This specification relates to devices that move based on oscillatory motion and/or vibration.
One example of vibration driven movement is a vibrating electric football game. A vibrating horizontal metal surface induced inanimate plastic figures to move randomly or slightly directionally. More recent examples of vibration driven motion use internal power sources and a vibrating mechanism located on a vehicle.
One method of creating movement-inducing vibrations is to use rotational motors that spin a shaft attached to a counterweight. The rotation of the counterweight induces an oscillatory motion. Power sources include wind up springs that are manually powered or DC electric motors. The most recent trend is to use pager motors designed to vibrate a pager or cell phone in silent mode. Vibrobots and Bristlebots are two modern examples of vehicles that use vibration to induce movement. For example, small, robotic devices, such as
Vibrobots and Bristlebots, can use motors with counterweights to create vibrations. The robots' legs are generally metal wires or stiff plastic bristles. The vibration causes the entire robot to vibrate up and down as well as rotate. These robotic devices tend to drift and rotate because no significant directional control is achieved. Vibrobots tend to use long metal wire legs. The shape and size of these vehicles vary widely and typically range from short 2″ devices to tall 10″ devices. Rubber feet are often added to the legs to avoid damaging tabletops and to alter the friction coefficient. Vibrobots typically have 3 or 4 legs, although designs with 10-20 exist. The vibration of the body and legs creates a motion pattern that is mostly random in direction and in rotation. Collision with walls does not result in a new direction and the result is that the wall only limits motion in that direction. The appearance of lifelike motion is very low due to the highly random motion.
Bristlebots are sometimes described in the literature as tiny directional Vibrobots. Bristlebots use hundreds of short nylon bristles for legs. The most common source of the bristles, and the vehicle body, is to use the entire head of a toothbrush. A pager motor and battery complete the typical design. Motion can be random and directionless depending on the motor and body orientation and bristle direction. Designs that use bristles angled to the rear with an attached rotating motor can achieve a general forward direction with varying amounts of turning and sideways drifting. Collisions with objects such as walls cause the vehicle to stop, then turn left or right and continue on in a general forward direction. The appearance of lifelike motion is minimal due to a gliding movement and a zombie-like reaction to hitting a wall.
This specification describes technologies relating to autonomous devices that include a bobble head.
The details of one or more embodiments of the subject matter described in this specification are set forth in the accompanying drawings and the description below. Other features, aspects, and advantages of the subject matter will become apparent from the description, the drawings, and the claims.
Like reference numbers and designations in the various drawings indicate like elements.
Autonomous figurine devices, or vibration-powered vehicles, can be designed to move across a surface, e.g., a floor, table, or other relatively smooth and/or flat surface. Such a device (e.g., made to resemble a character with a body and bobble head) can be adapted to move autonomously, turn randomly based on their design, and turn in response to external forces (e.g., by being guided by a sidewall of a game environment). In general, the devices include a base, a bobble head, one or more driving legs, and a vibrating mechanism (e.g., a motor or spring-loaded mechanical winding mechanism rotating an eccentric load, a motor or other mechanism adapted to induce oscillation of a counterweight, or other arrangement of components adapted to rapidly move the center of mass of the device). As a result of vibration induced by the vibrating mechanism, the one or more driving legs can propel the miniature device in a forward direction as the driving leg or legs contacts a support surface. The vibration can also cause movement of the bobble head giving the device an appearance of more lifelike or interesting motion. The vibration drive can also create random movement, allowing for unpredictable movement and unpredictable interaction with other objects, adding to the lifelike appearance.
Movement of the device can be induced by the motion of a rotational motor inside of, or attached to, the device, in combination with a rotating weight with a center of mass that is offset relative to the rotational axis of the motor. The rotational movement of the weight causes the motor and the device to which it is attached to vibrate. In some implementations, the rotation is approximately in the range of 6000-9000 revolutions per minute (rpm's), although higher or lower rpm values can be used. As an example, the device can use the type of vibration mechanism that exists in many pagers and cell phones that, when in vibrate mode, cause the pager or cell phone to vibrate. The vibration induced by the vibration mechanism can cause the device to move across the surface (e.g., the floor or a platform in a game environment) using one or more legs that are configured to alternately flex (in a particular direction) and return to the original position as the vibration causes the device to move up and down. For example, the device can use the type of driving mechanism (e.g., flexible/curved legs and vibration mechanism) described in U.S. patent application Ser. No. 12/872,209, entitled “Vibration Powered Toy,” filed Aug. 31, 2010, and U.S. Pat. No. 8,038,503, issued Oct. 18, 2011, which are both incorporated herein by reference in its entirety.
Various features can be incorporated into the devices. For example, various implementations of the devices can include features (e.g., shape of the leg or legs, number of legs, frictional characteristics of the leg tips, relative stiffness or flexibility of the legs, resiliency of the legs, relative location of the rotating counterweight with respect to the legs, etc.) for facilitating efficient transfer of vibrations to forward motion. The speed and direction of the device's movement can depend on many factors, including the rotational speed of the motor, the size of the offset weight attached to the motor, the power supply, the characteristics (e.g., size, orientation, shape, material, resiliency, frictional characteristics, etc.) of the one or more driving legs attached to the chassis of the device, the properties of the surface on which the device operates, the overall weight of the device, and so on. The components of the device can be positioned to maintain a relatively low center of gravity (or center of mass) to discourage tipping (e.g., based on the lateral distance between the leg tips).
In some implementations, the size and shape of an opening 170 in a lower portion of the bobble head 115 (i.e., the portion of the bobble head 115 through which the body 110 projects into the bobble head 115 to provide rotatable support) can be configured to limit rotation of the bobble head about one or more axes of rotation. For example, the opening 170 can be sized such that forward and backward rocking of the bobble head 115 is limited (e.g., when a front or back edge of the opening 170 contacts the body 110). Similarly, side to side rocking of the bobble head 115 can be limited by the sides of the opening 170 contacting the body 110. Furthermore, rotation of the bobble head 115 (e.g., turning of the bobble head 115 about an axis perpendicular to a support surface) can be limited by using a non-circular opening 170 and non-cylindrical body 110 such that an edge of the opening 170 contacts the body 110 at a selected degree of rotation. In some cases, rotation about a particular axis may be limited more or less than rotation about axes perpendicular to the particular axis. For example, rotation of the bobble head 115 can be permitted to be up to about one-hundred twenty degrees or less, while rocking forward and back can be limited to about ninety degrees and rocking side to side can be limited to about sixty degrees. In some cases, rotation can be more limited (e.g., sixty degrees rotation, forty five degrees forward and back, and thirty degrees side to side).
Also as shown in
Each of the plurality of legs 415 includes a leg base 420 and a leg tip 425 at a distal end relative to the leg base 420. The legs 415 are coupled to the base 105 at the leg base 420 and include one or more driving legs (e.g., front legs 415a) constructed from a flexible material and configured to cause the apparatus to move in a direction generally defined by an offset between the leg base 420 and the leg tip 425 as the rotational motor rotates the eccentric load. In some implementations, the driving leg(s) 415 are curved in the rearward direction. Alternatively, the driving leg(s) 415 can be generally straight but may still include an offset between the leg base 420 and the leg tip 425. In addition, the driving leg(s) 415 can be constructed from relatively inflexible materials, such as stiff plastic, or from bristles.
In some implementations, the middle pair of legs 415b are shorter than the front and rear pairs of legs 415a and 415c (i.e., the middle legs 415b extend a shorter distance downward from the base 105 than a plane 515 defined by the leg tips 425 of the front pair of legs 415a and the leg tips 425 of the rear pair of legs 415c). For example, the middle legs 415b can be about 0.3 mm above the plane 515 so the middle legs 415b only touch when needed to add stability, and thus do not interfere with the propulsion action of the front legs 415a.
In addition, a center of gravity 520 of the apparatus can be located closer to the rear pair of legs 415c than the front pair of legs 415a, which can help produce higher front leg jumps and an increased turning angle, including an improved ability to turn when encountering a wall or other obstruction.
In some implementations, a distance between each leg in the front pair of legs 415a is greater than 50% of a distance between the front pair of legs 415a and the rear pair of legs 415c. A relatively shorter length from front leg to rear leg improves turning. The base 105 projects farther forward than the bobble head 115 when the device 100 is in an upright position. This configuration helps ensure that collisions with obstacles tend to occur at the base 105, instead of the bobble head 115.
In some implementations, the components and weight distribution of the device 100 can be selected to impact functionality. For example, the rotational motor 140 can be positioned toward a front end 405 of the device 100 to increase the vibration excitation on the front legs 415a which provide the primary drive for the device 100. The rotational motor 140 can rotate an eccentric load located farther toward the front end 405 of the device 100. The axis of rotation of the rotational motor 140 can be generally aligned with a direction of movement of the device 100 (e.g., the general direction that the device 100 tends to move on average when on a flat and level surface). The battery (e.g., an AG13 coin battery located horizontally just above the base 105) can be placed toward the rear end 410 of the device 100 and low in the device 100 to lighten the load over the front legs 415a and reduce the angular moment of inertia.
In some implementations, a linear vibration motor can be used. In these applications the motor would be aligned to create vibration normal to the driving surface. The vibration axis could alternately be tilted forward slightly to increase forward driving force. This type of vibration is sufficient to create movement and induce the bobble effect. The downside of this implementation is the lack of vibration in the direction perpendicular to the movement direction. The side-to-side vibration helps to create the random movement that improves lifelike motion.
In some implementations, a cutoff switch can be used to remove power to the rotational motor when the device 100 tips over (i.e., tips away from an upright position). Since tipping will eventually occur, it is undesireable to a human-like figurine to have an appearance of flailing helplessly on the ground without an ability to get up. A tilt-based cutoff switch that removes power from the motor when the device has tipped over can help avoid this result. Generally, the tilt sensor can be sufficiently damped so the sensor does not intermittently cut power due to vibration.
As an alternative to driving legs, the drive mechanism can include one or more wheels adapted to rotate under power of a motor. The vibration mechanism in such a case can include a plurality of wheels having at least one of different vertical positions, different circumferences, or different circumferential shapes for inducing vibration by creating instability in movement. Vibration can also be induced by varying acceleration of the bobble head figure, which can be achieved by accelerating and decelerating a drive mechanism attached to the bobble head figure or multiple drive mechanisms (e.g., located on the right and left sides of the bobble head figure, or as a result of collisions with objects.
Thus, particular embodiments of the subject matter have been described. Other embodiments are within the scope of the following claims.
This application is a continuation of and claims the benefit under 35 U.S.C. §120 of U.S. patent application Ser. No. 13/335,527, filed Dec. 22, 2011, which is incorporated herein by reference in its entirety and claims the benefit under 35 U.S.C. §119(e) of U.S. patent application Ser. No. 61/543,306, entitled “Autonomous Bobble Head Toy,” filed Oct. 4, 2011, which is incorporated herein by reference in its entirety.
Number | Date | Country | |
---|---|---|---|
61543306 | Oct 2011 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 13335527 | Dec 2011 | US |
Child | 13339945 | US |