Various substances, such as aquatic herbicides, have been formulated for use in water to kill or control the growth of aquatic plants. Certain herbicides have been approved for aquatic use by the Environmental Protection Agency (EPA) when used according to label directions. Aquatic herbicides can be sprayed or spread directly onto floating or emergent aquatic plants in either a liquid or pellet form. Systemic herbicides are designed to kill aquatic plants. On the other hand, contact herbicides are designed to kill only the parts of the plant that contact the herbicide, leaving the roots alive and capable of regrowth. Non-selective, broad spectrum herbicides will generally affect all plants that they come into contact with. Selective herbicides, however, will affect only some plants. Both personal and environmental risks can arise from accidents and/or improper application of aquatic herbicides, and the application of aquatic herbicides is regulated in many states.
For a more complete understanding of the embodiments and the advantages thereof, reference is now made to the following description, in conjunction with the accompanying figures briefly described as follows:
The drawings illustrate only example embodiments and are therefore not to be considered limiting of the scope of the embodiments described herein, as other embodiments are within the scope of this disclosure. The elements and features shown in the drawings are not necessarily drawn to scale, emphasis instead being placed upon clearly illustrating the principles of the embodiments. Additionally, certain dimensions or positionings may be exaggerated to help visually convey certain principles. In the drawings, similar reference numerals between figures designate like or corresponding, but not necessarily the same, elements.
The application of aquatic herbicides, for example, and other substances to bodies of water can be time consuming and present an inherent risk to water resource managers. For example, the application of aquatic herbicides carries the danger of exposure to concentrated herbicides for water resource managers, along with the risk of accidental drowning. In that context, various embodiments of autonomous aquatic herbicide application systems are described herein.
The use of an automatous or remote controlled aquatic herbicide application system, according to the embodiments described herein, allows operators to remain in a safe location and accomplish the operations needed to manage aquatic vegetation. In one embodiment, a system for aquatic herbicide application includes an aquatic vessel, a propulsion system to propel the aquatic vessel over a body of water, a holding container to hold a substance, a substance applicator to apply the substance to the body of water, and a controller. The controller can include a control processor configured to navigate the aquatic vessel using the propulsion system and apply the substance to the body of water using the substance applicator. According to one embodiment, the system includes a global positioning system to determine a geographic location of the system and a memory to store a route for application of the substance in the body of water. Further, the controller can be configured to autonomously control the propulsion system to track the route based on changes in the geographic location of the system over time.
According to other aspects of the embodiments, the system incorporates a modular design that facilitates easy changes to certain equipment carried by the aquatic vessel for vegetation management, communications, water surveying, etc. Additionally, various embodiments incorporate an outrigger platform to facilitate the application of substances to the body of water, survey the water, and improve the ability to collect data and/or apply herbicide effectively. Among other uses, the system can be used for vegetation management, communications, bathymetry determination, and vegetation and water chemistry measurement, surveying, and analysis.
Turning to the drawings, various embodiments and aspects of the embodiments are described in greater detail.
According to the example shown in
The aquatic vessel 100 can be formed from any suitable material into any shape that is buoyant in the body of water 20. For example, the aquatic vessel 100 can be formed from wood, fiberglass, glass, plastic, foam, other suitable materials, and combinations thereof. The aquatic vessel 100 can be formed into any shape and size. Depending upon the equipment being carried by the aquatic vessel 100, it should be large enough to carry the controller 110, holding container 120, substance applicator 130, propulsion system 140, battery 150, etc.
The controller 110 can be embodied as an embedded or general-purpose processor(s), processing circuitry, computing device(s), or computing system(s) configured to control the operations of the system 10. In that context, as described in further detail below with reference to
The data store 162 can be embodied as any suitable type of memory including any of those described below with reference to
The communications module 170 can be embodied as any suitable physical layer wireless communications device (e.g., WiFi, cellular, etc.) or module along with the associated layers of communications protocols and physical and/or applications interfaces to interface with the control processor 160. Using the communications module 170, the system 10 can receive and transmit data, including remote telemetry data, with a remote telemetry platform. In various embodiments, the system 10 can operate in a fully-autonomous mode, in a semi-autonomous mode with certain control signals being received from the remote telemetry platform through the communications module 170, or in a remote-controlled mode in which the operation of the system 10 is fully directed according to the control signals from the remote telemetry platform.
The positioning system 180 can be embodied as a global positioning system (GPS) receiver. As such, the positioning system 180 is configured to determine the geographic location of the system 10 over time. In various embodiments, depending upon the level of accuracy needed, the positioning system 180 can include one or more antennas positioned at certain locations on the aquatic vessel 100 or on outrigger arms of the aquatic vessel. In some embodiments, the positioning system 180 includes only a single antenna secured to the aquatic vessel 100 at a position known to the controller 110, and the controller 110 is configured to calculate the relative positions of various equipment (e.g., transducers, cameras, etc.) of the system 10.
The survey platform 190 can be embodied as a platform of one or more sensors, transducers, and/or receivers, such as image sensors (e.g., infrared, ultraviolet, and/or visible-light cameras), temperature probes, turbidity meters, conductivity meters, salinity meters, chloride sensors, pH sensors, sonar transducers, or other types of sensors. The survey platform 190 is generally configured to measure the surroundings of the system 10. For example, the sonar transducers of the survey platform 190 can be relied upon to determine the extent of aquatic plant growth in the body of water 20. Similarly, one or more sonar transducers of the survey platform 190 can be relied upon to identify the depth of the body of water 20 at various locations. As another example, one or more cameras of the survey platform 190 can be relied upon to capture still shots or video of aquatic plant growth or detect the extent of the body of water 20 (e.g., identify shorelines).
The control processor 160 can be configured to navigate the system 10 using the propulsion system 140 based on one or more of the route data 164, the location data determined by the positioning system 180, and image and depth data captured by the survey platform 190. The data collected by the survey platform 190 can be stored as the survey data 166 in the data store 162 and/or wirelessly transmitted to the remote telemetry platform using the communications module 170.
The holding container 120 can be embodied as any suitable container for holding a substance. The substance in the holding container 120 can vary depending upon the use case for the system 10. For example, the substance can be a herbicide, pesticide (e.g., mosquitocide, etc.), algaecide, molluscicide, or other substance to control the growth of plants, animals, or insects, among other things. Depending upon the size of the aquatic vessel 100, the size of the body of water 20, and/or the concentration of the substance being stored, the holding container 120 can be larger or smaller among embodiments.
The substance applicator 130 can be embodied as any suitable mechanism or assembly for applying or dispersing the substance held in the holding container 120. For example, if the substance is a liquid aquatic herbicide, the substance applicator 130 can be embodied as one or more motors, pumps, tubes, and dispersing nozzles, such as the dispersing nozzle 132. In various embodiments, nozzles similar to the dispersing nozzle 132 can be positioned at any location outboard the aquatic vessel 100. On the other hand, if the substance is a solid aquatic herbicide, the substance applicator 130 can be embodied as one or more mechanisms, including motors, belts, augers, scoops, tubes, shakers, etc., suitable for dispersing solids. In either case, the substance applicator 130 can apply the substance at the surface level of the body of water 20, below the surface level of the body of water 20, above the surface level of the body of water 20, or any combination thereof. Additionally, the holding container 120 and the substance applicator 130 can be formed as a closed system suitable for the labelling requirements of certain pesticides and/or herbicides.
The controller 110 is coupled to the substance applicator 130 and directs the operation of the substance applicator 130 as described in further detail below. In some embodiments, the substance applicator 130 can be controlled by the controller 110 to apply the substance in the holding container 120 at a certain time or times and a certain rate. The controller 110 can control the substance applicator 130 to apply the substance in the holding container 120 at various rates over time according to a predefined plan stored in the route data 164 and/or real time survey data gathered by the survey platform 190 as described herein.
The propulsion system 140 can be embodied as any suitable system for propelling or moving the system 10. In the embodiment shown in
The battery 150 can be embodied as any suitable type and number of batteries to provide energy to the controller 110 (and its subsystems), the substance applicator 130, the propulsion system 140, and other components as needed. In certain embodiments, such as where the propulsion system 140 is embodied using a gasoline engine, the system 10 can also include a separate holding tank for holding liquid fuel, in addition to the battery 150, along with a generator or alternator to generate electric energy.
Turning to
As shown in
As shown in
The route 40 can also define certain conditions and/or constraints associated with the application of herbicides. For example, in one embodiment, an application segment of the route 40 can specify the application of herbicides at a certain rate or volume. In other embodiments, an application segment can specify the application of herbicides only when the aquatic vehicle 100 is travelling above or below certain speeds or within a certain range of speeds.
Even when the system 10 is tracking the route 40, the controller 110 can be configured to analyze real-time data captured by the survey platform 190 as an additional factor or feedback to control of the system 10. For example, the image sensors and/or sonar transducers of the survey platform 190 can identify a relatively higher number of aquatic plants in the region 50. In turn, the controller 110 can use that information to apply higher levels of herbicide in the region 50. Alternatively, the controller 110 can use that information to avoid the region 50 and prevent the aquatic vessel 100 from becoming stuck in the aquatic plants in the region 50. In other cases, to the extent that the real-time data captured by the survey platform 190 contradicts or pre-empts the data in the route 40, the controller 110 can control the system 10 based on the real-time data. Thus, the controller 110 can be capable of controlling the system 10 to avoid obstacles or other situations that may present danger, such as fishermen, driftwood, etc., even if the route 40 fails to account for them.
In other embodiments, a user can operate the remote telemetry platform 210 to wirelessly control the route taken by the system 10 in semi-autonomous and/or remote-controlled modes of operation. Similarly, the user can operate the remote telemetry platform 210 to wirelessly control the application of herbicides by the system 10. In either the semi-autonomous or remote-controlled modes of operation, wireless telemetry data, including image feeds, video feeds, sonar data feeds, etc., can be wirelessly relayed from the system 10 to the remote telemetry platform 210. This wireless telemetry data can be stored and displayed on the remote telemetry platform 210, and a user of the remote telemetry platform 210 can view the data to make decisions as to how and where to navigate the system 10 on the body of water 20, for example, and where to apply herbicides or other substances.
In some cases, the system 10 can operate with other autonomous aquatic herbicide application systems, such as the systems 220 and 230 in
Additionally, the systems 220 and 230 can wirelessly communicate control and signaling data between each other and the system 10 to coordinate herbicide application processes among them. Working together, the systems 10, 220, and 230 can apply herbicides or other substances over larger areas in a shorter period of time. Additionally, when the system 10 acts as a command and/or control system, the systems 220 and 230 can be cheaper because they do not need the survey platform 190, for example, or other relatively costly equipment. Instead, all surveying can be performed by the system 10. In other cases, the systems 220 and 230 can include the same or similar components as the system 10.
The modular bays 320-325 can be embodied as a group of bays having one or more standard sizes. In that context, various types of equipment, such as the controller 110, the holding container 120, the substance applicator 130, the battery 150, the survey platform 190, etc., can be contained in one or more modular housing, and the modular housings can be inserted into the modular bays 320-325. In this way, the equipment carried by the system 300 can be changed easily over time by inserting modules into the modular bays 320-325 and/or removing modules from the modular bays 320-325.
The outrigger arms 330 and 332 can facilitate the application of substances to the body of water 20, improve the ability to survey the body of water 20, and improve the ability to apply herbicide or other substances to the body of water 20. In other words, the outrigger arms 330 and 332 can be helpful in various cases to make vegetation management, geolocation and communications functions, bathymetry determination, and vegetation and water chemistry measurement, surveying, and analysis more accurate and/or robust. The outrigger arms 330 and 332 are illustrated in
Because the outrigger arms 330 and 332 extend out from the sides of the aquatic vessel 310, the outrigger arms 330 and 332 can be relied upon to effectively increase the size of the system 300 for herbicide application, data collection, etc. In that context, the outrigger equipment 340 and 342 can include propulsion system equipment (e.g., propellers, rudders, etc.), buoys, sensors for survey platforms, nozzles for substance application, antennas for GPS positioning, etc.
In one embodiment, one or both of the outrigger equipment 340 and 342 include a sonar transducer and an antenna for GPS positioning. In that case, data captured by each sonar transducer can be associated with positioning data determined by a separate GPS receiver for increased survey data accuracy. In other cases, the system 300 can include a single antenna for GPS positioning, and the controller 110 can calculate positioning data for each of the sonar transducers in the outrigger equipment 340 and 342. The positioning data can be calculated based on the relative position of the single antenna, the size of the aquatic vessel 310, the relative positions of the outrigger equipment 340 and 342, the length of each of the outrigger arms 330 and 332, etc.
Before turning to the process flow diagram of
At reference numeral 404, the process 400 includes the system 10 navigating the aquatic vessel 100 according to the route. For example, the controller 110 can direct the propulsion system 140 to steer the aquatic vessel 100 over the body of water 20 according to the route stored at reference numeral 402. More specifically, at reference numeral 404, the process 400 can include the controller 110 determining a geographic location associated with the aquatic vessel 100 using data from the positioning system 180 and controlling the propulsion system 140 to track the route based on changes in the geographic location over time.
At reference numeral 406, the process 400 includes the controller 110 applying a substance to the body of water 20 according to an application pattern associated with the route stored at reference numeral 402. For example, based on one or more application segments defined in the route, the controller 110 can direct the substance applicator 130 to apply a substance, such as an herbicide, to the body of water 20. The application of the substance can be directed based on survey data, positioning data, and other factors described herein.
At reference numeral 408, the process 400 includes the controller 110 surveying the body of water 20 to acquire survey data along the route. The controller 110 can survey the body of water 20 using any of the sensors of the survey platform 190 as described herein. The data collected at reference numeral 408 can be stored as the survey data 166 and communicated to the remote telemetry platform 210 and/or other aquatic vessels (e.g., the systems 220 and 230 in
At reference numeral 410, the process 400 includes the controller 110 determining a route for at least one other aquatic vessel, such as one of the systems 220 and 230 in
At reference numeral 412, the process 400 includes the controller 110 communicating with the remote telemetry platform 210 and/or other aquatic vessels using the communications module 170. For example, the controller 110 can receive various command and control signals from the remote telemetry platform 210, such as commands to steer or navigate the system 10, commands to apply substances at certain locations, or other commands. The controller 110 can also communicate survey data to the remote telemetry platform 210 and/or routes to other aquatic vessels at reference numeral 412.
It should be appreciated that the processes illustrated in
Turning to
The processor 510 can be embodied as any general purpose arithmetic processor. The RAM 520 can be embodied as any random access or read only memory device that stores computer-readable instructions to be executed by the processor 510. The memory device 540 stores computer-readable instructions thereon that, when executed by the processor 510, direct the processor 510 to execute various aspects of the present invention described herein. As a non-limiting example group, the memory device 540 comprises one or more of an optical disc, a magnetic disc, a semiconductor memory (i.e., a semiconductor, floating gate, or similar flash based memory), a magnetic tape memory, a removable memory, combinations thereof, or any other known memory means for storing computer-readable instructions. The I/O interface 530 can be embodied as any input and/or output interfaces for communications with other system elements. The local interface 502 electrically and communicatively couples the processor 510, the RAM 5, the I/O interface 530, and the memory device 540 to each other, so that data and instructions may be communicated among them.
In operation, the processor 510 is configured to retrieve computer-readable instructions stored on the memory device 540 (or another storage device) and copy the computer-readable instructions to the RAM 520 for execution. The processor 510 is further configured to execute the computer-readable instructions to implement various aspects and features of the present invention. For example, the processor 510 may be adapted and configured to execute the processes described above with reference to
Although embodiments have been described herein in detail, the descriptions are by way of example. The features of the embodiments described herein are representative and, in alternative embodiments, certain features and elements may be added or omitted. Additionally, modifications to aspects of the embodiments described herein may be made by those skilled in the art without departing from the spirit and scope of the present invention defined in the following claims, the scope of which are to be accorded the broadest interpretation so as to encompass modifications and equivalent structures.
This is the 35 U.S.C. § 371 national stage application of PCT Application No. PCT/US2016/055986, filed Oct. 7, 2016, where the PCT application claims the benefit of U.S. Provisional Application No. 62/239,519, filed Oct. 9, 2015, the entire contents of both of which applications are hereby incorporated herein by reference.
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/US2016/055986 | 10/7/2016 | WO | 00 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2017/062764 | 4/13/2017 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
4799459 | Yi-Tung | Jan 1989 | A |
5089120 | Eberhardt | Feb 1992 | A |
5787832 | Spinka | Aug 1998 | A |
6269763 | Woodland | Aug 2001 | B1 |
6778887 | Britton | Aug 2004 | B2 |
7789723 | Dane | Sep 2010 | B2 |
8031086 | Thacher et al. | Oct 2011 | B2 |
8205570 | Tureaud et al. | Jun 2012 | B1 |
8825241 | Hine | Sep 2014 | B2 |
20070084813 | Morath | Apr 2007 | A1 |
20140284998 | Brennan | Sep 2014 | A1 |
20150259033 | George et al. | Sep 2015 | A1 |
Number | Date | Country |
---|---|---|
WO2013100228 | Sep 2012 | KR |
Entry |
---|
International Search Report for PCT/US2016/055986 dated Dec. 30, 2016. |
Number | Date | Country | |
---|---|---|---|
20180275660 A1 | Sep 2018 | US |
Number | Date | Country | |
---|---|---|---|
62239519 | Oct 2015 | US |