The present invention relates generally to automotive vehicle seats, and more particularly to seating comfort system for providing heating, cooling, ventilation or a combination thereof to an occupant of a seat of an automotive vehicle.
For many years the transportation industry has been concerned with designing seats for automotive vehicles that provide added comfort to occupants in the seats. Various innovations in providing seating comfort are discussed in U.S. Pat. Nos. 6,064,037; 5,921,314; 5,403,065; 6,048,024 and 6,003,950, all of which are expressly incorporated herein by reference for all purposes. In the interest of continuing such innovation, the present invention provides an improved seating system, insert for a seat or both, which are preferably suitable for employment within or as part of an automotive vehicle seat and which assist in providing comfort control to an occupant in the seat.
There is believed to be a need for an improved system for seating comfort pursuant to which an insert (which is not encapsulated or otherwise sealed along its edges) is provided for performing the seating comfort functions. There is also believed to be a need for a system in which a blower is employed for applying positive pressure to blow air with a comfort system.
Accordingly, the present invention provides a ventilated seat having a seating comfort system. The vehicle seat includes a seat cushion component and a seat backrest component, at least one of which provides a seat cushion and an air-permeable trim surface at the occupant contact areas of the seat. The system includes an insert located beneath the trim surface of each ventilated component. The insert includes a first layer having a heater integrated therein and a second layer formed of spacer material wherein the second layer defines an open space. The system also includes a positive pressure blower in fluid communication with the insert for moving air through the open space and at least partially past an occupant in the seat. A tubular structure is preferably provided in the system for providing the fluid communication between the insert and the fluid mover.
The features and inventive aspects of the present invention will become more apparent upon reading the following detailed description, claims and drawings, of which the following is a brief description:
The present invention is predicated upon providing a seating system for an automotive vehicle wherein the system is configured to provide heating, cooling, ventilation or a combination thereof to an occupant in a seat. The system will typically include an insert having a heater and a fluid or air blower (preferably one in which fluids are displaced by blowing under a positive pressure). The system may also include a structure for facilitating fluid communication between the insert and the blower. The insert will typically include at least one layer, but more typically includes multiple (e.g., two or three or more) layers. One of the layers incorporates a heater and is therefore referred to herein as a heater layer. Preferably, one or more of the layers is a spacer layer for providing open space for fluid flow within and through the insert.
Referring to
The system 12 includes a fluid mover shown as a blower 22 in fluid communication with an insert 24 via a duct (e.g., a tubular structure) 26. By “tubular” as used herein, the shape of the tube may vary and can be rounded, have edges, corners or the like. The insert 24 typically includes multiple layers laminated together and preferably includes a heater for providing warmth to a seat occupant and an open space for ventilation fluid flow. In the preferred embodiment, the insert 24 includes a heater layer 28 and a spacer layer 30, which are laminated and adhered together with an adhesive or adhesive layer 32. A preferred construction is one in which the insert is open at its sides and is not encapsulated.
Various different types of heaters are suitable for incorporation into a car seat and it is contemplated that any of such heaters may be incorporated into the insert 24 of the present invention. Such heaters typically incorporate flexible electrical substantially flat heating elements. As examples, a lay-wire heater, a carbon fiber heater or the like, which are typically supported with a backing (e.g., a cloth or fabric type backing) may be used within the insert. In a preferred embodiment, the heater layer 28 is a carbon fiber type heater with a backing (e.g., a non-woven layer). Preferably, the heater layer, the backing or both are breathable for allowing air to pass therethrough. One exemplary preferred heater is sold under the tradename CARBOTEX® and is commercially available from W.E.T. Automotive Systems, Inc. in Germany and/or FTG Fraser-Technik GmbH, Schleizer Strasse 56–58, D-95028 Hot/Saale, Germany. An example of such a heater is disclosed in U.S. Pat. No. 6,064,037, issued May 16, 2000, herein expressly incorporated by reference for all purposes.
It is contemplated that a buffer layer may be incorporated into the insert 24 adjacent the heater layer 28. Preferably, the buffer layer is a layer of gauze which is capable of protecting the heater layer 24 although various alternative protective materials may be used such as cloth, fleece or the like. Just like the other layers, it is preferable that the buffer layer is breathable or permeable for allowing fluid flow therethrough.
The adhesive of the insert 24 may be supplied in layers, drops or in a variety of other configurations. In the preferred embodiment depicted, the adhesive layer 32 of the insert 24 is disposed between the heater layer 28 and the spacer layer 30 for adhering the layers 28, 30 together. The adhesive layer 32 is preferably formed of a hot melt adhesive, although it is not necessarily required, and may be other adhesives as well. The adhesive may be provided as a web or otherwise and may be continuous or non continuous (e.g., may be applied in drops, dabs or the like). The adhesive layer 32 may include an adhesive selected from polyamides, polyesters, elastomers, vinyl acetates, acrylics, urethanes, olefin polymers or a combination thereof. Moreover, the adhesive may be formulated as desired for particular processing parameters or conditions. Preferably, the adhesive layer is substantially free of anti-blocking solutions, blowing additives, process contaminants or the like which might interfere with adhesive performance. As an example, one suitable hot melt adhesive is commercially available as a non-woven web under the tradename SPUNFAB® from Spunfab, Ltd. 175 Muffin Lane, Cuyahoga Falls, Ohio 44223.
The spacer layer 30 is preferably formed of a spacer material. The spacer material may be provided as a variety of synthetic materials such as plastic or polymeric materials, padding and stuffing materials, lining and carrier materials or the like. Preferably, the spacer material provides open space within the layer 30 while remaining at least partially pliable or flexible. As one example, the spacer layer may be provided as a plurality of rubber, foam plastic or other members or fibers. The members or fibers are preferably spaced apart from each other to provide open space therebetween while still being close enough together to provide cushion and support. As another example the spacer layer 30 may be formed of a 3-dimensional spacer fabric structure or material.
In the preferred embodiment depicted, the spacer layer 30 is formed of polymeric (e.g., polyester) strand material that is interwoven to provide opposing honeycomb structures 36 (e.g., fabric panels), which are interconnected by several additional polymeric strand materials to provide open space 38 between the structures 36 while still providing cushion and support. As an example, one preferred material is sold under the tradename 3MESH® and is commercially available from Müller Textil GmbH, Germany or Müller Textiles, Inc., R.I., USA. In a particularly preferred embodiment, one or more of the honeycomb structures 36 include a finer filament polymeric strand material than the rest of spacer layer 30 for assisting adhesion of the spacer layer 30 to other materials.
The blower 22 of
The tubular structure 26 may be supplied in a variety of configurations and may be integrated with or separate from a variety of components (e.g., the seat, the insert, the blower or the like) and preferably provides for fluid communication between the insert 24 and the blower 22. As an example, it is contemplated that the tubular structure 26 may be integrated into portions of the seat 10 such as the foam cushions. As an alternative example, the tubular structure may be supplied as a separate component (e.g., a separate preferably flexible tube). As still another alternative example, the tubular structure may be integral with the insert 24, the blower 22, the seat 10 or a combination thereof. It is also contemplated that the tubular structure may be provided as a combination of any of the above examples.
In
Preferably, the tubular structure 26 provides a substantially fluid-tight (e.g., air tight) connection with the insert 24. To aid in this, the enlarged portion 50 may be formed, in dense form or as a foam. The walls of the tubular structure 26 are preferably coated or lined with a densified layer, such as by providing the tubular structure 26 (e.g., foam walls) with a coating such as a silicon coating, or by providing the tubular structure 26 with a lining (e.g., a polymer lining, a tape lining or the like).
As an additional option, the system 10 of the present invention may include one or more additional sub-passageways or openings for assisting in guiding fluid flow between the blower 22 and the insert 24. The sub-passageways may be defined by structures separate from the seat 10 or the insert 24 or may be integral therewith. In
The insert 24 is preferably assembled to the seat 10 by placing the insert 24 in overlaying relation with the cushion 54 such that the insert 24 covers the passageway 50, the sub-passageways 60 or both. In the depicted embodiment, a support 70 (e.g., a plastic panel with through-holes extending therethrough) is placed over the passageway 50 for providing continuity of support along with the cushion 54. The insert 24 is then placed within one or more cavities 74 in the cushion 54.
The insert 24 may be positioned upon the cushion 54 in a pre-assembled condition or the components or layers (e.g., the spacer layer, the adhesive layer, the heater layer or combinations thereof) may be applied separately. In a preferred embodiment, the spacer layer 30 is laminated to the heater layer 28 with the adhesive layer 32 therebetween to adhere the spacer layer 30 to the heater layer 28. It is contemplated that lamination may be effected by feeding the various layers 28, 30, 32 to a laminator (e.g., a belt and roller laminator, a stationary laminator or the like) or otherwise. If desired, the insert 24 may be adhered, fastened or otherwise attached to the cushion 54 of the seat 10.
One or more trim layers 80, 82 are assembled to the seat 10 to cover the cushion 54, the insert 24 or both. Preferably, the trim layers 80, 82 are fluid (e.g., air) permeable or breathable. In the preferred embodiment, the system 12 includes an outer trim layer 80 of permeable (e.g., perforated) leather or cloth and an inner trim layer 82 that is formed of a breathable padding material. As shown, the heater layer 28 is preferably closer to the trim layers 80, 82 than the spacer layer 30 although not required.
Operation
In operation, the system 10 of the present invention can preferably provide heating, cooling, ventilation or a combination thereof to an occupant of a seat having the system 10. In particular, if heat is desired, electric current can be induced to travel through the heater layer 28 by a control unit 90 or otherwise such that the heater layer 28 can provide heat to the occupant.
Alternatively, if cooling or ventilation is desired, the blower 22 can be operated via the control unit 90 or otherwise to blow air through the passageway 50, the sub-passageways 60 or both and through the open space 38 of the spacer layer 30 of the insert 24. Such air preferably flows at least partially past the occupant of the seat before or after flowing through the trim layers 80, 82 thereby providing ventilation to the occupant and providing convective heat transfer away from the occupant via the flowing air.
Although, it may be preferable for only the heater layer 28 or the ventilation system (i.e., the blower 22) to be running at one time, it is contemplated that both may be operated simultaneously. Moreover, it is contemplated that both the heater layer 28 and the ventilation system may be operated at various levels (e.g., 2, 3 or more levels of output) such as by having a blower that can operate at different levels or by having various levels of electricity flowing through the heater layer 28. It is also contemplated that the blower 22 may pull air into the open space 38, the passageway 50, the sub-passageways 60 or a combination thereof as well as pushing air into the open space 38, the passageway 50, the sub-passageways 60 or a combination thereof.
It is also contemplated that one or more temperature sensors (e.g., a thermostat) may be included in the seating comfort system. Typically, any temperature sensors are near the trim layers 80, 82 for sensing a temperature closely related to (e.g., at or near) a temperature being experienced by an individual in the seat. In a preferred embodiment, one or more temperature sensors are positioned upon the heater layer 28 or upon the heater element of the heater layer. Also in the preferred embodiment, the one or more temperature sensors are in signaling communication with the control unit 90 such that the control unit 90 can control the blower 22, the heater layer 28 or both for attaining or maintaining a desired temperature at areas adjacent the individual and/or the temperature sensor.
In the preferred embodiment shown, the comfort control system 10 includes a temperature sensor 110 just below the trim layers 80, 82 and in signaling communication with the control unit 90. Advantageously, the control unit 90 is programmed to instruct the system 10 to provide less heat and even cooling in situations where the sensor 110 senses a temperature above one or more predetermined threshold levels. In operation, the control unit 90 may be programmed to instruct the system to provide less cooling or even heating when the sensor 110 senses a temperature below one or more predetermined threshold levels. In a preferred operation mode, when the blower 22 is providing ventilation, the control unit 90 is programmed to instruct the heater layer 28 to turn on and provide heat while the blower 22 remains on if a first undesirably low predetermined temperature is sensed by the sensor 110. Then, if a second predetermined temperature is sensed below the first predetermined temperature, the control unit 90 instructs the blower 22 to turn off while the heater layer 28 continues to provide heat. For each of these situations, the heater layer 28 will typically be instructed by the control unit 90 to continue to provide heat until the temperature sensed by the sensor 110 is at or above the first predetermined temperature and may provide heat until a third predetermined temperature above the first predetermined temperature is sensed.
In another preferred operation mode, when the heater layer 28 is providing heat, the control unit 90 is programmed to instruct the blower 22 to turn on and blow air while the heater layer 28 remains on if a first undesirably high predetermined temperature is sensed by the sensor 110. Then, if a second predetermined temperature is sensed above the first predetermined temperature, the control unit 90 is programmed to instruct the heater layer 28 to turn off while the blower 22 continues to blow air. For each of these situations, the blower 22 will typically be instructed by the control unit 90 to continue to blow air until the temperature sensed by the sensor 110 is at or below the first predetermined temperature and may blow air until a third predetermined temperature below the first predetermined temperature is sensed.
Unless stated otherwise, dimensions and geometries of the various embodiments depicted herein are not intended to be restrictive of the invention, and other dimensions or geometries are possible. Plural structural components step can be provided by a single integrated structure or step. Alternatively, a single integrated structure step might be divided into separate plural components or steps. However, it is also possible that the functions are integrated into a single component or step.
In addition, while a feature of the present invention may have been described in the context of only one of the illustrated embodiments, such feature may be combined with one or more other features of other embodiments, for any given application. It will also be appreciated from the above that the fabrication of the unique structures herein and the operation thereof also constitute methods in accordance with the present invention.
It is understood that the above description is intended to be illustrative and not restrictive. Many embodiments as well as many applications besides the examples provided will be apparent to those of skill in the art upon reading the above description. The scope of the invention should, therefore, be determined not with reference to the above description, but should instead be determined with reference to the appended claims, along with the full scope of equivalents to which such claims are entitled. The disclosures of all articles and references, including patent applications and publications, are incorporated by reference for all purposes. The omission in the following claims of any aspect of subject matter that is disclosed herein is not a disclaimer of such subject matter, nor should it be regarded that the inventors did not consider such subject matter to be part of the disclosed inventive subject matter.
The present invention is a continuation of U.S. application Ser. No. 10/681,555 filed Oct. 8, 2003, which is a continuation of U.S. application Ser. No. 10/463,052 filed Jun. 17, 2003, which claims the benefit of U.S. Provisional Applications Ser. No. 60/407,198 filed Aug. 29, 2002 and Ser. No. 60/428,003 filed Nov. 21, 2002, the contents of which are incorporated by reference herein for all purposes.
Number | Name | Date | Kind |
---|---|---|---|
374424 | Ober | Dec 1887 | A |
390154 | Beach | Sep 1888 | A |
1370832 | Mollberg | Mar 1921 | A |
1439681 | Alkire et al. | Dec 1922 | A |
1475912 | Williams | Nov 1923 | A |
1514329 | Metcalf | Nov 1924 | A |
1537460 | Campbell et al. | May 1925 | A |
1541213 | Harley | Jun 1925 | A |
1593066 | Gaston | Jul 1926 | A |
1664636 | Mayer | Apr 1928 | A |
1837515 | Bachrach | Dec 1931 | A |
1936960 | Bowman | Nov 1933 | A |
2022959 | Gordon | Dec 1935 | A |
2103553 | Reynolds | Dec 1937 | A |
2158801 | Petterson | May 1939 | A |
2336089 | Gould | Dec 1943 | A |
2493303 | McCullough | Jan 1950 | A |
2544506 | Kronhaus | Mar 1951 | A |
2703134 | Mossor | Mar 1955 | A |
2749906 | O'Connor | Jun 1956 | A |
2758532 | Awe | Aug 1956 | A |
2782834 | Vigo | Feb 1957 | A |
2791956 | Guest | May 1957 | A |
2826135 | Benzick | Mar 1958 | A |
2912832 | Clark | Nov 1959 | A |
2931286 | Fry, Sr. et al. | Apr 1960 | A |
2976700 | Jackson | Mar 1961 | A |
2978972 | Hake | Apr 1961 | A |
2992604 | Trotman et al. | Jul 1961 | A |
2992605 | Trotman et al. | Jul 1961 | A |
3030145 | Kottemann | Apr 1962 | A |
3101037 | Taylor | Aug 1963 | A |
3101660 | Taylor | Aug 1963 | A |
3127931 | Johnson | Apr 1964 | A |
3131967 | Spaulding | May 1964 | A |
3136577 | Richard | Jun 1964 | A |
3137523 | Karner | Jun 1964 | A |
3162489 | Trotman | Dec 1964 | A |
3209380 | Watsky | Oct 1965 | A |
3486177 | Marshack | Dec 1969 | A |
3529310 | Olmo | Sep 1970 | A |
3550523 | Segal | Dec 1970 | A |
3552133 | Lukomsky | Jan 1971 | A |
3628829 | Hellig | Dec 1971 | A |
3638255 | Sterrett | Feb 1972 | A |
3653589 | McGrath | Apr 1972 | A |
3653590 | Elsea | Apr 1972 | A |
3681797 | Messner | Aug 1972 | A |
3684170 | Roof | Aug 1972 | A |
3732944 | Kendall | May 1973 | A |
3736022 | Radke | May 1973 | A |
3738702 | Jacobs | Jun 1973 | A |
3757366 | Sacher | Sep 1973 | A |
3770318 | Fenton | Nov 1973 | A |
3778851 | Howorth | Dec 1973 | A |
3948246 | Jenkins | Apr 1976 | A |
4002108 | Drori | Jan 1977 | A |
4043544 | Ismer | Aug 1977 | A |
4044221 | Kuhn | Aug 1977 | A |
4060276 | Lindsay | Nov 1977 | A |
4065936 | Fenton et al. | Jan 1978 | A |
4072344 | Li | Feb 1978 | A |
4141585 | Blackman | Feb 1979 | A |
4175297 | Robbins et al. | Nov 1979 | A |
4245149 | Fairlie | Jan 1981 | A |
4259896 | Hayashi et al. | Apr 1981 | A |
4268272 | Taura | May 1981 | A |
4335725 | Geldmacher | Jun 1982 | A |
4379352 | Hauslein et al. | Apr 1983 | A |
4391009 | Schild et al. | Jul 1983 | A |
4413857 | Hayashi | Nov 1983 | A |
4509792 | Wang | Apr 1985 | A |
4563387 | Takagi et al. | Jan 1986 | A |
4572430 | Takagi et al. | Feb 1986 | A |
4589656 | Baldwin | May 1986 | A |
4665707 | Hamilton | May 1987 | A |
4671567 | Frobose | Jun 1987 | A |
4685727 | Cremer et al. | Aug 1987 | A |
4712832 | Antolini et al. | Dec 1987 | A |
4729598 | Hess | Mar 1988 | A |
4777802 | Feher | Oct 1988 | A |
4847933 | Bedford | Jul 1989 | A |
4853992 | Yu | Aug 1989 | A |
4866800 | Bedford | Sep 1989 | A |
4905475 | Tuomi | Mar 1990 | A |
4923248 | Feher | May 1990 | A |
4946220 | Wyon et al. | Aug 1990 | A |
4964674 | Altmann et al. | Oct 1990 | A |
4981324 | Law | Jan 1991 | A |
4997230 | Spitalnick | Mar 1991 | A |
5002336 | Feher | Mar 1991 | A |
5004294 | Lin | Apr 1991 | A |
5016302 | Yu | May 1991 | A |
5102189 | Saito et al. | Apr 1992 | A |
5106161 | Meiller | Apr 1992 | A |
5117638 | Feher | Jun 1992 | A |
5138851 | Mardikian | Aug 1992 | A |
5160517 | Hicks et al. | Nov 1992 | A |
5211697 | Kienlein et al. | May 1993 | A |
5226188 | Liou | Jul 1993 | A |
5292577 | Van Kerrebrouck et al. | Mar 1994 | A |
5335381 | Chang | Aug 1994 | A |
5354117 | Danielson et al. | Oct 1994 | A |
5356205 | Calvert et al. | Oct 1994 | A |
5370439 | Lowe et al. | Dec 1994 | A |
5372402 | Kuo | Dec 1994 | A |
5382075 | Shih | Jan 1995 | A |
5385382 | Single, II et al. | Jan 1995 | A |
5403065 | Callerio | Apr 1995 | A |
5408711 | McClelland | Apr 1995 | A |
5411318 | Law | May 1995 | A |
5416935 | Nieh | May 1995 | A |
5450894 | Inoue et al. | Sep 1995 | A |
5516189 | Ligeras | May 1996 | A |
5524439 | Gallup et al. | Jun 1996 | A |
5561875 | Graebe | Oct 1996 | A |
5590428 | Roter | Jan 1997 | A |
5597200 | Gregory et al. | Jan 1997 | A |
5613729 | Summer, Jr. | Mar 1997 | A |
5613730 | Buie et al. | Mar 1997 | A |
5626021 | Karunasiri et al. | May 1997 | A |
5626386 | Lush | May 1997 | A |
5626387 | Yeh | May 1997 | A |
5639145 | Alderman | Jun 1997 | A |
5645314 | Liou | Jul 1997 | A |
5692952 | Chih-Hung | Dec 1997 | A |
5701621 | Landi et al. | Dec 1997 | A |
5715695 | Lord | Feb 1998 | A |
5787534 | Hargest et al. | Aug 1998 | A |
5833309 | Schmitz | Nov 1998 | A |
5833321 | Kim et al. | Nov 1998 | A |
5887304 | Von der Heyde | Mar 1999 | A |
5897162 | Humes et al. | Apr 1999 | A |
5902014 | Dinkel et al. | May 1999 | A |
5918930 | Kawai et al. | Jul 1999 | A |
5921100 | Yoshinori et al. | Jul 1999 | A |
5921314 | Schuller et al. | Jul 1999 | A |
5921858 | Kawai et al. | Jul 1999 | A |
5924766 | Esaki et al. | Jul 1999 | A |
5924767 | Pietryga | Jul 1999 | A |
5927817 | Ekman et al. | Jul 1999 | A |
5934748 | Faust et al. | Aug 1999 | A |
6003950 | Larsson | Dec 1999 | A |
6019420 | Faust et al. | Feb 2000 | A |
6048024 | Wallman | Apr 2000 | A |
6049927 | Thomas et al. | Apr 2000 | A |
6059018 | Yoshinori et al. | May 2000 | A |
6059362 | Lin | May 2000 | A |
6062641 | Suzuki et al. | May 2000 | A |
6064037 | Weiss et al. | May 2000 | A |
6068332 | Faust et al. | May 2000 | A |
6079485 | Esaki et al. | Jun 2000 | A |
6085369 | Feher | Jul 2000 | A |
6105667 | Yoshinori et al. | Aug 2000 | A |
6109688 | Wurz et al. | Aug 2000 | A |
6119463 | Bell | Sep 2000 | A |
6124577 | Fristedt | Sep 2000 | A |
6145925 | Eksin et al. | Nov 2000 | A |
6147332 | Holmberg et al. | Nov 2000 | A |
6164719 | Rauh | Dec 2000 | A |
6179706 | Yoshinori et al. | Jan 2001 | B1 |
6186592 | Orizaris et al. | Feb 2001 | B1 |
6189966 | Faust et al. | Feb 2001 | B1 |
6196627 | Faust et al. | Mar 2001 | B1 |
6223539 | Bell | May 2001 | B1 |
6224150 | Eksin et al. | May 2001 | B1 |
6237675 | Oehring et al. | May 2001 | B1 |
6254179 | Kortum et al. | Jul 2001 | B1 |
6263530 | Feher | Jul 2001 | B1 |
6273810 | Rhodes et al. | Aug 2001 | B1 |
6277023 | Schwartz | Aug 2001 | B1 |
6278090 | Fristedt et al. | Aug 2001 | B1 |
6291803 | Fourrey | Sep 2001 | B1 |
6300150 | Venkatasubramanian | Oct 2001 | B1 |
6321996 | Odebrecht et al. | Nov 2001 | B1 |
6415501 | Schlesselman | Jul 2002 | B1 |
6425637 | Peterson | Jul 2002 | B1 |
6434328 | Rutherford | Aug 2002 | B1 |
6481801 | Schmale | Nov 2002 | B1 |
6483087 | Gardner et al. | Nov 2002 | B1 |
6491578 | Yoshinori et al. | Dec 2002 | B1 |
6497275 | Elliot | Dec 2002 | B1 |
6501055 | Rock et al. | Dec 2002 | B1 |
6505886 | Gielda et al. | Jan 2003 | B1 |
6511125 | Gendron | Jan 2003 | B1 |
6539725 | Bell | Apr 2003 | B1 |
6541737 | Eksin et al. | Apr 2003 | B1 |
RE38128 | Gallup et al. | Jun 2003 | E |
6578910 | Andersson et al. | Jun 2003 | B1 |
6592181 | Stiller et al. | Jul 2003 | B1 |
6598405 | Bell | Jul 2003 | B1 |
6604785 | Bargheer et al. | Aug 2003 | B1 |
6606866 | Bell | Aug 2003 | B1 |
6619736 | Stowe et al. | Sep 2003 | B1 |
6625990 | Bell | Sep 2003 | B1 |
6626386 | Stiner et al. | Sep 2003 | B1 |
6626455 | Webber et al. | Sep 2003 | B1 |
6626488 | Pfahler | Sep 2003 | B1 |
6629724 | Ekern et al. | Oct 2003 | B1 |
6629725 | Kunkel et al. | Oct 2003 | B1 |
6682140 | Minuth et al. | Jan 2004 | B1 |
6685553 | Aoki | Feb 2004 | B1 |
6719624 | Hayashi et al. | Apr 2004 | B1 |
6722148 | Aoki et al. | Apr 2004 | B1 |
6727467 | Hadzizukic et al. | Apr 2004 | B1 |
6761399 | Bargheer et al. | Jul 2004 | B1 |
6767621 | Flick et al. | Jul 2004 | B1 |
6786541 | Haupt et al. | Sep 2004 | B1 |
6786545 | Bargheer et al. | Sep 2004 | B1 |
6793016 | Aoki et al. | Sep 2004 | B1 |
6808230 | Buss et al. | Oct 2004 | B1 |
6817675 | Buss et al. | Nov 2004 | B1 |
6828528 | Stowe et al. | Dec 2004 | B1 |
6848742 | Aoki et al. | Feb 2005 | B1 |
6857697 | Brennan et al. | Feb 2005 | B1 |
6869139 | Brennan et al. | Mar 2005 | B1 |
6869140 | White et al. | Mar 2005 | B1 |
6871696 | Aoki et al. | Mar 2005 | B1 |
6886352 | Yoshinori et al. | May 2005 | B1 |
6892807 | Fristedt et al. | May 2005 | B1 |
6893086 | Bajic et al. | May 2005 | B1 |
6929322 | Aoki et al. | Aug 2005 | B1 |
6957545 | Aoki et al. | Oct 2005 | B1 |
6976734 | Stoewe | Dec 2005 | B1 |
20010035669 | Andersson et al. | Nov 2001 | A1 |
20020003362 | Kunkel et al. | Jan 2002 | A1 |
20020003363 | Buss et al. | Jan 2002 | A1 |
20020017102 | Bell | Feb 2002 | A1 |
20020092308 | Bell | Jul 2002 | A1 |
20020096915 | Haupt et al. | Jul 2002 | A1 |
20020096931 | White et al. | Jul 2002 | A1 |
20020105213 | Rauh et al. | Aug 2002 | A1 |
20020108381 | Bell | Aug 2002 | A1 |
20020139123 | Bell | Oct 2002 | A1 |
20020140258 | Ekern et al. | Oct 2002 | A1 |
20020148234 | Bell | Oct 2002 | A1 |
20020148235 | Bell | Oct 2002 | A1 |
20020148236 | Bell | Oct 2002 | A1 |
20020148345 | Hagiwari et al. | Oct 2002 | A1 |
20020150478 | Aoki | Oct 2002 | A1 |
20030005706 | Bell | Jan 2003 | A1 |
20030024924 | Fristedt | Feb 2003 | A1 |
20030029173 | Bell et al. | Feb 2003 | A1 |
20030079770 | Bell | May 2003 | A1 |
20030084935 | Bell | May 2003 | A1 |
20030102699 | Aoki et al. | Jun 2003 | A1 |
20030150229 | Aoki et al. | Aug 2003 | A1 |
20040036326 | Bajic et al. | Feb 2004 | A1 |
20040104607 | Takeshi et al. | Jun 2004 | A1 |
20040118555 | Fristedt et al. | Jun 2004 | A1 |
20040139758 | Toshifumi et al. | Jul 2004 | A1 |
20040189061 | Hartwich et al. | Sep 2004 | A1 |
20040195870 | Bohlender et al. | Oct 2004 | A1 |
20040245811 | Bevan et al. | Dec 2004 | A1 |
20050127723 | Bajic et al. | Jun 2005 | A1 |
20050200179 | Bevan et al. | Sep 2005 | A1 |
20050257541 | Kadle et al. | Nov 2005 | A1 |
20050264086 | Lofy et al. | Dec 2005 | A1 |
Number | Date | Country |
---|---|---|
1266925 | Jul 1960 | CA |
2393970 | Jun 2001 | CA |
3513909 | Oct 1986 | DE |
37 05 756 | Oct 1988 | DE |
3705756 | Oct 1988 | DE |
4112631 | Apr 1992 | DE |
19503291 | Aug 1996 | DE |
197 36 951 | Mar 1999 | DE |
19736951 | Mar 1999 | DE |
19737636 | Mar 1999 | DE |
19810936 | Sep 1999 | DE |
199 20 451 | Dec 1999 | DE |
19920451 | Dec 1999 | DE |
199 54 97 | Jan 2001 | DE |
19954978 | Jan 2001 | DE |
100 01 314 | Jul 2001 | DE |
10001314 | Jul 2001 | DE |
100 24 880 | Sep 2001 | DE |
10024880 | Sep 2001 | DE |
10030708 | Jan 2002 | DE |
0128534 | Dec 1984 | EP |
0280213 | Aug 1988 | EP |
0 517 615 | Dec 1992 | EP |
0517615 | Dec 1992 | EP |
411375 | May 1994 | EP |
0809576 | May 1999 | EP |
0 936 105 | Aug 1999 | EP |
0936105 | Aug 1999 | EP |
0730720 | Jul 2000 | EP |
1088696 | Sep 2000 | EP |
1 075 984 | Feb 2001 | EP |
1123834 | Feb 2001 | EP |
1 075 984 | May 2003 | EP |
1075984 | May 2003 | EP |
1349746 | Aug 2005 | EP |
1266925 | Sep 1960 | FR |
2599683 | Jun 1986 | FR |
2 630 056 | Oct 1989 | FR |
2630056 | Oct 1989 | FR |
2694527 | Feb 1994 | FR |
1171509 | Jul 1989 | JP |
5277020 | Oct 1993 | JP |
8285423 | Nov 1996 | JP |
10044756 | Feb 1998 | JP |
2002125801 | Feb 2002 | JP |
2002125801 | May 2002 | JP |
2003042594 | Feb 2003 | JP |
WO9409684 | May 1994 | WO |
WO9605475 | Feb 1996 | WO |
WO9709908 | Mar 1997 | WO |
WO9900268 | Jan 1999 | WO |
WO0206914 | Jan 2002 | WO |
WO 0206914 | Jan 2002 | WO |
WO0205341 | Jul 2002 | WO |
WO 03015583 | Feb 2003 | WO |
WO2004082989 | Mar 2004 | WO |
Number | Date | Country | |
---|---|---|---|
20050161986 A1 | Jul 2005 | US |
Number | Date | Country | |
---|---|---|---|
60428003 | Nov 2002 | US | |
60407198 | Aug 2002 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 10681555 | Oct 2003 | US |
Child | 11077440 | US | |
Parent | 10463052 | Jun 2003 | US |
Child | 10681555 | US |