This invention relates to devices for cleaning fluid-containing vessels such as swimming pools and spas and more particularly, although not necessarily exclusively, to autonomous devices for actively scrubbing upstanding walls of pools at and nearby the waterlines of the pools.
Generally, a vessel such as a swimming pool includes a bottom surface or floor and upstanding walls, hence forming an open-topped container (which may, if desired, be covered at times when not in use). This container may be filled with water to a depth slightly less that the height of the upstanding walls. The region at which the top-most water contacts the upstanding walls of the pool is typically referred to as the “waterline” of the pool. FIG. 1 of U.S. Pat. No. 4,429,429 of Altschul illustrates such a waterline (84) of a pool, noting that areas of pool sidewalls immediately above the waterline may be among the “most soiled” portions of the upstanding walls. See Altschul, col. 6, ll. 7-13.
Accordingly, described in the Altschul patent is “a device for cleaning the sidewalls of a swimming pool in the waterline region, within a few inches above and below the waterline.” See id., col. 1, ll. 8-10. The device connects, via a hose, to an outlet fitting of the pool so as to receive for motive purposes water pressurized by a pump of the water-circulation system of the pool. See id., col. 4, ll. 20-24; col. 5, ll. 43-63. Flexible bristles are attached to a leading portion of the device so as to contact a sidewall as the device travels by exhausting the pressurized water through multiple propulsion jets. See id., col. 3, ll. 21-45. These bristles are, however, passive, moving only as a result of movement of the device itself. Additionally, the device lacks any sort of active steering mechanism, instead merely following the shape of the sidewalls of the pool. See id., col. 6, ll. 54-68.
Another type of pool cleaning device in the form of a solar-powered skimmer is detailed in U.S. Pat. No. 5,106,492 to Distinti, et al. The skimmer of the Distinti patent floats on the water surface of a pool, aiming to capture debris present on that surface. See Distinti, col. 2, ll. 32-47. The skimmer intentionally avoids contact of its housing with any wall of a pool, however, employing a deflection assembly with a curved arm “to guide the skimmer away from the wall.” See id., col. 3, ll. 3-19. A similar device illustrated in U.S. Patent Application Publication No. 2007/0151914 of Riley likewise is configured to turn when engaging an edge of a pool, see Riley, p. 2, ¶ 0018, as is the skimmer of U.S. Pat. No. 7,101,475 to Maaske, et al. See Maaske, col. 28, ll. 60-67.
Absent from these patents and application is any disclosure of a surface-floating cleaner with any driven, or otherwise active, wall-scrubbing capability at and near the waterline of a pool. Omitted as well from these documents is any suggestion of a surface-floating device that not only actively scrubs pool walls at and near the waterline, but also skims debris from the water away from the pool walls. Hence, a cleaning apparatus capable of performing these functions could be valuable.
The present invention seeks to supply such valuable devices as well as methods of utilizing them. At least some versions of the invention provide devices configured to float on and travel along a surface of water of a pool. The devices may include one or more brushes or scrubbers adapted to contact pool walls at and near the waterline of the pool. At least one electric motor may cause the scrubbers to rotate about at least one shaft or axle generally perpendicular to a plane defined by the water surface, with frictional contact between the scrubbers and the pool wall dislodging dirt and debris from the wall. In other versions of the invention, the shaft or axle may be angled other than perpendicular to the plane defined by the water surface.
This motor, further, may be bidirectional, hence permitting the scrubbers to rotate either clockwise or counterclockwise about the shaft. Because at least a portion of the scrubbers will be below the waterline, that portion may function like a vertically-oriented paddlewheel or rudder for purposes of steering the scrubbing device. Alternatively, scrubbers may be generally conical in shape and oriented other than vertically for purposes of steering. Rotation of scrubbers in one direction (e.g. clockwise) will tend to turn the device in one direction (e.g. right), whereas rotation in the other direction (e.g. counterclockwise) will tend to turn the device in the opposite direction (e.g. left).
Presently preferred is that at least one scrubber be centrally located at the front of the body of the device. Also presently preferred is that the centrally-located scrubber be equidistant (or generally so) from two filtration inlets of the device. Consequently, as the device approaches a pool wall at either an acute or an oblique angle, one of the filtration inlets will be closer to the wall than the other. As the scrubber rotates, the scrubber and closer inlet will begin to travel generally linearly along the wall, hence effecting scrubbing along its length with much of the scrubbed debris entering the closer inlet before the debris can diffuse significantly throughout the pool.
It may be possible for the scrubbing device of the invention to approach a pool wall at exactly a right angle. In practice the rotation of the scrubber causes the angle of contact to not be (or not remain) exactly ninety degrees, however, hence resulting in the device beginning to travel generally linearly along the wall in one direction or another.
Because devices of the present invention often will be outdoors floating in swimming pools, they may be exposed to solar radiation. Solar panels included with the devices may convert the solar radiation to electrical energy to power the scrubbers. The electrical energy also may power an impeller or other propulsion equipment of the scrubbing device. Such powering may be direct, or it may be indirect with, for example, the solar panels being used to charge and recharge an on-board battery. Although not presently preferred (because of the need for an electrical cord or hose), the scrubbing device alternatively or additionally could be powered by a remote source of electricity or by pressurized or depressurized water flow.
Any suitable filtration means may be employed in connection with the present invention. One possible such means may include a debris tray accessible from a top of the device. Weirs also may, if desired, be present at the filtration inlets.
Additional optional features of the invention may include a handle to facilitate extracting the device from the water of a pool. In some embodiments, the handle is positioned at the top of the device. The handle, further, may be centrally located between lateral sides of the device but located closer to the front of the device than the rear. Grasping the handle from above (as would someone squatting or kneeling on a deck surrounding the pool) and extracting the device from the pool likely would result in the device assuming an almost-vertical orientation with the front up and rear down, causing water within the device to exit the rear of the device while preventing debris from escaping the filtration means through the front weirs. Yet further optional features include, for example, a sensor for determining when the device has been extracted from water of the pool and a mechanism to splash, mist, spray, or otherwise force water against the sidewalls to facilitate their scrubbing. Other sensors, components, or equipment also may be added as appropriate or desired.
It thus is an optional, non-exclusive object of the present invention to provide a surface-floating device for actively scrubbing vessel walls in the vicinity of the waterline of the vessel.
It is another optional, non-exclusive object of the present invention to provide a device having a scrubber configured to rotate either about a generally vertical axis or about an axis angled other than perpendicular to the water surface.
It is also an optional, non-exclusive object of the present invention to provide a device having both a motorized scrubber and motorized propulsion components.
It is a further optional, non-exclusive object of the present invention to provide a device functioning as a combined scrubber and skimmer in order to clean both walls and water surfaces of pools.
It is, moreover, an optional, non-exclusive object of the present invention to provide a device in which a rotating scrubber also acts as a rudder or similar steering mechanism.
It is an additional optional, non-exclusive object of the present invention to provide a device capable of utilizing various power sources, including various sensors and components, and providing easy extraction from a pool and access to filtration equipment.
It is yet another optional, non-exclusive object of the present invention to provide a device having a scrubber that is generally conical in shape.
Other objects, features, and advantages of the present invention will be apparent to persons skilled in the relevant art with reference to the remaining text and drawings of this application.
As shown nominally upright in
Two scrubbers 18 are depicted in front region 26 of body 14, which may sweep back from the scrubbers 18 at angles of approximately 45°. In a nominally principal direction of travel (see arrow A) of device 10, therefore, scrubbers 18 effectively form a leading portion of the body 14. Hence, scrubbers 18 normally will make initial contact with any sidewall of a pool or spa. More or fewer than two scrubbers 18 may, of course, be deployed as appropriate or desired.
Each scrubber 18 may comprise blades 50. In the versions of scrubbers 18 illustrated in
Blades 50 preferably are not rigid, but rather are formed of a plastic material so as to flex when contacting a pool wall, hence making frictional contact with the wall so as to scrub debris therefrom without unduly scratching or marking the wall. Although twelve such blades 50 are illustrated in
Additionally illustrated in
Well illustrated in
Although two filtration inlets 70A-B are depicted in, e.g.,
Further illustrated in, e.g.,
Advantageous is that tray 78 be accessible easily. In some versions of the invention, each of covers 48A and 48B is hinged or otherwise connected to a corresponding side region 30 and 34 of body 14 so as to pivot upward therefrom. This upward pivoting is depicted in
To effect movement of device 10 in the direction of arrow A, battery 98 powers second electric motor 90. Motor 90 turns impeller 94, forcing water to exit body 14 via exit 106. Acting as a thrust jet, the water exits body 14 in a direction opposite arrow A, propelling device 10 in the direction of arrow A.
By utilizing both scrubbers 18 and propulsion system 86, device 10 is capable of four types of movement:
Solar panels 46 conceivably may directly power either or both of motors 62 and 90. Alternatively, solar panels 46 may be used to recharge battery 98. Yet alternatively, battery 98 may be recharged through electrical mains (or in some other manner) or omitted from device 10. Likewise, solar panels 46 may be omitted from device 10. If both solar panels 46 and battery 98 are not present in device 10, motors 62 and 90 may be powered directly through electrical mains (or in some other manner), although powering device 10 by electrical mains may require use of an electrical cord in the swimming pool, which is presently not preferred.
Further conceivable is that either or both of motors 62 and 90 are hydraulic, rather than electric, devices. These devices, however, might require attachment of a hose to device 10 so as to supply the needed fluid. Again, presently preferred is that device 10 be both self-propelled and self-contained, so that no external cord or hose would be needed. Some embodiments of device 10 may include a water sensor configured to alert electronics 102 that the device 10 has been removed from pool water, which in turn may cease operation of motors 62 and 90. Other embodiments may include a mechanism to splash, mist, spray, or otherwise force water against the sidewalls to facilitate their scrubbing.
Exemplary concepts or combinations of features of the invention may include:
Depicted in
Angling the axis of rotation of scrubber 218 away from the vertical direction aids removal of dried debris stuck firmly to pool walls immediately above the waterline of the pool. In particular, the angling causes portions of blades 250 to alternate between underwater and above-water positions, lifting water onto the wall as they rotate. This water hydrates the dried debris, facilitating its being dislodged from the wall by scrubber 218.
Like scrubbers 18, scrubber 218 additionally drives body 214 along the wall of the pool. By reversing its rotation direction, moreover, scrubber 218 may turn body 214 around to move oppositely along the wall. The angling and conical shape of scrubber 218 is well suited for this purpose too. Stated differently, the cone of scrubber 218 lifts water onto the pool wall by dipping blades 250 in the water on the underside of the cone, while driving front region 226 of body 214 along the wall by “rolling” over that surface.
The conical shape of scrubber 218 supplies additional benefits as well. Clockwise rotation of scrubber 218 turns the entire floating skimmer device 210 to the right. This is so because blades 250 are fully submerged under the cone and moving largely from right to left, “paddling” the nose of front region 226 to the right, whereas on the upper side those blades 250 are moving in air—with resultant little force. This gives device 210 the ability to turn left and right in free water, depending on its rotating direction, but also helps drive scrubber 218 to the wall when moving along the wall as it is also constantly turning into the wall.
Rotating scrubber 218 also results in a backing-up force thereby enabling the reversing of device 210. The force is not large, and can easily be overcome by the thrust motor driving forward in normal use. But by switching the thrust motor off, the force can prove useful to back device 210 out of corners or trapped situations. The force occurs because the cone of scrubber 218 spins water radially outward, mostly perpendicular with the surface of the cone, resulting in a small axial thrust in the direction of the large end of the cone. True is that at the same time it also turns front region 226 of body 214 left or right, but this can be overcome by alternating rotation direction of scrubber 218 periodically (e.g. every five seconds) to obtain a mostly straight reversing motion.
The entire contents of the Altschul, Distinti, and Maaske patents and the Riley application are incorporated herein by this reference. Further, although applicant has described devices and techniques for use principally with swimming pools, persons skilled in the relevant field will recognize that the present invention may be employed in connection with other objects and in other manners. Finally, references to “pools” and “swimming pools” herein may also refer to spas or other water containing vessels used for recreation or therapy and for which cleaning is needed or desired.
This application claims the benefit of and priority to (1) U.S. Provisional Patent Application Ser. No. 62/693,586, filed Jul. 3, 2018, and having the same title as appears above, and to (2) U.S. Provisional Patent Application Ser. No. 62/807,967, filed Feb. 20, 2019, and also having the same title as appears above, the entire contents of both of which applications are hereby incorporated herein by this reference.
Number | Date | Country | |
---|---|---|---|
62693586 | Jul 2018 | US | |
62807967 | Feb 2019 | US |