This invention generally relates to the field of crop management. Certain embodiments relate to a crop management apparatus, a crop management process and a crop harvesting apparatus.
In agriculture and crop cultivation, one aspect of effective crop management involves the harvesting, for example picking, of the target crop. Other aspects include crop plant maintenance such as weed control, pruning, thinning and pollinating.
Certain target crops are selectively and individually harvested, because not all plants are ready to harvest at the same time or they are too delicate or valuable to be collectively harvested. Examples of such target crops include broccoli, asparagus, broccolini, apples, capsicum, zucchini, strawberries and cherries.
Manual labour has been used as a common form of selective harvesting. It is also used for pruning, weeding and other general crop maintenance. In general, field workers traverse a field of crop plants and manually harvest each crop item or, in the case of crop maintenance, manually prune the crop plant or kill/remove the weed.
There are a number of limitation and trade-offs involved with using manual labour for crop management. One limitation is that manual labour can be uneconomical, especially in areas with high labour costs. Another is the exposure of the field worker to a potentially hazardous working environment.
Against a background of these limitations and trade-offs of using manual labour, various crop management apparatus have been developed, which automate or semi-automate an aspect of crop management. For example, various types of harvesting systems include vacuums, shakers and rotary brushes. Automated crop management apparatus often also have limitations and trade-offs, for example between one or more of complexity, reliability, speed, efficiency, scalability and cost.
In light of these and other limitations and trade-offs involved in known crop management methods, there is a need for alternative forms of crop management for use by the agricultural industry.
Reference to any prior art in the specification is not an acknowledgment or suggestion that this prior art forms part of the common general knowledge in any jurisdiction or that this prior art could reasonably be expected to be understood, regarded as relevant, and/or combined with other pieces of prior art by a skilled person in the art.
In one aspect of the present invention there is provided a crop management apparatus for selectively severing plant items from a plurality of plants, the apparatus comprising: a sensor unit for sensing aspects of the plurality of plants and generating data indicative thereof; a control unit for processing the data to determine a location of a target plant item suitable for severing; a cutter unit comprising at least one selectively deployable cutter for severing the target plant item from its respective plant; and a prime mover for moving the sensor unit and the at least one selectively deployable cutter across the plurality of plants, wherein the control unit outputs a control signal to deploy the at least one selectively deployable cutter at least in part based on the determined location of the target plant item; and wherein when the at least one selectively deployable cutter is in a deployed state, severance of the target plant item occurs at least in part based on movement of the prime mover.
In another aspect of the present invention there is provided a crop management process for selectively severing plant items from a plurality of plants, the process comprising the steps of: sensing aspects of the plurality of plants and generating data indicative thereof; processing the generated data to determine a location of a target plant item suitable for severing; deploying a selectively deployable cutter at least in part based on the determined location of the target plant item; and moving the selectively deployable cutter in its deployed state with a prime mover such that severance of the target plant item occurs at least in part based on movement of the prime mover.
In a further aspect of the present invention there is provided a crop harvesting apparatus for selectively harvesting plant items from a plurality of plants, the apparatus comprising: a sensor unit for sensing aspects of the plurality of plants and generating data indicative thereof; a control unit for processing the data to determine a location of a target plant item suitable for harvesting; at least one selectively deployable fluid jet for severing the target plant item from its respective plant; at least one guard element for collecting fluid expended from the at least one selectively deployable fluid jet; and a prime mover for moving the sensor unit, the at least one selectively deployable fluid jet and the at least one guard element across the plurality of plants, wherein the control unit outputs a control signal to deploy the at least one selectively deployable fluid jet at least in part based on the determined location of the target plant item; and wherein when the at least one selectively deployable fluid jet is in a deployed state, severance of the target plant item from its respective plant occurs at least in part based on movement of the prime mover.
In yet another aspect of the present invention there is provided a crop harvesting apparatus for selectively harvesting plant items from a plurality of plants, the apparatus comprising: a sensor unit for sensing aspects of the plurality of plants and generating data indicative thereof; a control unit for processing the data to determine a location of a target plant item suitable for harvesting; a cutter unit comprising a plurality of vertically extending elongate projections arranged such that a predetermined gap is formed between adjacent projections, each projection comprising at least one selectively deployable cutter for severing a target plant item from its respective plant; and a prime mover for moving the sensor unit and the cutter unit across the plurality of plants, wherein the gap between adjacent projections is set such that only a single target plant item can pass between the adjacent projections at any one time; wherein the control unit outputs a control signal to deploy the at least one selectively deployable cutter at least in part based on the determined location of the target plant item; and wherein when the at least one selectively deployable cutter is in a deployed state, severance of a target plant item occurs at least in part based on movement of the prime mover.
In yet a further aspect of the present invention there is provided a crop harvesting apparatus for selectively harvesting plant items from a plurality of plants, the apparatus comprising: a sensor unit for sensing aspects of the plurality of plants and generating data indicative thereof; a control unit for processing the data to determine a location of a target plant item suitable for harvesting; at least one selectively deployable paddle for imparting a force to the target plant item; and a prime mover for moving the sensor unit, the at least one selectively deployable paddle across the plurality of plants, wherein the control unit outputs a control signal to deploy the at least one selectively deployable paddle at least in part based on the determined location of the target plant item; and wherein when the at least one selectively deployable paddle is in a deployed state, the force is imparted to the target plant item at least in part based on movement of the prime mover.
As used herein, except where the context requires otherwise, the term “comprise” and variations of the term, such as “comprising”, “comprises” and “comprised”, are not intended to exclude further additives, components, integers or steps.
Further aspects of the present invention and further embodiments of the aspects described in the preceding paragraphs will become apparent from the following description, given by way of example and with reference to the accompanying drawings.
An example crop management apparatus 1 for selectively severing plant items from within a plurality of plants is depicted from a perspective view in
The apparatus 1 in this example includes a cutter unit 3 with a selectively deployable cutter 5, and a prime mover 7. In one embodiment the cutter unit 3 includes an elongate projection extending vertically downwards from a body of the prime mover 7 to the selectively deployable cutter 5.
The apparatus 1 includes a sensor unit and a control unit. The sensor unit is capable of sensing one or more of various aspects of a plant item in a sensing area, e.g. plant presence in the sensing area, size, colour, shape, height, volume, planting date, temperature, ripeness and health, and generating data indicative thereof. Accordingly, as will be described in more detail within the following, the sensor unit may include one or more of a variety of different sensors. For example, the sensor unit may include one or more ranging sensors such as LIDAR, acoustic and radar. Alternatively, or in addition, the sensor unit may include one or more imaging sensors such as RGB, infrared, hyperspectral and thermal sensors.
The data generated by the sensor unit is processed by the control unit in accordance with predetermined control logic to determine a location of a target plant item. The control unit is adapted to output a control signal to deploy the selectively deployable cutter 5. The deployment of the selectively deployable cutter 5 is at least in part based on the determined location of the target plant item.
In its deployed state, the selectively deployable cutter 5 of the cutter unit 3 is adapted to cut plant material and is capable of severing a target plant item from its respective plant. As will be described in more detail within the following, in some embodiments this target plant item may be a crop plant item suitable for harvesting. In other embodiments, the target plant item may be extraneous plant material to be pruned from a crop plant, or a weed to be separated from its root stock. In some embodiments the control unit is configurable between two or more modes of operation, with one mode of operation targeting one category or type of plant item and another mode of operation targeting a different category or type of plant item. In some embodiments the sensor unit includes a plurality of sensors. In some embodiments a first subset of the plurality of sensors is utilised for one mode of operation of the control unit and a second subset of the plurality of sensors, different from the first subset, is utilised for another mode of operation of the control unit.
The prime mover 7 is adapted to move the sensor unit and the selectively deployable cutter 5 across the plurality of plants. When the selectively deployable cutter 5 is in a deployed state, severance of a plant item in a target area of the selectively deployable cutter 5 occurs. In some embodiments severance of the plant item in the target area is at least in part based on movement of the prime mover 7.
In some embodiments the sensing area of the sensor and the target area of the selectively deployable cutter 5 are fixed. The controller accordingly is configured to control operation of the selectively deployable cutter 5 based on a displacement of the sensing area and the target area. For example, if the prime mover 7 is moving at a fixed speed, the controller may deploy the selectively deployable cutter 5 a certain time after a target plant item is sensed in the sensing area, or as predicted through an internal model within the control unit. In some embodiments the speed of the prime mover 7 is variable, either due to its own operation or due to being towed or otherwise moved by another device that can operate at various speeds. In these embodiments the controller may be additionally configured to control deployment of the selectively deployable cutter 5 based on a determined speed of travel of the prime mover 7. The speed of travel or the position of the prime mover 7 may be determined by a suitable speed or position sensor, for example based on one or more of a global positioning system (GPS) signal, a wheel speed sensor (odometry), a speedometer and a LIDAR based speed sensor or as generated through a collection of imaging and ranging sensors.
In the embodiment depicted in
In one embodiment the selectively deployable cutter 5 operates with a component that is substantially transverse to the direction of travel of the prime mover 7. In one embodiment the selectively deployable cutter 5 operates at between 45 degrees and 135 degrees (inclusive) to the direction of travel of the prime mover. In one embodiment the selectively deployable cutter 5 operates at approximately 90 degrees to the direction of travel of the prime mover. In one embodiment the angle of operation of the selectively deployable cutter 5 is fixed. In other embodiments the angle of operation of the selectively deployable cutter 5 and/or the position of operation of the selectively deployable cutter 5 is variable, for example under control of the control unit based on information from the sensor unit. The cutter unit 3 may accordingly also comprise one or more actuators for controlling the orientation and/or position of the cutter 5 relative to the prime mover 7.
In one embodiment the cutting action of the selectively deployable cutter 5 is implemented as a fluid jet. For example, the selectively deployable cutter 5 is provided with left and right side-facing outlets, which in one embodiment are provided at or near the lower extremity of the cutter unit 3. It will be appreciated that other forms of cutters, such as lasers, telescopic knives, hot wires and reciprocating knives, may be utilised in addition, or as an alternative, to the fluid jet.
In one embodiment the prime mover 7 includes a collection unit 15, adapted to collect target plant items severed from their respective plants. It will be appreciated that the collection unit 15 may be omitted from the apparatus 1 in situations where collection of the severed target plant items is not required, e.g. is either unnecessary or carried out by alternative means. In one embodiment, the collection unit 15 includes a constantly deployed collector that, when deployed, is capable of collecting severed target plant items and leaving non-severed plant items in place. More specifically, the constantly deployed collector of the collection unit 15 utilises a vacuum to suck severed target plant items. The collection unit 15 further includes a hopper (not shown) to store the harvested plant items collected by the collection means.
It will be appreciated that, in alternative embodiments, other collection means may also be utilised by a constantly deployed collector, such as low strength grippers, brushes, gravity, etc. It will also be appreciated that the collection unit may include a selectively deployable collector in addition, or alternatively, to the constantly deployed collector. The deployment of such a selectively deployable collector can be activated by a control signal output from the control unit.
The apparatus 1 depicted in
Turning to
As shown in
The decision for determining which broccoli heads are ready to be selectively harvested can be based on one or a combination of parameters, including for example: head size, colour, shape, height, volume, planting date, temperature, and health. The broccoli heads selected for harvesting can be input into a continuous planning system within the control unit, and the control unit then controls the selectively deployable cutter 5 to sever each broccoli head in succession.
In some embodiments, raw sensor data is filtered or cleaned prior to completion of a plant identification step. For example,
As shown in
The prime mover 7 of crop management apparatus 100 is provided with two substantially parallel, cantilevered arms 102A, 102B that extend substantially horizontally from chassis 9. Sensor unit 104 of crop management apparatus 100 is provided between the arms 102A, 102B, in the embodiment shown at a distal end thereof from the prime mover 7.
Collection unit 115 includes an open hopper 116 and a selectively deployable conveyor belt collector 118. The open hopper 116 is provided so as to span below the ends of arms 102A, 102B proximal the prime mover 7. The conveyor belt collector 118 is selectively pivotable between a non-deployed state as depicted in
Cutter unit 103 is formed as an elongate projection extending longitudinally from a right side of the end of conveyor belt collector 118 distal from open hopper 116. The selectively deployable cutter 105 provides a fluid jet through a left side outlet at the distal extremity of cutter unit 103.
In some embodiments the sensor unit 104 and control unit combine to control the height of the fluid jet expelled by the cutter 105 by controlling the angle of the conveyor belt collector 118. In some embodiments the sensor unit 104 and control unit determines a height of the ground at the location of the cutter unit 103 and controls the angle of the conveyor belt collector 118 to ensure the cutter unit 103 clears the ground or for example to cut the target item at the ideal position which may save further processing in the production system.
The process for identifying a target broccoli head 117 for harvesting with crop management apparatus 100 is similar to the process described above with respect to crop management apparatus 1, and thus will not be repeated. The actual harvesting process is also similar, but with a number of minor variations described below.
Once the target broccoli head 117 has been identified, the continuous planning system calculates not only the cutter start and end points for deploying the selectively deployable cutter 105, but also the collection start and end points for deploying the conveyor belt collector 118 while the prime mover is traversing the plurality of broccoli plants 119. In one embodiment at least one of the collection start and end points are different from the cutter start and end points. For example, the collection start point may precede the cutter start point by a predetermined distance or time. In one embodiment the predetermined distance or time allows the collection unit 115 to stabilise in position prior to the deployment of the cutter.
Accordingly, as shown in
Whilst the crop management apparatus 100 depicted in
Also, whilst the harvesting process utilising crop management apparatus 100 as depicted in
As shown in
In one embodiment the conveyor collector 218 is pivotable between a non-deployed state (not shown) and a deployed state as depicted in
In another embodiment the conveyor collector 218 is continuously deployed. The soft and flexible clamping grippers 218A are strong enough to hold the severed asparagus spears 217 and prevent them from falling, but not so strong as to damage the non-severed asparagus spears 219 that remain in the ground.
Cutter unit 203 is formed as an elongate projection extending downwards from a right side of the end of conveyor collector 218 distal from open hopper 216. The selectively deployable cutter 205 is formed as a fluid jet provided with a left side outlet at the distal extremity of cutter unit 203.
The crop management apparatus 200 is configured so that the collector operates simultaneously on a plant item with the cutter. For example, the conveyor collector 218 is configured to hold the plant items when they are adjacent to the cutter unit 203. While the plant items are held, the cutter unit 203 selectively either severs or does not sever the plant item from its respective plant. For the plant items that are severed, the conveyor collector 218 carries the plant item away from the plant to the hopper 216. For the plant items that are not severed, the plant pulls the plant item out from the conveyor collector 218 as the crop management apparatus 200 moves past the plant.
As discussed above, in its deployed state, the conveyor collector 218 is capable of collecting the severed asparagus spears 217 and leaving non-severed asparagus spears 219 in place. As such, there is no need to pivot the conveyor collector 218 between a deployed and non-deployed state. Nevertheless, the sensor unit 204 and control unit (not shown) can combine to control the height of the fluid jet expelled by the cutter 205 by controlling the angle of the conveyor collector 218 or by rotating the jet to adjust its angle of elevation using a separate motor system. Furthermore, in some embodiments, the cutter can be rotated to adjust its angle of orientation forwards/backwards if the application requires, e.g. as shown in
Crop management apparatus 300 depicted in
Turning to
A prime mover traverses the plurality of asparagus plants 419 while the asparagus plants 19 are tracked by a sensor unit in combination with a control unit, with aspects such as detected location, size, volume or other parameters such as health, ripeness stored by the control unit.
As was the case for broccoli harvesting, the decision for determining which asparagus spears are ready to be selectively harvested can be based on one or a combination of variables, including: colour, height, planting date, temperature, ripeness or health. The asparagus spears selected for harvesting are then input into a continuous planning system within the control unit, and the control unit then controls the selectively deployable cutter(s) to sever each target asparagus spear 417.
The planning system determines at least one of an orientation angle and start and end points within regions D1, D2, D3, for deploying the cutter while the prime mover is traversing the plurality of asparagus plants 419 in direction Y. Accordingly, as shown in
Another crop management apparatus 500 suitable for the harvesting of asparagus crops is depicted in
Each projection 503A-G is provided at its lower extremity with a selectively deployable cutter 505A-G. The cutters 505A, 505G of the furthest left and right projections 503A, 503G include single rotating knives (not shown) that, in their deployed state, extend towards adjacent cutters 505B, 505F, respectively, to span approximately half the gap. As exemplified in
At the time for which the continuous planning system of the control unit has identified the location of an asparagus spear 517 suitable for harvesting should begin, the control unit outputs a control signal to deploy the left and right rotating knives of adjacent cutters to span the gap through which the target asparagus spear 517 will pass, as depicted in
Another crop management apparatus 600 suitable for the harvesting of trellis tree apple crops is depicted in
In this example, the cutter unit 603 is formed as an elongate projection extending upwards from a collection unit 615 mounted to the chassis 609 of the prime mover 607. The selectively deployable cutter 605 is formed as a fluid jet, and the cutter unit 603 includes one or more actuators for controlling angles of elevation and/or orientation of the fluid jet outlet relative to the prime mover 7.
The collection unit 615 is adapted to collect apples severed from their respective trellis trees, and includes an open hopper 616 and a ramp collector 618 with soft brushes for directing severed apples to the open hopper 616.
Once the continuous planning system of the control unit has identified the location of an apple 617 suitable for harvesting, it can then determine the necessary elevation and orientation angles to which the fluid jet outlet needs to be actuated and the required start and end points for deploying the fluid jet cutter 605 while the prime mover 607 is traversing the crop to sever the target apple 617 from the trellis tree. Accordingly, as shown in
Once the continuous planning system of the control unit has identified the location of an apple 717 suitable for harvesting, it can then determine the necessary height and angular displacement to which paddle 705 needs to be actuated and the required start and end points for deploying the paddle 705 while the prime mover 707 is traversing the crop to impart a force to the target apple 717 and thereby detach it from the trellis tree. Accordingly, as shown in
The control system 800 includes a sensor interface 803 for receiving information, for example photographic or video data from a sensor. The modules of the control unit include a plant item identification module 805 for processing sensor data and identifying candidate plant items for harvesting, a target plant item identification module 807 for determining, based on one or more characteristics of the sensor data which of the candidate plant items to harvest and which not to harvest, a planning module 809 for determining operation of the cutter and collector in order to harvest the plant items identified by the target plant item identification module 807 and a cutter and collector actuation module 809 for sending control signals to the cutter and/or collector.
A power system is provided for the crop management apparatus. The power system provides the energy to selectively deploy the cutter and collector. The power system may comprise one more engines or batteries.
It will be appreciated that, in some embodiments of the present disclosure, the sensor unit has a known geometric transformation to the cutter/harvesting unit that is either fixed or known through sensing. By providing the continuous planning system with such a known geometric transformation, accurate deployment of the cutter/harvesting unit can be made. The plurality of plants and target plant items are tracked accurately through time by the sensor unit and the control unit so that accurate interaction occurs with the cutter/harvesting unit and with the collection unit.
As previously mentioned, the sensor units of some embodiments may include one or more feedback sensors. These feedback sensors may be formed by any of the ranging or imaging sensors described above, and may be provided at the rear of the apparatus system so as to be able to detect the success rate or accuracy and precision of the cutting/harvesting operation.
Data from feedback sensors may be useful for providing an operator with an indication that there is a malfunction in the cutter/harvesting unit and that maintenance is required. For example, a low harvest success rate may indicate that a cutter blade is broken/blunt or that there is a blockage/deviation in the supply line or jet stream of fluid jet cutter. Alternatively, or in addition, the sensor unit may further include one or more sensors provided in the cutter/harvesting unit itself to detect such a malfunction.
For example, in some embodiments, a fluid jet cutter may be provided with a flow rate sensor to detect blockages in the supply line or jet stream. In other embodiments, a torque sensor may be provided for detecting the force being applied to the target item by the cutter/harvesting unit. For example, in the case of a cutter/harvesting unit using a knife blade, excessive force may indicate that the blade needs replacing or resharpening, and the converse may indicate that the blade is broken and needs replacing.
In some embodiments that use a collection unit, the sensor unit may further include level sensor or weigh scale provided at the collection unit hopper to detect how full the hopper is. When the control unit determines that the hopper is full based on the data from the level sensor or weigh scale, an operation is preferably carried out to empty or replace the hopper. For example, the crop management apparatus may drive a centralised location at which it can transfer the harvested target plant items by emptying or transferring the hopper, or it may call for another vehicle to come and collect the harvested target plant items in the same manner. In these embodiments, the hopper is either autonomously swappable, tippable or has a drain hatch to transfer the contents.
The control unit may also be configured to actively determine the class or grade of target plant items during the harvest process. These determinations may be based on aspects of the target plant items sensed by the sensor unit, such as quality, size, colour etc. In these embodiments, multiple collection hoppers may be provided and the collection unit may be configured to actively segregate the harvested plant items and direct particular plant items to particular collection hoppers based on the determined class or grade.
The sensor unit may further include sensors to detect the presence, location and type of foreign bodies within or around the harvested targeted plant items, e.g. spiders, mice, sticks, rocks, rubbish etc. In some embodiments, the collection unit may include a filter means configured to remove leaves or other foreign bodies from the harvest plant items.
As discussed above, the crop management apparatus may include one or more actuators to vary the orientation and/or position of the deployed cutting/harvesting means utilised by the cutter/harvesting unit. It will be appreciated that, in some embodiments, other characteristics of the deployed cutting/harvesting means may be variable, and may be actively adjusted or respond dynamically according to sensed characteristics and feedback or as dictated by a particular application. Examples of such additional or alternative adjustable or dynamic characteristics include:
It will be appreciated that the characteristics set out in the non-exhaustive list above are not exclusive to their respective cutter/harvester. For example, in embodiments in which a knife or spinning cutter is used as the cutting/harvesting means, the blade of the respective cutter may also be variably heated to assist in the cutting operation and/or reduce cross contamination between target plant items.
In embodiments where the cutting/harvesting means utilised by the cutter/harvesting unit is a fluid jet cutter, the crop management apparatus may further include a guard element to protect equipment from damage or to recycle and collect expended fluid. Such a guard element may be fixed relative to the nozzle of the fluid jet cutter, the collection unit or elsewhere on the system structure.
In embodiments where a cutter blade is used, the cutter/harvesting unit may further include a mechanism for self-sharpening and cleaning. In some embodiments, the self-sharpening and cleaning operation may be carried out during the deployment and deactivation processes of the cutter blade, such as during the extension and retraction of a linearly extensible cutter blade.
In the depicted embodiments, the cutter/harvesting unit and the collection unit have been described as generally operating discretely and independently of each other, i.e. it is the cutter/harvesting unit that severs or detaches the target plant item from its respective plant, and it is the collection unit that collects the severed/detached target plant item. It will be appreciated that, in other embodiments, the operation of the cutter/harvesting and collection unit may overlap or combine in a synergetic manner.
For example, in some embodiments, the collection means may assist the cutter/harvesting unit with severing or detaching the target plant item from its respective plant by imparting an additional disruptive or supportive force. The crop management apparatus may further comprise means to direct a supply of fluid such as air or water generally in the cutting region so that severed or detached target plant items are blown or forced towards the collection unit, while the remaining plant items are sufficiently undamaged by any direct or indirect flow due to this fluid.
In some embodiments, the cutter/harvesting unit may further include a catcher adapted to restrict, catch or guide the motion of the severed or detached target plant item. For example, a rotationally deployable knife blade may be provided with a catcher that, when the knife blade is retracted to the disengaged position, moves a severed target plant item into a region where the collection unit means is able to collect the item.
The collection unit described above with respect to
It will also be appreciated that some embodiments may utilise two vertically spaced conveyor belt collectors for holding and transporting target plant items that are clamped between the two belts. These vertically positioned conveyor belt collector may hold target plant items in position while they are being cut and then pick up the cut target plant item to transport it to the collector hopper. In such embodiments, the clamping force between the two vertically spaced conveyor belts must be low enough to not damage plant items that have not been cut, but strong enough to lift and transport the cut target plant items. To assist in facilitating such a holding and transporting method, the conveyor belt collectors may incorporate brushes, soft materials, paddles etc.
In embodiments in which the crop management apparatus is configured to harvest overhead crops, such as kiwi fruit, or angled crops, such as on a trellis tree as described with respect to
As described above, the collection unit may be omitted in situations where the crop management apparatus is used for cutting/detaching only and collection is either unnecessary or carried out by alternative means. For example, in pruning, thinning or weeding processes, the cut target plant item may be left amongst the plurality of plants to rot and compost, or may be collected by other means. Alternatively, in harvesting situations in which target plant items are produce crops, cut target plant items may be left either in situ (e.g. as through a partial cut) or to fall to a stable position for later collection by another vehicle.
One particular situation where collection is unnecessary and a cut target plant item may be left amongst the plurality of plants to rot and compost is during selective bloom thinning and pollination. A crop management apparatus 900 suitable for selectively thinning and pollinating blooms of trellis tree crops, such as tomatoes, eggplants, peppers and legumes, is depicted in
In this example, the thinning unit 903 and the pollinating unit 911 are formed as elongate projections extending upwards from a collection unit 915 mounted to the chassis 909 of the prime mover 907. By mounting the thinning unit 903 and the pollinating unit 911 to the collection unit 915, it may be possible to reduce the number of modifications necessary to transform or alter a crop management apparatus suitable for harvesting, e.g. crop management apparatus 600, into a crop management apparatus 900 suitable for thinning and pollinating. The collection unit 915 may also serve as a convenient location to stow the pollen storage unit. It will be appreciated that, in other embodiments, the collection unit may be omitted and the thinning unit 903 and the pollinating unit 911 may be mounted directly to the prime mover 907, or via other physical features such as the pollen storage unit.
In this example, the thinning unit 903 includes a selectively deployable cutter 905 formed as a high-pressure fluid jet for cutting blooms from the trellis tree, and one or more actuators for controlling angles of elevation and/or orientation of the fluid jet outlet relative to the prime mover 907. It will be appreciated that, in other embodiments, the thinning unit 903 may include alternative means for thinning, such as a selectively deployable disrupter formed as a fluid jet for knocking blooms off the trellis tree, a selectively deployable paddle similar to that discussed above in relation to crop management apparatus 700, and selectively deployable brushes and wipers.
In this example, the pollinating unit 911 includes a selectively deployable pollen applicator 921 formed as a fluid jet for blowing pollen, and one or more actuators for controlling angles of elevation and/or orientation of the fluid jet outlet relative to the prime mover 907. In some embodiments, the intake for the fluid jet may be formed in the pollen storage unit such that the pollen may be mixed with the fluid supplied to the fluid jet. In other embodiments, the intake for the fluid jet may be formed separate from the pollen storage unit, and the pollen may be mixed with the fluid blown from the outlet of the low-pressure fluid jet. For example, the pollen may be injected into the fluid blown from the outlet, or sucked out of a supply conduit by the fluid blown from the outlet using the venturi effect. It will be appreciated that, in other embodiments, the selectively deployable pollen applicator 921 may take alternative forms, such as selectively deployable paddles, brushes and wipers that may be coated with pollen supplied from 720 the pollen storage unit.
The continuous planning system of the control unit identifies the locations of blooms suitable for thinning and blooms suitable for pollinating. It can then determine the necessary elevation and orientation angles to which the outlet of the fluid jet cutter 905 needs to be actuated and the required start and end points for deploying the fluid jet cutter 905 while the prime mover 907 is traversing the crop to sever a thinning target bloom from the trellis tree. It can then also determine the necessary elevation and orientation angles to which the outlet of the fluid jet applicator 921 needs to be actuated and the required deployment point for the fluid jet applicator 921 to selectively pollinate a pollinating target bloom.
Accordingly, as shown in
In the described example, the pollinating target bloom is pollinated directly following the severance of the thinning target bloom. It will be appreciated that alternative thinning and pollination sequences are envisaged and may include situations where pollination first occurs after the severance of two or more thinning target blooms, and/or the pollen applicator is deployed to sequentially pollinate two or more pollinating target blooms.
It will be understood that the invention disclosed and defined in this specification extends to all alternative combinations of two or more of the individual features mentioned or evident from the text or drawings. All of these different combinations constitute various alternative aspects of the invention.
Number | Date | Country | Kind |
---|---|---|---|
2017904752 | Nov 2017 | AU | national |
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/AU18/51256 | 11/23/2018 | WO | 00 |