Automotive vehicle seating comfort system

Information

  • Patent Grant
  • 7506938
  • Patent Number
    7,506,938
  • Date Filed
    Thursday, August 31, 2006
    18 years ago
  • Date Issued
    Tuesday, March 24, 2009
    15 years ago
Abstract
The present invention provides an automotive vehicle seating comfort system, and method of forming thereof, for providing heating, cooling, ventilation or a combination thereof to an individual in an automotive car seat. In one configuration, the system includes an insert, a blower and a tubular structure for providing fluid communication between the insert and blower for providing ventilation and/or cooling for the individual. Additionally, in one preferred configuration, the insert includes a heater or heater layer for providing heat for the individual.
Description
FIELD OF THE INVENTION

The present invention relates generally to automotive vehicle seats, and more particularly to seating comfort system for providing heating, cooling, ventilation or a combination thereof to an occupant of a seat of an automotive vehicle.


BACKGROUND OF THE INVENTION

For many years the transportation industry has been concerned with designing seats for automotive vehicles that provide added comfort to occupants in the seats. Various innovations in providing seating comfort are discussed in U.S. Pat. Nos. 6,064,037; 5,921,314; 5,403,065; 6,048,024 and 6,003,950, all of which are expressly incorporated herein by reference for all purposes. In the interest of continuing such innovation, the present invention provides an improved seating system, insert for a seat or both, which are preferably suitable for employment within or as part of an automotive vehicle seat and which assist in providing comfort control to an occupant in the seat.


There is believed to be a need for an improved system for seating comfort pursuant to which an insert (which is not encapsulated or otherwise sealed along its edges) is provided for performing the seating comfort functions. There is also believed to be a need for a system in which a blower is employed for applying positive pressure to blow air with a comfort system.


SUMMARY OF THE INVENTION

Accordingly, the present invention provides a ventilated seat having a seating comfort system. The vehicle seat includes a seat cushion component and a seat backrest component, at least one of which provides a seat cushion and an air-permeable trim surface at the occupant contact areas of the seat. The system includes an insert located beneath the trim surface of each ventilated component. The insert includes a first layer having a heater integrated therein and a second layer formed of spacer material wherein the second layer defines an open space. The system also includes a positive pressure blower in fluid communication with the insert for moving air through the open space and at least partially past an occupant in the seat. A tubular structure is preferably provided in the system for providing the fluid communication between the insert and the fluid mover.





BRIEF DESCRIPTION OF THE DRAWINGS

The features and inventive aspects of the present invention will become more apparent upon reading the following detailed description, claims and drawings, of which the following is a brief description:



FIG. 1 is a cut-away perspective view of a vehicle seat having a comfort system in accordance with an exemplary aspect of the present invention,



FIG. 2 is a sectional view of a portion 2-2 of the vehicle seat of FIG. 1;



FIG. 3 is a view of a seat cushion suitable for use in a comfort system in accordance with an exemplary aspect of the present invention where the passageway and sub-passageways may be on the occupant surface, the lower surface or otherwise in the seat cushion; and



FIG. 4 is a perspective view of an exemplary blower housing suitable for application in the system of the present invention.





DETAILED DESCRIPTION OF THE INVENTION

The present invention is predicated upon providing a seating system for an automotive vehicle wherein the system is configured to provide heating, cooling, ventilation or a combination thereof to an occupant in a seat. The system will typically include an insert having a heater and a fluid or air blower (preferably one in which fluids are displaced by blowing under a positive pressure). The system may also include a structure for facilitating fluid communication between the insert and the blower. The insert will typically include at least one layer, but more typically includes multiple (e.g., two or three or more) layers. One of the layers incorporates a heater and is therefore referred to herein as a heater layer. Preferably, one or more of the layers is a spacer layer for providing open space for fluid flow within and through the insert.


Referring to FIGS. 1 and 2, there is illustrated a vehicle seat 10 having a pair of exemplary seating comfort systems 12, 14 according to a preferred aspect of the present invention. As shown, one system 12 may be located in a seat cushion component 16 of the seat 10 while the other system 14 may be located in a seat backrest component 18 of the seat 10. Either of the systems may be omitted as well. The systems 12, 14 are substantially identical to each other, and therefore, the discussion shall focus on the system 12 in the seat cushion component 16 of the seat 10. It shall be understood, however, that multiple systems may be employed in one seat and the systems may be associated with or incorporated into the seat cushion component 16, the seat backrest component 18, other portions of the seat 10 or a combination thereof.


The system 12 includes a fluid mover shown as a blower 22 in fluid communication with an insert 24 via a duct (e.g., a tubular structure) 26. By “tubular” as used herein, the shape of the tube may vary and can be rounded, have edges, corners or the like. The insert 24 typically includes multiple layers laminated together and preferably includes a heater for providing warmth to a seat occupant and an open space for ventilation fluid flow. In the preferred embodiment. the insert 24 includes a heater layer 28 and a spacer layer 30 which are laminated and adhered together with an adhesive or adhesive layer 32. A preferred construction is one in which the insert is open at its sides and is not encapsulated.


Various different types of heaters are suitable for incorporation into a car seat and it is contemplated that any of such heaters may be incorporated into the insert 24 of the present invention. Such heaters typically incorporate flexible electrical substantially flat heating elements. As examples, a lay-wire heater, a carbon fiber heater or the like, which are typically supported with a backing (e.g. a cloth or fabric type backing) may be used within the insert. In a preferred embodiment, the heater layer 28 is a carbon fiber type heater with a backing (e.g., a non-woven layer). Preferably, the heater layer, the backing or both are breathable for allowing air to pass therethrough. One exemplary preferred heater is sold under the tradename CARBOTEX® and is commercially available from W.E.T. Automotive Systems, Inc. in Germany and/or FTG Fraser-Technik GmbH, Schleizer Strasse 56-58, D-95028 Hot/Saale, Germany. An example of such a heater is disclosed in U.S. Pat. No. 6,064,037, issued May 16, 2000, herein expressly incorporated by reference for all purposes.


It is contemplated that a buffer layer may be incorporated into the insert 24 adjacent the heater layer 28. Preferably, the buffer layer is a layer of gauze which is capable of protecting the heater layer 24 although various alternative protective materials may be used such as cloth, fleece or the like. Just like the other layers, it is preferable that the buffer layer is breathable or permeable for allowing fluid flow therethrough.


The adhesive of the insert 24 may be supplied in layers, drops or in a variety of other configurations. In the preferred embodiment depicted, the adhesive layer 32 of the insert 24 is disposed between the heater layer 28 and the spacer layer 30 for adhering the layers 28, 30 together. The adhesive layer 32 is preferably formed of a hot melt adhesive, although it is not necessarily required, and may be other adhesives as well. The adhesive may be provided as a web or otherwise and may be continuous or non continuous (e.g., may be applied in drops, dabs or the like). The adhesive layer 32 may include an adhesive selected from polyamides, polyesters, elastomers, vinyl acetates. acrylics urethanes, olefin polymers or a combination thereof. Moreover, the adhesive may be formulated as desired for particular processing parameters or conditions. Preferably, the adhesive layer is substantially free of anti-blocking solutions, blowing additives, process contaminants or the like which might interfere with adhesive performance. As an example, one suitable hot melt adhesive is commercially available as a non-woven web under the tradename SPUNFAB® from Spunfab, Ltd. 175 Muffin Lane, Cuyahoga Falls, Ohio 44223.


The spacer layer 30 is preferably formed of a spacer material. The spacer material may be provided as a variety of synthetic materials such as plastic or polymeric materials, padding and stuffing materials, lining and carrier materials or the like. Preferably, the spacer material provides open space within the layer 30 while remaining at least partially pliable or flexible. As one example, the spacer layer may be provided as a plurality of rubber, foam plastic or other members or fibers. The members or fibers are preferably spaced apart from each other to provide open space therebetween while still being close enough together to provide cushion and support. As another example the spacer layer 30 may be formed of a 3-dimensional spacer fabric structure or material.


In the preferred embodiment depicted, the spacer layer 30 is formed of polymeric (e.g., polyester) strand material that is interwoven to provide opposing honeycomb structures 36 (e.g., fabric panels), which are interconnected by several additional polymeric strand materials to provide open space 38 between the structures 36 while still providing cushion and support. As an example, one preferred material is sold under the tradename 3MESH® and is commercially available from Müller Textiles GmbH, Germany or Müller Textiles, Inc., Rhode Island, USA. In a particularly preferred embodiment, one or more of the honeycomb structures 36 include a finer filament polymeric strand material than the rest of spacer layer 30 for assisting adhesion of the spacer layer 30 to other materials.


The blower 22 of FIGS. 1 and 2, a housing 40 of which is shown in FIG. 4 (e.g., adapted for snap fit connection to a mounting surface), may be positioned in a variety of locations within or outside the seat 10. Moreover, it is contemplated that the blower 22 may be secured to the seat 10 or to other vehicle components with a variety of attachments (e.g. fasteners, sewing, mating threaded attachments, quick connects snap fits or the like). Further, it is contemplated that the blower 22 may include fingerguards, deflectors or the like.


The tubular structure 26 may be supplied in a variety of configurations and may be integrated with or separate from a variety of components (e.g., the seat, the insert, the blower or the like) and preferably provides for fluid communication between the insert 24 and the blower 22. As an example, it is contemplated that the tubular structure 26 may be integrated into portions of the seat 10 such as the foam cushions, As an alternative example, the tubular structure may be supplied as a separate component (e.g., a separate preferably flexible tube). As still another alternative example, the tubular structure may be integral with the insert 24, the blower 22, the seat 10 or a combination thereof. It is also contemplated that the tubular structure may be provided as a combination of any of the above examples.


In FIGS. 1 and 2, the tubular structure 26 is provided by a foam cushion 34 of the seat 10 and the structure 26 defines a passageway 50 (e.g., through-hole) extending through the foam cushion 54 for interconnecting the insert 24 and the blower 22 and providing fluid communication therebetween. As shown, particularly in FIG. 1, such a tubular structure 26, (e.g., including an enlarged passageway 50) may extend through the foam cushion in either the seat cushion component 16 or the seat backrest component 18 of the seat 10. In the embodiment depicted, fluid communication between the tubular structure 26 and the blower 22 and fluid communication between the tubular structure 26 and the insert 24 are substantially direct, however, such is not necessarily required. In a highly preferred embodiment, a portion of a wall of the tubular structure 26 nearest the forward edge of the seat cushion component 16 is at an angle between about 20 degrees and about 60 degrees (e.g., about 45 degrees) relative to another portion of the wall of the tubular structure 26 that is nearest a rearward edge of the seat cushion component 16.


Preferably, the tubular structure 26 provides a substantially fluid-tight (e.g., air tight) connection with the insert 24. To aid in this, the enlarged portion 50 may be formed, in dense form or as a foam. The walls of the tubular structure 26 are preferably coated or lined with a densified layer, such as by providing the tubular structure 26 (e.g., foam walls) with a coating such as a silicon coating, or by providing the tubular structure 26 with a lining (e.g., a polymer lining, a tape lining or the like).


As an additional option, the system 10 of the present invention may include one or more additional sub-passageways or openings for assisting in guiding fluid flow between the blower 22 and the insert 24. The sub-passageways may be defined by structures separate from the seat 10 or the insert 24 or may be integral therewith. In FIG. 3, a plurality of sub-passageways 60 are supplied as channels that are formed in the foam cushion 54, whether on the occupant surface, the lower surface or otherwise in the seat cushion. Preferably, the sub-passageway 60 extends radially away from the passageway 50 through the cushion 54. Also, as shown in FIG. 3, it is contemplated that a deflector 66 (e.g., a strip of tape) may be placed over the passageway 50 of the cushion 54 for assisting in directing fluid radially away from the passageway 50 and particularly through the sub-passageways 60.


The insert 24 is preferably assembled to the seat 10 by placing the insert 24 in overlaying relation with the cushion 54 such that the insert 24 covers the passageway 50, the sub-passageways 60 or both. In the depicted embodiment, a support 70 (e.g., a plastic panel with through-holes extending therethrough) is placed over the passageway 50 for providing continuity of support along with the cushion 54. The insert 24 is then placed within one or more cavities 74 in the cushion 54.


The insert 24 may be positioned upon the cushion 54 in a pre-assembled condition or the components or layers (e.g., the spacer layer, the adhesive layer, the heater layer or combinations thereof) may be applied separately. In a preferred embodiment, the spacer layer 30 is laminated to the heater layer 28 with the adhesive layer 32 therebetween to adhere the spacer layer 30 to the heater layer 28. It is contemplated that lamination may be effected by feeding the various layers 28, 30, 32 to a laminator (e.g., a belt and roller laminator, a stationary laminator or the like) or otherwise. If desired, the insert 24 may be adhered, fastened or otherwise attached to the cushion 54 of the seat 10.


One or more trim layers 80, 82 are assembled to the seat 10 to cover the cushion 54, the insert 24 or both. Preferably, the trim layers 80, 82 are fluid (e.g., air) permeable or breathable. In the preferred embodiment, the system 12 includes an outer trim layer 80 of permeable (e.g., perforated) leather or cloth and an inner trim layer 82 that is formed of a breathable padding material. As shown. the heater layer 28 is preferably closer to the trim layers 80, 82 than the spacer layer 30 although not required.


Operation


In operation, the system 10 of the present invention can preferably provide heating, cooling, ventilation or a combination thereof to an occupant of a seat having the system 10. In particular, if heat is desired, electric current can be induced to travel through the heater layer 28 by a control unit 90 or otherwise such that the heater layer 28 can provide heat to the occupant.


Alternatively, if cooling or ventilation is desired, the blower 22 can be operated via the control unit 90 or otherwise to blow air through the passageway 50, the sub-passageways 60 or both and through the open space 38 of the spacer layer 30 of the insert 24. Such air preferably flows at least partially past the occupant of the seat before or after flowing through the trim layers 80, 82 thereby providing ventilation to the occupant and providing convective heat transfer away from the occupant via the flowing air.


Although, it may be preferable for only the heater layer 28 or the ventilation system (i.e., the blower 22) to be running at one time, it is contemplated that both may be operated simultaneously. Moreover, it is contemplated that both the heater layer 28 and the ventilation system may be operated at various levels (e.g., 2, 3 or more levels of output) such as by having a blower that can operate at different levels or by having various levels of electricity flowing through the heater layer 28. It is also contemplated that the blower 22 may pull air into the open space 38, the passageway 50, the sub-passageways 60 or a combination thereof as well as pushing air into the open space 38, the passageway 50, the sub-passageways 60 or a combination thereof,


It is also contemplated that one or more temperature sensors (e.g., a thermostat) may be included in the seating comfort system. Typically, any temperature sensors are near the trim layers 80, 82 for sensing a temperature closely related to (e.g., at or near) a temperature being experienced by an individual in the seat. In a preferred embodiment, one or more temperature sensors are positioned upon the heater layer 28 or upon the heater element of the heater layer. Also in the preferred embodiment the one or more temperature sensors are in signaling communication with the control unit 90 such that the control unit 90 can control the blower 22, the heater layer 28 or both for attaining or maintaining a desired temperature at areas adjacent the individual and/or the temperature sensor.


In the preferred embodiment shown, the comfort control system 10 includes a temperature sensor 110 just below the trim layers 80, 82 and in signaling communication with the control unit 90. Advantageously, the control unit 90 is programmed to instruct the system 10 to provide less heat and even cooling in situations where the sensor 110 senses a temperature above one or more predetermined threshold levels. In operation, the control unit 90 may be programmed to instruct the system to provide less cooling or even heating when the sensor 110 senses a temperature below one or more predetermined threshold levels. In a preferred operation mode, when the blower 22 is providing ventilation, the control unit 90 is programmed to instruct the heater layer 28 to turn on and provide heat while the blower 22 remains on if a first undesirably low predetermined temperature is sensed by the sensor 110. Then, if a second predetermined temperature is sensed below the first predetermined temperature, the control unit 90 instructs the blower 22 to turn off while the heater layer 28 continues to provide heat. For each of these situations, the heater layer 28 will typically be instructed by the control unit 90 to continue to provide heat until the temperature sensed by the sensor 110 is at or above the first predetermined temperature and may provide heat until a third predetermined temperature above the first predetermined temperature is sensed,


In another preferred operation mode, when the heater layer 28 is providing heat, the control unit 90 is programmed to instruct the blower 22 to turn on and blow air while the heater layer 28 remains on if a first undesirably high predetermined temperature is sensed by the sensor 110. Then, if a second predetermined temperature is sensed above the first predetermined temperature, the control unit 90 is programmed to instruct the heater layer 28 to turn off while the blower 22 continues to blow air. For each of these situations, the blower 22 will typically be instructed by the control unit 90 to continue to blow air until the temperature sensed by the sensor 110 is at or below the first predetermined temperature and may blow air until a third predetermined temperature below the first predetermined temperature is sensed.


Unless stated otherwise, dimensions and geometries of the various embodiments depicted herein are not intended to be restrictive of the invention, and other dimensions or geometries are possible. Plural structural components step can be provided by a single integrated structure or step. Alternatively, a single integrated structure step might be divided into separate plural components or steps, However, it is also possible that the functions are integrated into a single component or step.


In addition, while a feature of the present invention may have been described in the context of only one of the illustrated embodiments, such feature may be combined with one or more other features of other embodiments, for any given application. It will also be appreciated from the above that the fabrication of the unique structures herein and the operation thereof also constitute methods in accordance with the present invention.


It is understood that the above description is intended to be illustrative and not restrictive. Many embodiments as well as many applications besides the examples provided will be apparent to those of skill in the art upon reading the above description. The scope of the invention should, therefore, be determined not with reference to the above description, but should instead be determined with reference to the appended claims, along with the full scope of equivalents to which such claims are entitled. The disclosures of all articles and references, including patent applications and publications, are incorporated by reference for all purposes. The omission in the following claims of any aspect of subject matter that is disclosed herein is not a disclaimer of such subject matter, nor should it be regarded that the inventors did not consider such subject matter to be part of the disclosed inventive subject matter.

Claims
  • 1. A ventilation seat for a vehicle, comprising: an air permeable outer trim layer;a shaped foam body having an upper surface adjacent an occupant surface and a lower surface opposite the occupant surface, the foam body comprising part of a seat cushion or a seat back rest and located below the trim layer, the shaped foam body includes at least one airflow passageway extending through the shaped foam body between the upper surface to the lower surface;an insert disposed between the shaped foam body and the trim layer, the insert including: a spacer layer providing fluid flow between the at least one airflow passageway and the air permeable outer trim layer, andat least one adhesive layer,wherein the insert is adhered to the upper surface of the shaped foam body, and wherein the spacer layer is formed of a spacer material that has a top surface, a bottom surface and a side surface that is generally perpendicular to and connects the top and bottom surfaces and wherein the side surface is fluidly open;an air mover in fluid communication with the shaped foam body, insert and trim layer; anda tubular structure providing fluid communication between the air mover and the shaped foam body.
  • 2. The seat of claim 1, further comprising an insert support located over the airflow passageway.
  • 3. The seat of claim 2, wherein the insert support comprises a panel with through-holes extending therethrough.
  • 4. The seat of claim 1, further comprising a deflector placed over the at least one airflow passageway.
  • 5. The seat of claim 1, wherein the upper surface of the shaped foam body defines a recess for receiving the insert.
  • 6. The seat of claim 1, wherein the tubular structure extends at least partially through the shaped foam body.
  • 7. The seat of claim 1, wherein the air mover comprises a blower that is attached to the seat.
  • 8. The seat of claim 1, wherein the insert further includes a temperature sensor for sensing a temperature closely related to a temperature being experience by an occupant of the seat cushion or back rest.
  • 9. The seat of claim 1, further comprising a programmable controller for controlling the air mover.
  • 10. A ventilation seat for a vehicle, comprising: an air permeable outer trim layer;a shaped foam body having an upper surface adjacent an occupant surface and a lower surface opposite the occupant surface, the foam body comprising part of a seat cushion or a seat back rest and located below the trim layer, the shaped foam body includes at least one airflow passageway extending through the shaped foam body between the upper surface to the lower surface;an insert disposed between the shaped foam body and the trim layer, the insert including: spacer layer providing fluid flow between the at least one airflow passageway and the air permeable outer trim layer, wherein the spacer layer comprises a polymeric strand material interwoven to provide opposing honey honeycomb structures, andat least one adhesive layer,wherein the insert is adhered to the upper surface of the shaped foam body;an air mover in fluid communication with the shaped foam body, insert and trim layer; anda tubular structure providing fluid communication between the air mover and the shaped foam body,wherein the insert includes a generally vertical side surface that spans between a top and a bottom surface of the insert and which is fluidly open.
  • 11. A ventilation seat for a vehicle, comprising: an air permeable outer trim layer;a shaped foam body having an upper surface defining a recess adjacent an occupant surface and a lower surface opposite the occupant surface, the foam body comprising part of a seat cushion or a seat back rest and located below the trim layer, the shaped foam body includes at least one airflow passageway extending through the shaped foam body between the upper surface to the lower surface;an insert disposed in the recess and between the shaped foam body and the trim layer, the insert including: a spacer layer providing fluid flow between the at least one airflow passageway and the air permeable outer trim layer, wherein the spacer layer comprises a polymeric strand material interwoven to provide opposing honey honeycomb structures, andat least one adhesive layer,wherein the insert is adhered to the upper surface of the shaped foam body and includes a generally vertical side surface that spans between a top and a bottom surface of the insert and sides which is fluidly open;a heater for providing warmth to an occupant of the seat cushion or back rest;a temperature sensor for sensing a temperature closely related to a temperature being experience by an occupant of the seat cushion or back rest;an insert support located over the airflow passageway, the insert support comprising a panel with through-holes extending therethrougha deflector placed over the at least one airflow passageway;a blower mounted to the seat and being in fluid communication with the shaped foam body, insert and trim layer;a tubular structure extending at least partially through the shaped foam body, the tubular structure providing fluid communication between the air mover and the shaped foam body; anda programmable controller for controlling functions of the heater and blower.
  • 12. A ventilation seat for a vehicle, comprising: an air permeable outer trim layer;a shaped foam body having an upper surface adjacent an occupant surface and a lower surface opposite the occupant surface, the foam body comprising part of a seat cushion or a seat back rest and located below the trim layer, the shaped foam body includes at least one airflow passageway extending through the shaped foam body;an insert disposed between the shaped foam body and the trim layer, the insert including: spacer layer providing fluid flow between the at least one airflow passageway and the air permeable outer trim layer, wherein the spacer layer comprises a polymeric strand material interwoven to provide opposing honey honeycomb structures, anda heater layer for providing heat to an occupant of the seat cushion or set back rest, the heater layer located adjacent the spacer layer,at least one adhesive layer for bonding the spacer layer and the heater layer,wherein the insert is adhered to the upper surface of the shaped foam body, and wherein the spacer layer is formed of a spacer material that includes a generally vertical side surface that spans between a top and a bottom surface of the spacer layer and the side surface is open at its sides to allow fluid flow therethrough; andan air mover in fluid communication with the insert and trim layer.
  • 13. The seat of claim 12, wherein the heater comprises a lay-wire heater or a carbon fiber heater.
  • 14. The seat of claim 12, wherein the insert includes sides which are fluidly open.
  • 15. The seat of claim 12, further comprising a tubular structure extending at least partially through the shaped foam body to fluidly connect the air mover and the insert.
  • 16. The seat of claim 12, wherein the insert further includes a temperature sensor for sensing a temperature closely related to a temperature being experienced by an occupant of the seat cushion or back rest.
  • 17. The seat of claim 12, further comprising a programmable controller for controlling the air mover and the heater layer.
CLAIM OF PRIORITY

The present invention is a continuation of U.S. application Ser. No. 11/186,076, filed on Jul. 21, 2005 now U. S. Pat. No. 7,131,689, which is a continuation of U.S. application Ser. No. 11/077,440, filed Mar. 10, 2005 now U.S. Pat. No. 7,083,227, which is a continuation of U.S. application Ser. No. 10/681,555 filed Oct. 8, 2003 now U.S. Pat. No. 6,869,139, which is a continuation of U.S. application Ser. No. 10/463,052 filed Jun. 17, 2003 now U.S. Pat. No. 6,857,697, which claims the benefit of U.S. Provisional Applications Ser. No. 60/407,198 filed Aug. 29, 2002 and which claims benefit of U.S. Provisional Application Ser. No. 60/428,003 filed Nov. 21, 2002, the contents of which are incorporated by reference herein for all purposes.

US Referenced Citations (285)
Number Name Date Kind
374424 Ober Dec 1887 A
390154 Beach Sep 1888 A
1370832 Mollberg Mar 1921 A
1439681 Alkaire et al. Dec 1922 A
1475912 Williams Nov 1923 A
1514329 Metcalf Nov 1924 A
1537460 Campbell et al. May 1925 A
1541213 Harley Jun 1925 A
1593066 Gaston Jul 1926 A
1664636 Mayer Apr 1928 A
1837515 Bachrach Dec 1931 A
1936960 Bowman Nov 1933 A
2022959 Gordon Dec 1935 A
2103553 Reynolds Dec 1937 A
2158801 Petterson May 1939 A
2336089 Gould Dec 1943 A
2493303 McCullough Jan 1950 A
2544506 Kronhaus Mar 1951 A
2703134 Mossor Mar 1955 A
2749906 O'Connor Jun 1956 A
2758532 Awe Aug 1956 A
2782834 Vigo Feb 1957 A
2791956 Guest May 1957 A
2826135 Benzick Mar 1958 A
2912832 Clark Nov 1959 A
2931286 Fry, Sr. et al. Apr 1960 A
2976700 Jackson Mar 1961 A
2978972 Hake Apr 1961 A
2992604 Trotman et al. Jul 1961 A
2992605 Trotman et al. Jul 1961 A
3030145 Kottermann Apr 1962 A
3101037 Taylor Aug 1963 A
3101660 Taylor Aug 1963 A
3127931 Johnson Apr 1964 A
3131967 Spaulding May 1964 A
3136577 Richard Jun 1964 A
3137523 Karner Jun 1964 A
3162489 Trotman Dec 1964 A
3209380 Watsky Oct 1965 A
3486177 Marshack Dec 1969 A
3529310 Olmo Sep 1970 A
3550523 Segal Dec 1970 A
3552133 Lukomsky Jan 1971 A
3628829 Hellig Dec 1971 A
3638255 Sterrett Feb 1972 A
3653589 McGrath Apr 1972 A
3653590 Elsea Apr 1972 A
3681797 Messner Aug 1972 A
3684170 Roof Aug 1972 A
3732944 Kendall May 1973 A
3736022 Radke May 1973 A
3738702 Jacobs Jun 1973 A
3757366 Sacher Sep 1973 A
3770318 Fenton Nov 1973 A
3778851 Howorth Dec 1973 A
3948246 Jenkins Apr 1976 A
4002108 Drori Jan 1977 A
4043544 Ismer Aug 1977 A
4044221 Kuhn Aug 1977 A
4060276 Lindsay Nov 1977 A
4065936 Fenton et al. Jan 1978 A
4072344 Li Feb 1978 A
4141585 Blackman Feb 1979 A
4175297 Robbins et al. Nov 1979 A
4245149 Fairlie Jan 1981 A
4259896 Hayashi et al. Apr 1981 A
4268272 Taura May 1981 A
4335725 Geldmacher Jun 1982 A
4379352 Hauslein et al. Apr 1983 A
4391009 Schild et al. Jul 1983 A
4413857 Hayashi Nov 1983 A
4509792 Wang Apr 1985 A
4563387 Takagi et al. Jan 1986 A
4572430 Takagi et al. Feb 1986 A
4589656 Baldwin May 1986 A
4665707 Hamilton May 1987 A
4671567 Frobose Jun 1987 A
4685727 Cremer et al. Aug 1987 A
4712832 Antolini et al. Dec 1987 A
4729598 Hess Mar 1988 A
4777802 Feher Oct 1988 A
4847933 Bedford Jul 1989 A
4853992 Yu Aug 1989 A
4866800 Bedford Sep 1989 A
4905475 Tuomi Mar 1990 A
4923248 Feher May 1990 A
4946220 Wyon et al. Aug 1990 A
4964674 Altmann et al. Oct 1990 A
4981324 Law Jan 1991 A
4997230 Spitalnick Mar 1991 A
5002336 Feher Mar 1991 A
5004294 Lin Apr 1991 A
5016302 Yu May 1991 A
5076643 Colasanti et al. Dec 1991 A
5102189 Saito et al. Apr 1992 A
5106161 Meiller Apr 1992 A
5117638 Feher Jun 1992 A
5138851 Mardikian Aug 1992 A
5160517 Hicks et al. Nov 1992 A
5211697 Kienlein et al. May 1993 A
5226188 Liou Jul 1993 A
5292577 Van Kerrebrouck et al. Mar 1994 A
5335381 Chang Aug 1994 A
5354117 Danielson et al. Oct 1994 A
5356205 Calvert et al. Oct 1994 A
5370439 Lowe et al. Dec 1994 A
5372402 Kuo Dec 1994 A
5382075 Shih Jan 1995 A
5385382 Single, II et al. Jan 1995 A
5403065 Callerio Apr 1995 A
5408711 McClelland Apr 1995 A
5411318 Law May 1995 A
5416935 Nieh May 1995 A
5450894 Inoue et al. Sep 1995 A
5516189 Ligeras May 1996 A
5524439 Gallup et al. Jun 1996 A
5561875 Graebe Oct 1996 A
5590428 Roter Jan 1997 A
5597200 Gregory et al. Jan 1997 A
5613729 Summer, Jr. Mar 1997 A
5613730 Buie et al. Mar 1997 A
5626021 Karunasiri et al. May 1997 A
5626386 Lush May 1997 A
5626387 Yeh May 1997 A
5639145 Alderman Jun 1997 A
5645314 Liou Jul 1997 A
5692952 Chih-Hung Dec 1997 A
5701621 Landi et al. Dec 1997 A
5715695 Lord Feb 1998 A
5787534 Hargest et al. Aug 1998 A
5833309 Schmitz Nov 1998 A
5833321 Kim et al. Nov 1998 A
5887304 von der Heyde Mar 1999 A
5897162 Humes et al. Apr 1999 A
5902014 Dinkel et al. May 1999 A
5918930 Kawai et al. Jul 1999 A
5921100 Yoshinori et al. Jul 1999 A
5921314 Schuller et al. Jul 1999 A
5921858 Kawai et al. Jul 1999 A
5924766 Esaki et al. Jul 1999 A
5924767 Pietryga Jul 1999 A
5927817 Ekman et al. Jul 1999 A
5934748 Faust et al. Aug 1999 A
6003950 Larsson Dec 1999 A
6019420 Faust et al. Feb 2000 A
6045024 Phillips Apr 2000 A
6049927 Thomas et al. Apr 2000 A
6059018 Yoshinori et al. May 2000 A
6059362 Lin May 2000 A
6062641 Suzuki et al. May 2000 A
6064037 Weiss et al. May 2000 A
6068332 Faust et al. May 2000 A
6079485 Esaki et al. Jun 2000 A
6085369 Feher Jul 2000 A
6105667 Yoshinori et al. Aug 2000 A
6109688 Wurz et al. Aug 2000 A
6119463 Bell Sep 2000 A
6124577 Fristedt Sep 2000 A
6145925 Eksin et al. Nov 2000 A
6147332 Holmberg et al. Nov 2000 A
6164719 Rauh Dec 2000 A
6179706 Yoshinori et al. Jan 2001 B1
6186592 Orizaris et al. Feb 2001 B1
6189966 Faust et al. Feb 2001 B1
6196627 Faust et al. Mar 2001 B1
6223539 Bell May 2001 B1
6224150 Eksin et al. May 2001 B1
6237675 Oehring et al. May 2001 B1
6254179 Kortum et al. Jul 2001 B1
6263530 Feher Jul 2001 B1
6273810 Rhodes, Jr. et al. Aug 2001 B1
6277023 Schwarz Aug 2001 B1
6278090 Fristedt et al. Aug 2001 B1
6291803 Fourrey Sep 2001 B1
6300150 Venkatasubramanian Oct 2001 B1
6321996 Odebrecht et al. Nov 2001 B1
6415501 Schlesselman et al. Jul 2002 B1
6425637 Peterson Jul 2002 B1
6434328 Rutherford Aug 2002 B2
6478369 Aoki et al. Nov 2002 B1
6481801 Schmale Nov 2002 B1
6483087 Gardner et al. Nov 2002 B2
6491578 Yoshinori et al. Dec 2002 B2
6497275 Elliot Dec 2002 B1
6501055 Rock et al. Dec 2002 B2
6505886 Gielda et al. Jan 2003 B2
6511125 Gendron Jan 2003 B1
6539725 Bell Apr 2003 B2
6541737 Eksin et al. Apr 2003 B1
RE38128 Gallup et al. Jun 2003 E
6578910 Andersson et al. Jun 2003 B2
6592181 Stiller et al. Jul 2003 B2
6598405 Bell Jul 2003 B2
6604785 Bargheer et al. Aug 2003 B2
6606866 Bell Aug 2003 B2
6619736 Stöwe et al. Sep 2003 B2
6625386 Kim et al. Sep 2003 B1
6625990 Bell Sep 2003 B2
6626455 Webber et al. Sep 2003 B2
6626488 Pfahler Sep 2003 B2
6629724 Ekern et al. Oct 2003 B2
6629725 Kunkel et al. Oct 2003 B1
6676207 Rauh et al. Jan 2004 B2
6682140 Minuth et al. Jan 2004 B2
6685553 Aoki Feb 2004 B2
6687937 Harker Feb 2004 B2
6719624 Hayashi et al. Apr 2004 B2
6722148 Aoki et al. Apr 2004 B2
6761399 Bargheer et al. Jul 2004 B2
6767621 Flick et al. Jul 2004 B2
6786541 Haupt et al. Sep 2004 B2
6786545 Bargheer et al. Sep 2004 B2
6793016 Aoki et al. Sep 2004 B2
6808230 Buss et al. Oct 2004 B2
6817675 Buss et al. Nov 2004 B2
6826792 Lin Dec 2004 B2
6828528 Stöwe et al. Dec 2004 B2
6848742 Aoki et al. Feb 2005 B1
6857697 Brennan et al. Feb 2005 B2
6869139 Brennan et al. Mar 2005 B2
6869140 White et al. Mar 2005 B2
6871696 Aoki et al. Mar 2005 B2
6886352 Yoshinori et al. May 2005 B2
6892807 Fristedt et al. May 2005 B2
6893086 Bajic et al. May 2005 B2
6929322 Aoki et al. Aug 2005 B2
6957545 Aoki Oct 2005 B2
6976734 Stoewe Dec 2005 B2
7040710 White et al. May 2006 B2
7052091 Bajic et al. May 2006 B2
7083227 Brennan et al. Aug 2006 B2
7131689 Brennan et al. Nov 2006 B2
7147279 Bevan et al. Dec 2006 B2
7168758 Bevan et al. Jan 2007 B2
20010035669 Andersson et al. Nov 2001 A1
20020003363 Buss et al. Jan 2002 A1
20020017102 Bell Feb 2002 A1
20020067058 Pfahler Jun 2002 A1
20020092308 Bell Jul 2002 A1
20020096915 Haupt et al. Jul 2002 A1
20020096931 White et al. Jul 2002 A1
20020105213 Rauh et al. Aug 2002 A1
20020108381 Bell Aug 2002 A1
20020139123 Bell Oct 2002 A1
20020140258 Ekern et al. Oct 2002 A1
20020148234 Bell Oct 2002 A1
20020148235 Bell Oct 2002 A1
20020148236 Bell Oct 2002 A1
20020148345 Hagiwara et al. Oct 2002 A1
20020150478 Aoki Oct 2002 A1
20030005706 Bell Jan 2003 A1
20030024924 Fristedt Feb 2003 A1
20030029173 Bell et al. Feb 2003 A1
20030079770 Bell May 2003 A1
20030084935 Bell May 2003 A1
20030102699 Aoki et al. Jun 2003 A1
20030150229 Aoki et al. Aug 2003 A1
20040036326 Bajic et al. Feb 2004 A1
20040100131 Howick et al. May 2004 A1
20040104607 Minegishi et al. Jun 2004 A1
20040118555 Fristedt et al. Jun 2004 A1
20040139758 Kamiya et al. Jul 2004 A1
20040189061 Hartwich et al. Sep 2004 A1
20040195870 Bohlender et al. Oct 2004 A1
20040245811 Bevan et al. Dec 2004 A1
20050066505 Iqbal et al. Mar 2005 A1
20050067862 Iqbal et al. Mar 2005 A1
20050072165 Bell Apr 2005 A1
20050093347 Bajic et al. May 2005 A1
20050140189 Bajic et al. Jun 2005 A1
20050173950 Bajic et al. Aug 2005 A1
20050200179 Bevan et al. Sep 2005 A1
20050257541 Kadle et al. Nov 2005 A1
20050264086 Lofy et al. Dec 2005 A1
20060048518 Bell Mar 2006 A1
20060103183 White et al. May 2006 A1
20060130490 Petrovski Jun 2006 A1
20060138810 Knoll et al. Jun 2006 A1
20060152044 Bajic et al. Jul 2006 A1
20060158011 Marlovits et al. Jul 2006 A1
20060197363 Lofy et al. Sep 2006 A1
20060208540 Lofy et al. Sep 2006 A1
20060214480 Terech Sep 2006 A1
20070001507 Brennan et al. Jan 2007 A1
20070176471 Knoll Aug 2007 A1
Foreign Referenced Citations (83)
Number Date Country
1266925 Jul 1960 CA
2393970 Jun 2001 CA
3513909 Oct 1986 DE
37 05 756 Oct 1988 DE
41 12 631 Apr 1992 DE
19503291 Aug 1996 DE
19654370 Mar 1998 DE
197 36 951 Mar 1999 DE
197 37 636 Mar 1999 DE
19805174 Jun 1999 DE
198 10 936 Sep 1999 DE
199 20 451 Dec 1999 DE
199 54 97 Jan 2001 DE
100 01 314 Jul 2001 DE
100 24 880 Sep 2001 DE
10013492 Sep 2001 DE
10030708 Jan 2002 DE
10144839 Mar 2003 DE
10241571 Mar 2004 DE
10261902 Aug 2004 DE
10316732 Oct 2004 DE
10338525 Mar 2005 DE
10346064 Apr 2005 DE
0 128 534 Dec 1984 EP
0 280 213 Aug 1988 EP
0 517 615 Dec 1992 EP
411375 May 1994 EP
0809576 May 1999 EP
0 936 105 Aug 1999 EP
0 730 720 Jul 2000 EP
1088696 Sep 2000 EP
1050429 Nov 2000 EP
1123834 Feb 2001 EP
1266794 Dec 2002 EP
1 075 984 May 2003 EP
1323573 Jul 2003 EP
1349746 Aug 2005 EP
1266925 Sep 1960 FR
2599683 Jun 1986 FR
2630056 Oct 1989 FR
2694527 Feb 1994 FR
2845318 Apr 2004 FR
1171509 Jul 1989 JP
5277020 Oct 1993 JP
8285423 Nov 1996 JP
10044756 Feb 1998 JP
2000125990 Feb 2000 JP
2001071800 Mar 2001 JP
2002125801 May 2002 JP
2002225539 Aug 2002 JP
2002234332 Aug 2002 JP
2003042594 Feb 2003 JP
2004224108 Aug 2004 JP
2004283403 Oct 2004 JP
202556 Mar 1966 SE
0102983 Mar 2003 SE
WO 9112150 Aug 1991 WO
WO 9409684 May 1994 WO
WO 9605475 Feb 1996 WO
WO 9709908 Mar 1997 WO
WO 9900268 Jan 1999 WO
WO 0206914 Jan 2002 WO
WO 0205341 Jul 2002 WO
WO 03015583 Feb 2003 WO
WO 03051666 Jun 2003 WO
WO 03077710 Sep 2003 WO
WO 03101777 Dec 2003 WO
WO 03106215 Dec 2003 WO
WO 2004082989 Mar 2004 WO
WO 2004028857 Apr 2004 WO
WO 2004078517 Sep 2004 WO
WO 2004091966 Oct 2004 WO
WO 2004091967 Oct 2004 WO
WO 2004096601 Nov 2004 WO
WO 2004096602 Nov 2004 WO
WO 2004114513 Dec 2004 WO
WO 2005021320 Mar 2005 WO
WO 2005035305 Apr 2005 WO
WO 2005042299 May 2005 WO
WO 2005042301 May 2005 WO
WO 2005047056 May 2005 WO
WO 2005068253 Jul 2005 WO
WO 2005110806 Nov 2005 WO
Related Publications (1)
Number Date Country
20070001507 A1 Jan 2007 US
Provisional Applications (2)
Number Date Country
60428003 Nov 2002 US
60407198 Aug 2002 US
Continuations (4)
Number Date Country
Parent 11186076 Jul 2005 US
Child 11468979 US
Parent 11077440 Mar 2005 US
Child 11186076 US
Parent 10681555 Oct 2003 US
Child 11077440 US
Parent 10463052 Jun 2003 US
Child 10681555 US