(a) Field of the Invention
The present invention relates to an automotive water heater, and more particularly to a water heater that has application to a windshield of an automobile, which is able to produce hot water that can be sprinkled on the windshield to melt snow and frost.
(b) Description of the Prior Art
In frigid zones, after an automobile has been left in snowy weather, snow and frost covering the windshield blocks the line of vision in the automobile, and external force must be applied to remove the accumulated snow and frost. Methods for removing the snow and frost include the conventional methods of using an instrument to clear it away or hot water to melt and clean off the snow and frost, thereby avoiding scuffing the glass surface. Hence, in frigid zones, automobiles must be equipped with a device for heating water in preparation for melting snow and frost accumulated on the windshield. In general, the heater device is installed at one end of the windshield wiper water outlet.
Regarding designs of prior art, referring to
The aforementioned prior art designs are unable to accommodate different power requirements by using a corresponding arrangement of heating elements. Hence, during production, manufacturers must stock a multitude of heaters having different power specifications in order to rapidly supply client needs, thereby increasing inventory cost. Moreover, such prior art designs disallow mass production of standard specifications. Hence, the aforementioned shortcomings increase the total burden on production costs.
The present invention proposes to advance effectiveness and benefit of an automotive water heater.
Accordingly, a primary objective of the present invention is to use a laminated heating unit face joined to a heat conducting surface of an exchange unit, and the innate physical heat balance property of the heating unit is used to direct transference of heat quantity produced by a heating strip to an exchange bed, thereby similarly achieving good heat transmission efficiency, and providing an automotive water heater that enables easy replacement of component members or repairing of the heating strip, and allows for free choice of whether to assemble one set or two sets or a plurality of sets of the heating units.
A second objective of the present invention is to install a buffer layer between the heating unit and a heat conducting surface of the exchange bed.
A third objective of the present invention is to install a buffer device between the heating unit and a sealing back plate heat conducting surface of the exchange bed.
A fourth objective of the present invention is to connect a negative electrode of the heating unit to an exchange unit to avoid tripping of power supply due to factors such as a surge of electric charge of a positive electrode.
A fifth objective of the present invention is to provide the heating unit with a positive temperature coefficient ceramic resistance strip as a heating strip, thereby ensuring stable electrical heating, and hardness of the strips benefit fixedly securing assembly of the configuration.
To enable a further understanding of said objectives and the technological methods of the invention herein, brief description of the drawings is provided below followed by detailed description of the preferred embodiments.
Referring to
The heating strip 21 is fabricated from any electrothermal material, such as electric heating wire or a positive temperature coefficient ceramic resistance strip. The positive temperature coefficient ceramic resistance strip provides a constant temperature and automatic heat regulating function, which together with its intrinsic quality of being a rigid body are used to benefit securing assembly, and thus appropriate to use.
The heating unit 2 is face affixed to a heat conducting surface 30 of an exchange bed 31 of the exchange unit 3. The heat conducting surfaces 30 of the exchange bed 31 are configured to provide a plurality of adjacent or mutually opposite areas, which are located on four outer surfaces of the exchange bed 31. The plurality of areas of the heat conducting surfaces 30 provide a choice of which area to join the heating unit 2 to or a choice of the number of heating units 2 to join thereto.
The heat conducting surfaces 30 enable the heating units 2 to be respectively assembled thereto, and a lamina buffer layer 24 is disposed between the heating unit 2 and the heat conducting surface 30, wherein insertion of the buffer layer 24 is used to form an assembly interface buffer absorbing space after assembling the heating unit 2.
A buffer device 25 having a relatively large strain range is disposed between the heating unit 2 and the counterpart sealing back plate 26 to clear a distance therebetween. Because of the enlargeable space tolerance of the buffer device 25, thus, the buffer device 25 is able to better assimilate an amount of heat distortion, thereby avoiding mechanical pressure from thermal expansion compressing the heating strip 21. The sealing back plate 26 presses down and exerts force on the heating unit 2 to enable assembling to the exchange bed 31. The aforementioned buffer device 25 can be a spring strip or a plastic body fabricated from silica gel material.
Flow paths 310 that enable water to flow therethrough are defined within the exchange bed 31, and seal end covers 32, 33 are disposed at a front end and a rear end of the flow paths 310 respectively. Pipe orifices 34, 35, which enable water to flow in and out thereof, are located at the seal end cover 32. After water enters the exchange bed 31 through the pipe orifices 34, 35 and flows into the flow paths 310, then heat exchange is carried out with the heat quantity supplied by the heating unit 2, whereafter the heated hot water is output and used to facilitate achieving the objective of the aforementioned application to melt snow and frost on a windshield.
The buffer layer 24 provides a mechanical deformation buffer function, and is basically also able to realize an electrical conducting or non-conducting function. Referring to
The insulating plate 23 is any plate member having insulating function, such as a mineral plate, wherein aluminum oxide is the preferred mineral for the mineral plate.
Referring again to
According to the aforementioned configuration, the sealing back plates 26 can be dismantled by detaching the compression plate 4, thereby enabling replacing component members interior of the heating units 2, in particular, the aforementioned heating strips 21.
The face-to-face assembly method adopted in the present invention provides a choice of whether to assemble one set or two sets or a plurality of sets of the heating units 2. If power of each of the heating units 2 is fixed, then total power of more than two of the heating units 2 is additive, which enables accommodating production of different power requirements, wherein the individual heating units 2 and exchange beds 31 are regarded as standard components which facilitates mass production thereof. Different numbers of the heating units 2 can be assembled according to power requirements, thereby accommodating clients who wish to purchase heaters having different power requirements within the same batch, and benefiting mass production.
Referring to
The water flow paths 310 are defined interior of the exchange bed 31, and the water flow paths 310 pass interior of corresponding positions of the heat conducting surfaces 30, thereby enabling exchange of heat quantity produced by the heating strips 21 with water flowing through the flow paths 310 and carrying away of the heated water. Heat waves generated by the heating strip 21 are three-dimensionally outward transmitted, however, because matter has a heat balance function, and a side of the corresponding heat conducting surface 30 forms a heat sink and a temperature drop, hence, the physical function of heat balance causes the heat quantity close to a corresponding side of the plate electrode 22 to replenish the heat at the side of the heat conducting surface 30, thereby enabling the entire heat quantity generated by the heating strip 21 to be in complete contact with the exchange bed 31.
Ribbed plates 37 are located interior of the exchange bed 31 whereby the flow paths 310 defined in the exchange bed 31 are winding flows. The ribbed plates 37 are located at positions corresponding to inner sides of the heat conducting surfaces 30, thereby enabling forming a direct heat conducting function which rapidly conducts heat quantity to the interior of the exchange bed 31.
Mechanically strengthening rib strips 36 are located on an outer side of the exchange bed 31, thereby mechanically strengthening an outer periphery of the exchange bed 31. Although existence of the strengthening rib strips 36 enlarges heat dissipating surface area, however, any enveloping heat resistance method can be implemented on a periphery of the exchange unit 3 to limit heat energy to within the single exchange bed 31.
Apart from the fixing method used to join the sealing back plates 26 to the exchange bed 31, as depicted in
Referring again to
The heating unit 2 is upper and lower joined to electrodes through the heating strip 21, wherein the heat conducting surface 30 is separately joined to the plate electrode 22, and the plate electrode 22 is outwardly separately joined to the insulating plate 23. Accordingly, electric power primarily flows through the heating strip 21 by means of the two plate electrodes 22, thereby electrically heating the heating strip 21. Hence, related electric property is primarily conducted by means of the two opposite plate electrodes 22, and has no relation to the exchange bed 31. Such an embodiment can be implemented in a situation of relatively low voltage or where circuit design of the automobile is limited. The insulating plate 23 is similarly interposed between the heating unit 2 and the exchange bed 31. Moreover, the insulating plate 23 is fabricated from mineral material such as aluminum oxide, thereby providing the insulating plate 23 with heat conducting property.
Referring to
It is of course to be understood that the embodiments described herein are merely illustrative of the principles of the invention and that a wide variety of modifications thereto may be effected by persons skilled in the art without departing from the spirit and scope of the invention as set forth in the following claims.