, foamed polymers, wood-based materials, and the like. In various implementations, reinforcement layers 242, 244, 246, 248 include fibers substantially composed of a glass material (i.e., glass fibers) and free of carbon fiber.


A first structural region 810 of composite panel 800 includes core layer 802 sandwiched between reinforcement layers 804 with epoxy resin 806 interspersed therebetween. This arrangement mechanically secures core layer 802 to reinforcement layers 804, while still providing epoxy resin 806 as a high gloss, Class-A finish on an outer surface 812. A second structural region or flange 814 is contiguous with first structural region 810 and is located around the perimeter of composite panel 800. Flange 814 includes only reinforcement layers 804 impregnated with epoxy resin 806. Removal of core layer 802 provides flange 814 with a reduced weight and thickness as compared to first structural region 810. The arrangement of flange 814 provides a finished end to composite panel 800, but also provides a region for securement to other materials and components, such as, secondary composite panels, metallic flanges, etc. These additional components can be secured to flange 814 by securing an attachment mechanism therewith.


Various laminar structures can be used with composite panel 800. For example, FIG. 32 illustrates a laminar structure 820, typically used for flange 814. Laminar structure 820 includes multiple layers of carbon-free fiber material 822. Laminar structure 820 may optionally include a veil sheet 824 and/or a paint layer 826. If used, veil sheet 824 is located immediately adjacent carbon-free fiber material 822 and within cured epoxy resin material. Accordingly, veil sheet 824 is disposed between paint layer 826 and corresponding carbon-free fiber material 822. Veil sheet 824 assists in preventing print-through of carbon-free fiber material 822, while still offering abrasion and impact resistance. Paint layer 826 is adhered to outer surface 812 of composite panel 800 for providing a high gloss, Class-A surface on composite panel 800, thereby allowing composite panel 800 to be used as an exterior surface. As should be understood, veil sheet 824 and/or paint layer 826 are only provided as an optional configuration.


Referring now to FIG. 33, certain elements may be secured to composite panel 800 during vehicle assembly. For example, a second composite panel 830 may be secured to composite panel 800 with a fastener arrangement 832. Fastener arrangement 832 may include a bolt 834 and a washer or hardware 836 in contact with composite panel 800 at a reduced thickness laminar region. A nut 840 and a washer or hardware 842 may be secured to bolt 834 so as to be in contact with second composite panel 830. While securement of similarly designed composite panels 800, 830 is described, it should be understood that various other components may also be secured to composite panel 800 with fastener arrangement 832 in substantially the same manner.


The foregoing description of the embodiments has been provided for purposes of illustration and description. It is not intended to be exhaustive or to limit the disclosure. Individual elements or features of a particular embodiment are generally not limited to that particular embodiment, but, where applicable, are interchangeable and can be used in a selected embodiment, even if not specifically shown or described. It is intended by the following claims to cover these and any other departures from the disclosed embodiments which fall within the true spirit of this invention.

Claims
  • 1. An automotive vehicular structure for a passenger compartment, the structure comprising: a composite roof frame; andelongated composite support members integral to and extending from the roof frame as a single piece.
  • 2. The automotive vehicular structure of claim 1, wherein the roof frame includes a pair of side rails extending in a first direction and a pair of header rails coupled to the side rails and extending in a second direction substantially transverse to the first direction.
  • 3. The automotive vehicular structure of claim 2, wherein at least one of the side rails and the header rails includes a contoured section laterally extending from flanges.
  • 4. The automotive vehicular structure of claim 3, wherein the contoured section has a U-shape.
  • 5. The automotive vehicular structure of claim 1, wherein the support members extend from corners of the roof frame.
  • 6. The automotive vehicular structure of claim 1, wherein at least one of the support members directly attaches to at least one of a windshield mounting flange and a door opening sealing flange.
  • 7. The automotive vehicular structure of claim 6, wherein the at least one of the support members directly attaches to both the windshield mounting flange and the door opening sealing flange.
  • 8. The automotive vehicular structure of claim 1, wherein at least one of the support members creates portions of an A-pillar section.
  • 9. The automotive vehicular structure of claim 1, wherein at least one of the support members creates portions of a B-pillar section.
  • 10. The automotive vehicular structure of claim 1, wherein the roof frame creates portions of a header section disposed over one of a windshield opening and a door opening, and the roof frame is stationarily located above the passenger compartment, further comprising an outer roof panel externally attached above at least a portion of the roof frame.
  • 11. The automotive vehicular structure of claim 1, wherein the roof frame and the support members are entirely composed of composite materials free of carbon fiber.
  • 12. The automotive vehicular structure of claim 1, wherein at least one of the roof frame and the support members directly attaches to an outer body panel.
  • 13. A automotive vehicular structure for a passenger compartment, the structure comprising: a composite roof frame member including side rails and header rails extending between the side rails;elongated composite pillars integral to and extending from the roof frame member adjacent corners where the side rails and the header rails meet, two of the pillars defining portions of a windshield opening; andan elongated lateral member extending between ends of the two pillars opposite the header rails, the lateral member being integral to the two pillars and defining another portion of the windshield opening.
  • 14. The automotive vehicular structure of claim 13, wherein the roof frame member, the two pillars, and the lateral member create a continuous flange defining the windshield opening.
  • 15. The automotive vehicular structure of claim 14, wherein the flange directly attaches to a windshield mounting flange.
  • 16. The automotive vehicular structure of claim 13, wherein the roof frame member, the pillars, and the lateral member create a contiguous flange defining a substantial portion of a door opening adjacent the windshield opening.
  • 17. The automotive vehicular structure of claim 16, wherein the flange directly attaches to a door seal mounting flange.
  • 18. The automotive vehicular structure of claim 13, wherein the side rails and the pillars have U-shaped cross sections.
  • 19. The automotive vehicular structure of claim 13, wherein the pillars extend from the corners where the side rails and the header rails meet.
  • 20. The automotive vehicular structure of claim 13, wherein at least one of the pillars creates a substantial portion of a B-pillar.
  • 21. The automotive vehicular structure of claim 13, wherein the roof frame member, the pillars, and the lateral member are entirely composed of composite materials free of carbon fiber.
  • 22. The automotive vehicular structure of claim 13, wherein the side rails and header rails are a single piece which is a fiber reinforced and resin encapsulated composite material, further comprising an exterior body panel externally covering at least a majority of the roof frame member.
  • 23. An automotive vehicular apparatus for a passenger compartment, the structure comprising: a composite internal roof structure creating part of at least a first box-cross-section;composite structural front pillars extending from the roof structure and creating part of at least a structural second box-cross-section; andcomposite structural rear pillars extending from the roof structure and creating part of at least a structural third box-cross-section, the roof structure and the pillars all being rigidly affixed together as part of an automotive vehicle having a driving motor selected from one of (a) an electric drive motor, and (b) a hybrid electric drive motor and a liquid fuel motor.
  • 24. The automotive vehicular apparatus of claim 23, further comprising a structural lateral member rigidly affixed between ends of two of the pillars.
  • 25. The automotive vehicular apparatus of claim 24, wherein the roof structure, the two pillars, and the lateral member create a contiguous flange defining a windshield opening.
  • 26. The automotive vehicular apparatus of claim 25, wherein the flange directly attaches to a windshield mounting flange.
  • 27. The automotive vehicular apparatus of claim 23, wherein the roof structure and the pillars create a contiguous flange defining a substantial portion of a door opening adjacent a windshield opening.
  • 28. The automotive vehicular apparatus of claim 27, wherein the flange directly attaches to a door seal mounting flange.
  • 29. The automotive vehicular apparatus of claim 23, wherein the roof structure and the pillars are a single piece which is a fiber reinforced and resin encapsulated material.
  • 30. The automotive vehicular apparatus of claim 23, wherein the roof structure has an opening centrally defined between side rails and header rails.
  • 31. A method of assembling a lightweight, electric or hybrid-electric vehicle, the method comprising: attaching a composite structural roof frame to exterior body panels, the roof frame comprising header and side rails created as a single piece;attaching composite structural A-pillars to the body panels; andhiding at least a majority of the roof frame and A-pillars with the body panels, the roof frame and the A-pillars being a fiber reinforced resin.
  • 32. The method of claim 31, further comprising: creating structural box-sections with the roof frame and the A-pillars as internal segments and the exterior body panels as outer segments.
  • 33. The method of claim 31, further comprising: providing the roof frame and the A-pillars as a single piece prior to their attachment to a remainder of the vehicle.
  • 34. The method of claim 31, further comprising: creating a contiguous windshield support structure defining a windshield opening by attaching a laterally elongated composite structural member between ends of the A-pillars opposite the roof frame.
CROSS-REFERENCE TO RELATED APPLICATIONS

This application claims the benefit of U.S. Provisional Application No. 61/408,536, filed on Oct. 29, 2010. The entire disclosure of the above application is incorporated herein by reference.

Provisional Applications (1)
Number Date Country
61408536 Oct 2010 US