Autonomous distributed forwarding plane traceability based anomaly detection in application traffic for hyper-scale SD-WAN

Information

  • Patent Grant
  • 11575591
  • Patent Number
    11,575,591
  • Date Filed
    Wednesday, January 6, 2021
    3 years ago
  • Date Issued
    Tuesday, February 7, 2023
    a year ago
Abstract
Some embodiments of the invention provide a method for detecting and remediating anomalies in an SD-WAN that includes a controller, an enterprise datacenter, and multiple branch sites each having at least one edge node that includes a set of packet processing stages. At the controller, the method receives from a particular node of a particular branch site a flow notification indicating detection of an anomaly on the particular node. Based on the anomaly, the method dynamically generates trace monitoring rules that specify one or more flows to be traced and provides the trace monitoring rules to the particular node and at least one other node of another branch site. From the particular node and the at least one other node, the method receives trace monitoring results collected in response to the provided trace monitoring rules, and analyzes the results to identify any anomalies and dynamic actions to correct the anomalies.
Description
BACKGROUND

Today, exponential growth of software-defined wide area networks (SD-WANs) results in large numbers of distributed nodes that form complex overlay networks. These thousands of nodes that handle application traffic can experience a multitude of issues in the form of traffic impairments and performance degradation over a period of time. These large SD-WANs present various challenges for isolating and identifying issues relating to various packet flows such as a lack of time and energy to co-relate issues across thousands of SD-WAN nodes. Traditional methods for tracking and tracing failures across various traffic paths involves capturing debug logs by establishing multiple direct SSH sessions to each node across the entire SD-WAN network path relating to the traffic. Furthermore, current implementations do not provide any way to dynamically isolate out all occurrences of similar anomalies in application traffic across all of the nodes in an enterprise at the same time.


BRIEF SUMMARY

Some embodiments of the invention provide a method for detecting and remediating anomalies in a software-defined wide area network (SD-WAN) that includes at least a controller (e.g., a VeloCloud Orchestrator (VCO)), an enterprise datacenter, and multiple branch sites. Each of the branch sites in the SD-WAN includes at least one edge node that includes a set of packet processing stages for processing packet flows in the SD-WAN. In some embodiments, a particular node receives, from the controller, a set of one or more trace monitoring rules specified for a particular packet flow. The particular node determines that a first packet received at the particular node belongs to the particular packet flow and matches at least one trace monitoring rule. Based on these determinations, the particular node specifies the first packet as a packet that should be trace monitored by each packet processing stage of the particular node. As the first packet is processed by each packet processing stage, the particular node generates trace monitoring results to be provided to the controller for analysis.


In some embodiments, the packet processing stages include an ingress stage, a firewall stage, a routing stage, a quality of service (QoS) stage, a network address translation (NAT) stage, and an egress stage. The ingress stage, in some embodiments, is responsible for determining whether packets received at the particular node belong to a packet flow that is marked for trace monitoring and whether these packets match at least one trace monitoring rule. When a packet matches at least one trace monitoring rule in some embodiments, the ingress stage marks the packet (e.g., sets a flag on the packet) in order to identify the packet to the remaining packet processing stages as a packet that should be trace monitored. In addition to the trace monitoring rules, some embodiments also define a set of exceptions specifying thresholds, which, when met, are indicative of an anomaly. For example, some embodiments define exception rules specifying a threshold for a number of dropped packets.


As each of the packet processing stages processes a packet marked for trace monitoring by the ingress stage, they generate trace monitoring data and provide this data to a trace monitor agent executing on the particular node, according to some embodiments. The trace monitor agent, in some embodiments, aggregates the received data and provides aggregated trace monitoring results on a per-flow basis to the controller for analysis. In some embodiments, the trace monitor agent provides the results to the controller via a control plane of the particular node on which the trace monitor agent executes. The trace monitor agent only provides the trace monitoring results to the controller after trace monitoring for a packet flow has been completed on the node (e.g., after a number of packets specified for trace monitoring have been processed), according to some embodiments.


Some embodiments also include a hierarchical order of expansion for anomaly detection. In other words, the controller can generate trace monitoring rules in a hierarchical order so that dynamic anomaly detection can be grouped based on, for example, customer need. At the flow level, trace monitoring rules in some embodiments can be specified to target a particular packet flow across nodes in the SD-WAN. At the application level, the controller in some embodiments targets a packet flows to or from a specific application. In some embodiments, the controller may generate trace monitoring rules at the profile level such that all nodes belonging to a specified profile receive the trace monitoring rules. Lastly, in some embodiments, the controller may generate trace monitoring rules at the enterprise level for all of the nodes in an enterprise.


After receiving trace monitoring results from a node, the controller in some embodiments analyzes the results to identify any anomalies. Also, in some embodiments, the controller determines one or more remedial actions for correcting the identified anomalies. The controller performs the one or more dynamic actions to correct the identified anomalies in some embodiments, or pushes the dynamic actions to one or more nodes to apply in order to correct the identified anomalies.


In some embodiments, the controller generates trace monitoring rules in response to receiving a notification from one or more nodes indicating anomalies have been detected on the one or more nodes. Alternatively, or conjunctively, some embodiments provide a user interface (UI) to allow users to request trace monitoring for specific packet flows, nodes, etc. In some such embodiments, after the controller has received results from the nodes (i.e., in response to having provided trace monitoring rules in accordance with a user request), it provides a display through the UI that includes a visualization of the nodes involved in the trace monitoring, their packet processing stages, and paths traversed by packets and packet flows between these nodes.


The visualization in the provided display, in some embodiments, provides tools for identifying and, in some embodiments, remediating any detected anomalies. For example, any nodes, packet processing stages, and paths for which an anomaly has been detected may appear in a color (e.g., red) that is different from another color (e.g., green) in which the nodes, packet processing stages, and paths for which no anomalies have been detected appear.


Additionally, some embodiments allow a user to select individual packet processing stages to see information (e.g., in a pop-up window) regarding the packet flow processed by the stage when the anomaly was detected as well as a description of the error or anomaly experienced on that stage. More specifically, the packet flow information includes source and destination network addresses, source and destination ports, and application ID, according to some embodiments. The remainder of the information in some embodiments includes time elapsed, and stage status (i.e., pass or fail), according to some embodiments. As mentioned above, some embodiments may also include a remedial action, selectable by the user, to correct the detected anomaly.


The preceding Summary is intended to serve as a brief introduction to some embodiments of the invention. It is not meant to be an introduction or overview of all inventive subject matter disclosed in this document. The Detailed Description that follows and the Drawings that are referred to in the Detailed Description will further describe the embodiments described in the Summary as well as other embodiments. Accordingly, to understand all the embodiments described by this document, a full review of the Summary, the Detailed Description, the Drawings, and the Claims is needed. Moreover, the claimed subject matters are not to be limited by the illustrative details in the Summary, the Detailed Description, and the Drawings.





BRIEF DESCRIPTION OF FIGURES

The novel features of the invention are set forth in the appended claims. However, for purposes of explanation, several embodiments of the invention are set forth in the following figures.



FIG. 1 conceptually illustrates an SD-WAN that includes multiple branch sites, a controller, and a datacenter hub, according to some embodiments.



FIG. 2 conceptually illustrates a detailed view of an edge node and a controller in an SD-WAN, according to some embodiments.



FIG. 3 conceptually illustrates a process performed by an edge node to apply trace monitoring rules, according to some embodiments.



FIG. 4 conceptually illustrates a process performed by a controller to identify anomalies on edge nodes in an SD-WAN, according to some embodiments.



FIG. 5 conceptually illustrates a process performed by a controller to dynamically detect anomalies at various hierarchical levels in an enterprise, according to some embodiments.



FIGS. 6A-6B illustrate a first example UI for performing trace monitoring and identifying anomalies, according to some embodiments.



FIGS. 7A-7B illustrate a second example UI for performing trace monitoring and identifying anomalies, according to some embodiments.



FIGS. 8A-8C illustrate a third example UI for performing trace monitoring and identifying anomalies, according to some embodiments.



FIG. 9 conceptually illustrates a computer system with which some embodiments of the invention are implemented.





DETAILED DESCRIPTION

In the following detailed description of the invention, numerous details, examples, and embodiments of the invention are set forth and described. However, it will be clear and apparent to one skilled in the art that the invention is not limited to the embodiments set forth and that the invention may be practiced without some of the specific details and examples discussed.


Some embodiments of the invention provide a method for detecting and remediating anomalies in a software-defined wide area network (SD-WAN) that includes at least a controller (e.g., a VeloCloud Orchestrator (VCO)), an enterprise datacenter, and multiple branch sites. Each of the branch sites in the SD-WAN includes at least one edge node that includes a set of packet processing stages for processing packet flows in the SD-WAN. In some embodiments, a particular node receives, from the controller, a set of one or more trace monitoring rules specified for a particular packet flow. The particular node determines that a first packet received at the particular node belongs to the particular packet flow and matches at least one trace monitoring rule. Based on these determinations, the particular node specifies the first packet as a packet that should be trace monitored by each packet processing stage of the particular node. As the first packet is processed by each packet processing stage, the particular node generates trace monitoring results to be provided to the controller for analysis.


In some embodiments, the packet processing stages include an ingress stage, a firewall stage, a routing stage, a quality of service (QoS) stage, a network address translation (NAT) stage, and an egress stage. The ingress stage, in some embodiments, is responsible for determining whether packets received at the particular node belong to a packet flow that is marked for trace monitoring and whether these packets match at least one trace monitoring rule. When a packet matches at least one trace monitoring rule in some embodiments, the ingress stage marks the packet (e.g., sets a flag on the packet) in order to identify the packet to the remaining packet processing stages as a packet that should be trace monitored. In addition to the trace monitoring rules, some embodiments also define a set of exceptions specifying thresholds, which, when met, are indicative of an anomaly. For example, some embodiments define exception rules specifying a threshold for a number of dropped packets.


As each of the packet processing stages processes a packet marked for trace monitoring by the ingress stage, they generate trace monitoring data and provide this data to a trace monitor agent executing on the particular node, according to some embodiments. The trace monitor agent, in some embodiments, aggregates the received data and provides aggregated trace monitoring results on a per-flow basis to the controller for analysis. In some embodiments, the trace monitor agent provides the results to the controller via a control plane of the particular node on which the trace monitor agent executes. The trace monitor agent only provides the trace monitoring results to the controller after trace monitoring for a packet flow has been completed on the node (e.g., after a number of packets specified for trace monitoring have been processed), according to some embodiments.


Some embodiments also include a hierarchical order of expansion for anomaly detection. In other words, the controller can generate trace monitoring rules in a hierarchical order so that dynamic anomaly detection can be grouped based on, for example, customer need. At the flow level, trace monitoring rules in some embodiments can be specified to target a particular packet flow across nodes in the SD-WAN. At the application level, the controller in some embodiments targets a packet flows to or from a specific application. In some embodiments, the controller may generate trace monitoring rules at the profile level such that all nodes belonging to a specified profile receive the trace monitoring rules. Lastly, in some embodiments, the controller may generate trace monitoring rules at the enterprise level for all of the nodes in an enterprise.


After receiving trace monitoring results from a node, the controller in some embodiments analyzes the results to identify any anomalies. Also, in some embodiments, the controller determines one or more remedial actions for correcting the identified anomalies. The controller performs the one or more dynamic actions to correct the identified anomalies in some embodiments, or pushes the dynamic actions to one or more nodes to apply in order to correct the identified anomalies.


In some embodiments, the controller generates trace monitoring rules in response to receiving a notification from one or more nodes indicating anomalies have been detected on the one or more nodes. Alternatively, or conjunctively, some embodiments provide a user interface (UI) to allow users to request trace monitoring for specific packet flows, nodes, etc. In some such embodiments, after the controller has received results from the nodes (i.e., in response to having provided trace monitoring rules in accordance with a user request), it provides a display through the UI that includes a visualization of the nodes involved in the trace monitoring, their packet processing stages, and paths traversed by packets and packet flows between these nodes.


The visualization in the provided display, in some embodiments, provides tools for identifying and, in some embodiments, remediating any detected anomalies. For example, any nodes, packet processing stages, and paths for which an anomaly has been detected may appear in a color (e.g., red) that is different from another color (e.g., green) in which the nodes, packet processing stages, and paths for which no anomalies have been detected appear.


Additionally, some embodiments allow a user to select individual packet processing stages to see information (e.g., in a pop-up window) regarding the packet flow processed by the stage when the anomaly was detected as well as a description of the error or anomaly experienced on that stage. More specifically, the packet flow information includes source and destination network addresses, source and destination ports, and application ID, according to some embodiments. The remainder of the information in some embodiments includes time elapsed, and stage status (i.e., pass or fail), according to some embodiments. As mentioned above, some embodiments may also include a remedial action, selectable by the user, to correct the detected anomaly.



FIG. 1 illustrates an example embodiment of an SD-WAN (also referred to herein as a virtual network) for connecting multiple branch sites to each other and to a controller and at least one datacenter hub. As shown, the SD-WAN 100 includes a controller 110, three branch sites 120-124 that each include an edge forwarding node 130-134 (also referred herein as edge nodes or nodes), a cloud gateway 140, and a datacenter 150 with a hub 145.


The edge nodes in some embodiments are edge machines (e.g., virtual machines (VMs), containers, programs executing on computers, etc.) and/or standalone appliances that operate at multi-computer locations of the particular entity (e.g., at an office or datacenter of the entity) to connect the computers at their respective locations other nodes, hubs, etc. in the virtual network. In some embodiments, the nodes are clusters of nodes at each of the branch sites. In other embodiments, the edge nodes are deployed to each of the branch sites as high-availability pairs such that one edge node in the pair is the active node and the other edge node in the pair is the standby node that can take over as the active edge node in case of failover.


An example of an entity for which such a virtual network can be established includes a business entity (e.g., a corporation), a non-profit entity (e.g., a hospital, a research organization, etc.), and an education entity (e.g., a university, a college, etc.), or any other type of entity. Examples of public cloud providers include Amazon Web Services (AWS), Google Cloud Platform (GCP), Microsoft Azure, etc., while examples of entities include a company (e.g., corporation, partnership, etc.), an organization (e.g., a school, a non-profit, a government entity, etc.), etc. In other embodiments, hubs like the hub 145 can also be deployed in private cloud datacenters of a virtual WAN provider that hosts hubs to establish SD-WANs for different entities.


In the example SD-WAN 100, the hub 145 is a multi-tenant forwarding element that is deployed on the premises of the datacenter 150. The hub 145 can be used to establish secure connection links (e.g., tunnels) with edge nodes at the particular entity's multi-computer sites, such as branch sites 130-134, third party datacenters (not shown), etc. For example, the hub 145 can be used to provide access from each branch site 120-124 to each other branch site 120-124 (e.g., via the connection links 160 that terminate at the hub 145) as well as to the resources 155 of the datacenter 150. These multi-computer sites are often at different physical locations (e.g., different buildings, different cities, different states, etc.), according to some embodiments. In some embodiments, hubs can be deployed as physical nodes or virtual nodes. Additionally, hubs in some embodiments can be deployed on a cloud (e.g., as a set of virtual edges configured as a cluster).


In the SD-WAN 100, the hub 145 also provides access to the resources 155 of the datacenter 150 as mentioned above. The resources in some embodiments include a set of one or more servers (e.g., web servers, database servers, etc.) within a microservices container (e.g., a pod). Conjunctively, or alternatively, some embodiments include multiple such microservices containers, each accessible through a different set of one or more hubs of the datacenter (not shown). The resources, as well as the hubs, are within the datacenter premises, according to some embodiments. While not shown, some embodiments include multiple different SaaS datacenters, which may each be accessed via different sets of hubs, according to some embodiments. In some embodiments, the SaaS datacenters include datacenters for video conferencing SaaS providers, for middlebox (e.g., firewall) service providers, for storage service providers, etc.


Additional examples of resources accessible via the hub 145, in some embodiments, include compute machines (e.g., virtual machines and/or containers providing server operations), storage machines (e.g., database servers), and middlebox service operations (e.g., firewall services, load balancing services, encryption services, etc.). In some embodiments, the connections 160 between the branch sites and the hub 145 are secure encrypted connections that encrypt packets exchanged between the edge nodes 130-134 of the branch sites and the hub 145. Examples of secure encrypted connections used in some embodiments include VPN (virtual private network) connections, or secure IPsec (Internet Protocol security) connection.


In some embodiments, multiple secure connection links (e.g., multiple secure tunnels) can be established between an edge node and the hub 145. When multiple such links are defined between a node and a hub, each secure connection link, in some embodiments, is associated with a different physical network link between the node and an external network. For instance, to access external networks in some embodiments, a node has one or more commercial broadband Internet links (e.g., a cable mode and a fiber optic link) to access the Internet, a wireless cellular link (e.g., a 5G LTE network), etc. The collection of the edge nodes, gateway, datacenter hub, controller, and secure connections between the edge nodes, gateway, datacenter hub, and controller form the SD-WAN 100.


As mentioned above, the controller 110 communicates with each of the nodes 130-134 at the branch sites 120-124, in some embodiments, to send information such as trace monitoring rules and receive information such as trace monitoring results via the connection links 170A-170C. In some embodiments, the controller 110 also provides trace monitoring rules to, and receives trace monitoring results from, the gateway 140 via the connection link 170D and the hub 145 via the connection link 170E. While illustrated as individual connection links, the links 170A-170E are sets of multiple connection links, according to some embodiments.


In addition to the connection links 170A-170E and 160, edge nodes 132 and 134 are connected via connection link 164, while edge nodes 130 and 132 are connected to the gateway 140 via connection links 162. The gateway 140 in this example is responsible for relaying information between edge nodes (e.g., edge nodes 120 and 122, which do not share a direct connection). Also, the gateway 140 in some embodiments is used to set up direct edge-to-edge connections. In some embodiments, the gateway 140 can be used to provide the edge nodes with access to cloud resources (e.g., compute, storage, and service resources of a cloud datacenter).


In order to process packet flows to and from other elements in the virtual network (e.g., other nodes), the nodes 130-134 each include a set of packet processing stages. FIG. 2 conceptually illustrates a detailed view of an edge node and a controller in an SD-WAN. As shown, the edge node 220 includes a trace monitor 222, a control plane 224, a dynamic multipath selection module 226, and a set of packet processing stages 230-240, while the controller 210 includes a backend node server 212, a database 214, a graphical user interface 216, and a renderer 218.


The packet processing stages 230-240 include an ingress stage 230, a forwarding stage 232, a routing stage 234, a quality of service (QoS) stage 236, a network address translation (NAT) stage 238, and an egress stage 240. The ingress stage 230, in some embodiments, is configured to analyze and realize packets received at the edge node 220, as well as to match received packets to trace monitoring rules to determine whether the packet should be trace monitored. Additionally, when the ingress stage 230 determines that a packet should be trace monitored, in some embodiments, it sets a flag on the packet to indicate to the remainder of the packet processing stages 232-240 that the packet should be trace monitored.


The trace monitor 222, in some embodiments, is a data plane trace monitor that is configured to monitor the packet processing stages 230-240. In some embodiments, when an anomaly is detected during any of the packet processing stages 230-240, the trace monitor 222 sends a flow notification to the controller 210 via the control plane 224 to inform the controller of the detected anomaly. The trace monitor 222 also communicates with the controller 210 through the control plane 224 to receive trace monitoring rules and provide trace monitoring results. That is, when the trace monitor 222 receives trace monitoring data from the packet processing stages 230-240, it publishes consolidated, per-flow level trace monitoring results to the control plane 224 for collection by the backend node server 212 of the controller 210.


In some embodiments, once the backend node server 212 collects the trace monitoring results from the control plane 224, it persists the results to the database 214. Then, the GUI 216 polls the database for the trace monitoring results and calls the renderer 218 to dynamically render a flow diagram illustrating the packet processing stages of the edge node and the trace monitoring results. Alternatively, or conjunctively, the controller in some embodiments analyzes the trace monitoring results, identifies any anomalies, determines one or more remedial actions to correct the identified anomalies, and either applies the remedial action(s) itself, or pushes the remedial action(s) to one or more nodes (e.g., edge nodes, gateways, hubs, etc.) for the trace monitors of the nodes to apply.



FIG. 3 illustrates a trace monitoring process 300 performed by a node (e.g., edge node 220, gateway 140, or hub 145) in some embodiments. The process 300 starts at 305 by receiving, from a controller, trace monitoring rules specified for a particular packet flow. For example, as described above, the controller 210 provides trace monitoring rules to the trace monitor 222 of the edge node 220 via the control plane 224.


In some embodiments, the controller provides the trace monitoring rules to the edge node in response to receiving a flow notification from the edge node indicating an anomaly has been detected on the node. The node sends this flow notification, in some embodiments, based on an exception vector maintained across each of the packet processing stages of the node. The exception vector is associated with threshold limits, as mentioned above, in some embodiments. When a packet flow encounters an exception hitting threshold limit, the node (i.e., the trace monitor of the node) sends the flow notification (e.g., five tuple for the packet flow) to the controller for analysis, according to some embodiments. The controller in some embodiments, then dynamically constructs the trace monitoring rules and pushes the rules to any relevant nodes (e.g., any nodes that may process packets for this packet flow, including the node that sent the flow notification).


Next, the process receives (at 310) a packet. In some embodiments, as described above, packets received at the node are received by the ingress packet processing stage (e.g., packet processing stage 230). The process then determines (at 315) whether the received packet belongs to the particular packet flow for which the trace monitoring rules are specified. In some embodiments, for example, the trace monitoring rules will include any of the source and/or destination network address of the flow, the source and/or destination port of the flow, and an AppID of the flow (e.g., traffic type).


When the process determines (at 315) that the received packet does not belong to the particular packet flow, the process transitions to 325 to process the packet normally (i.e., without performing trace monitoring). Otherwise, when the process determines at 315 that the received packet does belong to the particular packet flow, the process transitions to 320 to determine whether the received packet matches trace monitoring criteria and should be marked for trace monitoring. For example, the trace monitoring rules will specify a number of packets in the particular packet flow that should be trace monitored.


When the process determines at 320 that the packet does not match trace monitoring criteria, the process transitions to 325 to process the packet normally, and then transitions to 340. Otherwise, when the process determines at 320 that the packet does match trace monitoring criteria, the process transitions to 330 to mark the packet for trace monitoring. For example, in some embodiments, the ingress packet processing stage sets a flag on the packet to indicate to the other packet processing stages that the packet should be trace monitored.


After the packet has been marked for trace monitoring at 330, the process performs (at 335) the trace monitoring on the packet as it is processed by each packet processing stage of the node. In some embodiments, for example, the trace monitoring can include recording the amount of time it takes to process the packet at each packet processing stage. After the packet has been processed by all of the stages, the process then determines (at 340) whether trace monitoring for the particular packet flow has been completed. In other words, the process determines whether the number of packets specified for the trace monitoring have all been processed.


When the process determines at 340 that trace monitoring for the particular packet flow has not been completed, the process transitions back to 310 to receive a packet. Otherwise, when the process determines at 340 that trace monitoring for the particular packet flow has been completed, the process transitions to 345 to provide the trace monitoring results to the trace monitor. As described above, each packet processing stage 230-240 on a node 220 collects trace monitoring data for packets that are marked for trace monitoring and provides the data to the trace monitor 222. After 345, the process publishes (at 350) consolidated, per-flow level trace results to the control plane of the node. The process then ends.


In some embodiments, as will be described further below, after the controller has retrieved the trace monitoring results from the control plane of the node, it provides one or more remedial actions to the node (i.e., via the control plane and trace monitor) to be applied by the node in order to correct any identified anomalies and/or prevent future anomalies.



FIG. 4 illustrates a process performed by a controller to perform trace monitoring on a packet flow. The process 400 is performed in conjunction with the process 300 described above, in some embodiments. The process 400 starts (at 410) by receiving a flow notification at the controller from a particular node (e.g., edge node 220, gateway 140, or hub 145) indicating that an anomaly has been detected on the particular node. For example, a node in some embodiments may detect that one or more stages in the packet processing stages of the node have dropped greater than a specified threshold of packets, thus triggering a flow notification to the controller to report the anomaly.


Next, at 420, the controller dynamically generates trace monitoring rules based on the detected anomaly. Continuing with the dropped packet example above, in some embodiments, the controller may generate trace monitoring rules to trace N number of packets belonging to any flows that are processed by the particular node that is experiencing a too-large number of dropped packets. At 430, the controller provides the trace monitoring rules to a set of nodes that includes at least the particular node. As described above, the controller 210 provides the trace monitoring rules to the control plane 224 of the edge node 220, which then provides the trace monitoring rules to the trace monitor 222 to apply to the packet processing stages 230-240.


The controller then retrieves (at 440) trace monitoring results from the control plane of each node in the set of nodes. For example, in some embodiments, the backend node server 212 collects trace monitoring results from the control plane 222. Next, the controller analyzes (at 450) the trace monitoring results to identify any anomalies. Examples of anomalies in some embodiments include exceeding a threshold specified for dropped packets, exceeding a threshold time period for processing a packet, missing a route between nodes, etc.


At 460, the controller determines whether any anomalies have been identified. When the controller determines that no anomalies are identified, the process ends. Otherwise, when the controller determines at 460 that at least one anomaly has been identified, the process transitions to 470 to determine and apply a remedial action for correcting the anomaly. In one example where the controller determines that an anomaly occurred on a particular node because a route is missing, a possible remedial action that the controller can perform is refreshing the routes for the particular node to recover the missing route. In some embodiments, rather than applying a remedial action itself, the controller pushes the remedial action to one or more nodes to apply. After determining and applying the remedial action at 470, the process 400 ends.


In some embodiments, the controller performs proactive anomaly detection to predict and prevent future traffic impairments and/or performance degradation. For example, consider application traffic (e.g., a packet flow) originating from an SD-WAN edge node that traverses through a transit node before reaching a destination SD-WAN edge side network (e.g., branch-to-branch via a hub). In typical embodiments, there are multiple transit nodes in the SD-WAN for providing alternate paths to reach destinations. This topology can lead to asymmetric paths traversed the application traffic, in some embodiments, which can be detrimental to the performance of real-time and/or high-priority categories of application traffic (e.g., VoIP traffic). Accordingly, the controller, in some embodiments, can automatically detect this asymmetrical anomaly by analyzing collected trace monitoring results to identify the asymmetric path experienced by the application traffic, thus allowing for the controller to apply actions to prevent asymmetric paths for future flows of application traffic.


As mentioned above, the controller in some embodiments can set up trace monitoring rules in a hierarchical order so that dynamic anomaly detection can be grouped as per customer needs. The hierarchical order implies flow level and application level traceability, which can be further applied at a profile level (e.g., for all nodes matching a particular profile) and at the enterprise level (i.e., for all nodes in the enterprise). Based on the hierarchical level needed, the controller in some embodiments dynamically generates trace monitoring rules and pushes the rules to relevant sets of nodes in the enterprise.


Flow-level trace monitoring rules, in some embodiments, can specify full five-tuple match criteria and can be used to target a specific flow across one or more nodes. Going one step further, application-level trace monitoring rules can specify application criteria alone (e.g., application ID), and can be used to target specific application traffic across one or more nodes, according to some embodiments. At the profile-level, the controller in some embodiments sends out relevant trace monitoring rules to all nodes belonging to a particular profile or multiple profiles, while at the enterprise level, the controller in some embodiments sends out the relevant trace monitoring rules to all nodes belonging to the enterprise.



FIG. 5 illustrates a process 500 performed by the controller in some embodiments to detect anomalies using the hierarchical order described above. The process 500 starts (at 505) with the controller dynamically generating flow-level trace monitoring rules and providing the rules to a particular node in the enterprise (e.g., edge node 220, gateway 140, or hub 145). The controller then receives and analyzes (at 510) trace monitoring results, and determines (at 515) whether any anomalies are identified in the received results.


When the controller determines (at 515) that no anomalies have been identified, the process ends. Otherwise, when the controller determines at 515 that one or more anomalies have been identified, the process transitions to 520 to determine whether additional trace monitoring is needed (e.g., if the identified anomaly has the potential to occur for other flows and/or at other nodes). When the controller determines (at 520) that no additional trace monitoring is needed, the process ends.


Otherwise, when the controller determines at 520 that additional trace monitoring is needed, the process transitions to 525 to determine whether application-level trace monitoring has been performed (i.e., with regard to this detected anomaly). When the controller determines (at 525) that application-level trace monitoring has not yet been performed, the process transitions to 530 to dynamically generate application-level trace monitoring rules and provide the rules to the particular node. In some embodiments, rather than generating new rules, the controller refines the flow-level trace monitoring rules so that they apply to all flows having the same application ID as the flow for which the anomaly was first detected (e.g., by removing source and destination address/port information from the rules). After 530, the process transitions back to 510 to receive and analyze trace monitoring results.


When the controller determines at 525 that application-level trace monitoring has been performed, the process transitions to 535 to determine whether profile-level trace monitoring has been performed. When the controller determines at 535 that profile-level trace monitoring has not yet been performed, the process transitions to 540 to provide the application-level trace monitoring rules to all nodes belonging to the same profile as the particular node. For example, when the particular node is a gateway, the controller in some embodiments provides the rules to all gateways in the enterprise. After 540, the process transitions back to 510 to receive and analyze trace monitoring results.


Otherwise, when the controller determines at 535 that profile-level trace monitoring has been performed, the process transitions to 545 to provide the application-level trace monitoring rules to all nodes in the enterprise. The controller then receives and analyzes (at 550) trace monitoring results received from all of the nodes to identify anomalies and remedial actions for correcting the anomalies in the enterprise. The process then ends.



FIGS. 6A-6B, 7A-7B, and 7A-7C illustrate a set of example UIs provided by a controller, in some embodiments, for allowing a user (e.g., an administrator) to manually enter a trace request and review trace monitoring results. It should be noted that while these examples are described with a limited number of edge nodes, other embodiments of the invention can be implemented for a multitude of edge nodes (i.e., thousands) in an SD-WAN. Additionally, these examples are merely illustrative and real-life implementations of the UIs described herein may include additional, fewer, or different features than those shown and described.



FIG. 6A illustrates a first example UI 600. As shown, the UI 600 is split into two sections with the trace request 610 featured in the top half of the display and the node visualization 620 featured in the bottom half of the display. The trace request portion 610 includes a set of fillable boxes 612 that include trace name, source IP (Internet Protocol), destination IP, source port, destination port, application ID (AppID), and number of packets (i.e., a number of packets to be traced). In this example, the trace request has a trace name of “TraceB2BPathTest1” and specifies a destination IP of “10.0.1.25”, while the source IP, source port, destination port, and AppID are specified as “any”. Additionally, the trace request 610 specifies that 10 packets of this particular packet flow (i.e., packets with a destination IP of 10.0.1.25) should be traced.


In addition to the fillable boxes 612, the trace request portion 610 includes a set of check boxes 614 that allow a user to select specific edge nodes and gateways to perform the trace monitoring operation. The check boxes 614 also include an option to select to perform the trace monitoring operation at the enterprise level, meaning the trace monitoring rules would be provided to all nodes and gateways in the enterprise. In this example, a user has selected four edge nodes to perform the trace monitoring operation. When a user has finished filling out the trace request, selecting the “trace” button initiates the trace monitoring operation, and the results appear in the visualization portion 620.


The visualization portion 620 includes visual representations of the nodes selected to perform the trace monitoring operation (e.g., b1-edge1, b3-edge1, b4-edge1, and b5-edge1). As shown, the edge nodes b3-edge1 and b4-edge1 each include one pipeline, while the edge node b1-edge1 includes two pipelines and the edge node b5-edge1 includes 3 pipelines. Additionally, the visualization portion 620 includes routes traversed by the trace monitored packets between the edge nodes.


As shown, the edge nodes b3-edge1, b4-edge1, and b5-edge1 appear without any distinguishing features, while the edge node b1-edge1 appears with a bolded outline and the firewall stage 630 of its pipeline 1 is also bolded and darkened. The bold edge node and packet processing stage indicate that an anomaly was detected for that particular packet processing stage on that edge node, according to some embodiments. Similarly, the route 635 appears bolded and with a dashed line to indicate an anomaly was detected for that particular route, whereas the other routes are not distinguished in any way. Other embodiments may instead show the unproblematic edge nodes, packet processing stages, and routes in a first color (e.g., green), while showing the edge nodes, packet processing stages, and routes that have experienced an anomaly in a second color (e.g., red).


Each of the packet processing stages displayed in the UI are selectable according to some embodiments. For example, FIG. 6B illustrates the UI 600 after a user has selected (e.g., via the cursor) the firewall stage 630 of the edge node b1-edge1. The UI 600 now includes a pop-up display window 640 that includes information regarding the firewall stage 630. The window 640 includes packet flow information 642 regarding the packet flow processed by the firewall stage 630 during which the anomaly occurred. The packet flow information 642 includes the source IP “10.0.1.25” and destination IP “10.0.4.25” of the flow, the source port “58125” and destination port “0” of the flow, and the application ID “70” of the flow.


The window 640 also includes the time elapsed 644 indicating that it took 1898 ns to process the packet for which the anomaly was detected, the pipeline stage status 646 indicating the status of the firewall stage as “fail”, and an error description 648 indicating that the failure was due to an outbound policy. As described above, the controller in some embodiments provides suggested remedial actions for correcting anomalies. As the error description 648 indicates that the failure (i.e., anomaly) was due to an outbound policy, no suggested remedial actions are provided.



FIG. 7A illustrates a second example UI 700 of some embodiments that includes a second example trace request 710 and trace results 720. The trace request 710 includes a set of fillable boxes 712 that include the trace name “TraceB2BPathRem”, the source IP “10.0.5.25”, the destination IP “10.0.3.25”, and the number of packets “10” to be traced, while the source and destination ports and application ID are specified as “any”. Also, from the check boxes 714, a user has selected the edge nodes b3-edge1 and b5-edge1 to perform the trace monitoring operation. As described for the example UI 600, when a user has finished filling out the trace request 710, selecting the “trace” button 716 initiates the trace monitoring operation, and the results appear in the visualization portion 720.


The visualization portion 720 includes visualizations of the two selected edge nodes b3-edge1 and b5-edge1, each having a single pipeline. As shown, the edge node b3-edge1 appears with a bold outline and its routing stage 730 appears darkened and with a bold outline indicating that an anomaly has been detected on the edge node b3-edge1, specifically at the routing stage 730. In order to determine the cause of the anomaly, a user may select the routing stage 730 for more information.



FIG. 7B illustrates the UI 700 after a user has selected the routing stage 730 (e.g., with a cursor). The UI 700 now includes the pop-up display window 740 for the routing stage 730 of edge node b3-edge1. The window 740 includes packet flow information 742 that includes the source IP “10.0.3.25”, destination IP “10.0.5.25”, source port “21821”, destination port “0”, and application ID “70”. The window 740 also includes the time elapsed 744 indicating 0 ns elapsed during the processing of the packet at the routing stage 730, the pipeline stage status 746 indicating the status of the routing stage as “fail”, and the error description 748 specifying “edged_no-src-no-dest”, which may indicate a route is missing.


Unlike the window 640 in the example UI 600, the window 740 also includes a suggested action 750 indicating that it is possible that a route is missing and that it can be recovered by refreshing routes from the controller for the edge node b3-edge1, as well as a selectable button 752 to apply the suggested action. In some embodiments, such as when the controller generates trace monitoring rules based on a flow notification from a node, as described above, rather than based on a trace request from a user, the suggested action is automatically applied to correct the anomaly rather than relying on a command from a user.



FIG. 8A illustrates a third example UI 800 of some embodiments. The UI 800 includes the top trace request portion 810 and the bottom visualization portion 820. In this example, neither a trace name nor a number of packets are specified in the set of fillable boxes 812. Instead, only the destination IP “10.0.1.25” is specified, while the source IP, source and destination ports, and application ID are specified as “any”. Similarly, none of the check boxes 814 are selected.


Unlike the UIs 600 and 700 described above, the UI 800 also includes a dropdown menu 860 between the top portion 810 and bottom portion 820 that allows a user to select an archived trace (e.g., a trace monitoring operation initiated by the user at a prior time). In this case, the trace “TraceB2BPath” is currently selected from dropdown menu 860, as shown. As a result, the visualization portion 820 displays a set of nodes including b1-edge1, b3-edge1, b4-edge1, and b5-edge1. Each of the edge nodes, their packet processing stages, and the routes between them appear normal in the visualization portion 820 indicating that no anomalies were detected as far as a packet flow is concerned. To determine whether there are any issues within the pipelines themselves, a user may select the load performance button 862.



FIG. 8B illustrates the UI 800 after the load performance button 862 has been selected (i.e., as indicated by the cursor). Each of the edge nodes b1-edge1, b3-edge1, b4-edge1, and b5-edge1 now appear bold. For the edge node b1-edge1, the ingress and egress stages of the node's first pipeline are darkened and bolded, as are the QoS and egress stages of the node's second pipeline. Similarly, each of the egress stages on the nodes b3-edge1 and b5-edge1 are darkened and bolded, while the routing, NAT, and egress stages of the edge node b4-edge1 are darkened and bolded. Thus, between these 4 edge nodes, anomalies have been detected for 11 different packet processing stages. Like with the examples provided above, the packet processing stages in the UI 800 are selectable by a user.



FIG. 8C illustrates the UI 800 after a user selects the egress stage 830 in the first pipeline of the edge node b1-edge1. The UI now includes the pop-up display window 840 for the egress stage 830. The window 840 includes the packet flow information 842 specifying the source IP “10.0.1.25”, the destination IP “10.1.3.25”, the source port “40202”, the destination port “0”, and the application ID “70”. Additionally, the window 840 includes the time elapsed 844 indicating 67377 ns elapsed while processing a packet, the pipeline stage status 846 indicating the egress stage's status as “fail”, and the error description 848 indicating the error as “post send”. While embodiments of the invention may not specify whether a threshold for a particular metric has been exceeded, for the sake of clarity, the window 840 also indicates that the time elapsed 844 exceeds a threshold. Thus, there is an anomaly from a latency perspective for the egress stage 830.


Many of the above-described features and applications are implemented as software processes that are specified as a set of instructions recorded on a computer readable storage medium (also referred to as computer readable medium). When these instructions are executed by one or more processing unit(s) (e.g., one or more processors, cores of processors, or other processing units), they cause the processing unit(s) to perform the actions indicated in the instructions. Examples of computer readable media include, but are not limited to, CD-ROMs, flash drives, RAM chips, hard drives, EPROMs, etc. The computer readable media does not include carrier waves and electronic signals passing wirelessly or over wired connections.


In this specification, the term “software” is meant to include firmware residing in read-only memory or applications stored in magnetic storage, which can be read into memory for processing by a processor. Also, in some embodiments, multiple software inventions can be implemented as sub-parts of a larger program while remaining distinct software inventions. In some embodiments, multiple software inventions can also be implemented as separate programs. Finally, any combination of separate programs that together implement a software invention described here is within the scope of the invention. In some embodiments, the software programs, when installed to operate on one or more electronic systems, define one or more specific machine implementations that execute and perform the operations of the software programs.



FIG. 9 conceptually illustrates a computer system 900 with which some embodiments of the invention are implemented. The computer system 900 can be used to implement any of the above-described hosts, controllers, gateway and edge forwarding elements. As such, it can be used to execute any of the above described processes. This computer system includes various types of non-transitory machine readable media and interfaces for various other types of machine readable media. Computer system 900 includes a bus 905, processing unit(s) 910, a system memory 925, a read-only memory 930, a permanent storage device 935, input devices 940, and output devices 945.


The bus 905 collectively represents all system, peripheral, and chipset buses that communicatively connect the numerous internal devices of the computer system 900. For instance, the bus 905 communicatively connects the processing unit(s) 910 with the read-only memory 930, the system memory 925, and the permanent storage device 935.


From these various memory units, the processing unit(s) 910 retrieve instructions to execute and data to process in order to execute the processes of the invention. The processing unit(s) may be a single processor or a multi-core processor in different embodiments. The read-only-memory (ROM) 930 stores static data and instructions that are needed by the processing unit(s) 910 and other modules of the computer system. The permanent storage device 935, on the other hand, is a read-and-write memory device. This device is a non-volatile memory unit that stores instructions and data even when the computer system 900 is off. Some embodiments of the invention use a mass-storage device (such as a magnetic or optical disk and its corresponding disk drive) as the permanent storage device 935.


Other embodiments use a removable storage device (such as a floppy disk, flash drive, etc.) as the permanent storage device. Like the permanent storage device 935, the system memory 925 is a read-and-write memory device. However, unlike storage device 935, the system memory is a volatile read-and-write memory, such as random access memory. The system memory stores some of the instructions and data that the processor needs at runtime. In some embodiments, the invention's processes are stored in the system memory 925, the permanent storage device 935, and/or the read-only memory 930. From these various memory units, the processing unit(s) 910 retrieve instructions to execute and data to process in order to execute the processes of some embodiments.


The bus 905 also connects to the input and output devices 940 and 945. The input devices enable the user to communicate information and select commands to the computer system. The input devices 940 include alphanumeric keyboards and pointing devices (also called “cursor control devices”). The output devices 945 display images generated by the computer system. The output devices include printers and display devices, such as cathode ray tubes (CRT) or liquid crystal displays (LCD). Some embodiments include devices such as touchscreens that function as both input and output devices.


Finally, as shown in FIG. 9, bus 905 also couples computer system 900 to a network 965 through a network adapter (not shown). In this manner, the computer can be a part of a network of computers (such as a local area network (“LAN”), a wide area network (“WAN”), or an Intranet), or a network of networks (such as the Internet). Any or all components of computer system 900 may be used in conjunction with the invention.


Some embodiments include electronic components, such as microprocessors, storage and memory that store computer program instructions in a machine-readable or computer-readable medium (alternatively referred to as computer-readable storage media, machine-readable media, or machine-readable storage media). Some examples of such computer-readable media include RAM, ROM, read-only compact discs (CD-ROM), recordable compact discs (CD-R), rewritable compact discs (CD-RW), read-only digital versatile discs (e.g., DVD-ROM, dual-layer DVD-ROM), a variety of recordable/rewritable DVDs (e.g., DVD-RAM, DVD-RW, DVD+RW, etc.), flash memory (e.g., SD cards, mini-SD cards, micro-SD cards, etc.), magnetic and/or solid state hard drives, read-only and recordable Blu-Ray® discs, ultra-density optical discs, any other optical or magnetic media, and floppy disks. The computer-readable media may store a computer program that is executable by at least one processing unit and includes sets of instructions for performing various operations. Examples of computer programs or computer code include machine code, such as is produced by a compiler, and files including higher-level code that are executed by a computer, an electronic component, or a microprocessor using an interpreter.


While the above discussion primarily refers to microprocessor or multi-core processors that execute software, some embodiments are performed by one or more integrated circuits, such as application specific integrated circuits (ASICs) or field programmable gate arrays (FPGAs). In some embodiments, such integrated circuits execute instructions that are stored on the circuit itself


As used in this specification, the terms “computer”, “server”, “processor”, and “memory” all refer to electronic or other technological devices. These terms exclude people or groups of people. For the purposes of the specification, the terms “display” or “displaying” mean displaying on an electronic device. As used in this specification, the terms “computer readable medium,” “computer readable media,” and “machine readable medium” are entirely restricted to tangible, physical objects that store information in a form that is readable by a computer. These terms exclude any wireless signals, wired download signals, and any other ephemeral or transitory signals.


While the invention has been described with reference to numerous specific details, one of ordinary skill in the art will recognize that the invention can be embodied in other specific forms without departing from the spirit of the invention. For instance, several of the above-described embodiments deploy gateways in public cloud datacenters. However, in other embodiments, the gateways are deployed in a third party's virtual private cloud datacenters (e.g., datacenters that the third party uses to deploy cloud gateways for different entities in order to deploy virtual networks for these entities). Thus, one of ordinary skill in the art would understand that the invention is not to be limited by the foregoing illustrative details, but rather is to be defined by the appended claims.

Claims
  • 1. A method for detecting and remediating anomalies in a software-defined wide area network (SD-WAN) connecting a plurality of branch sites, the SD-WAN comprising a controller, at least one enterprise datacenter, and at least one node at each branch site, each node at each branch site comprising a set of packet processing stages for processing packet flows that traverse the SD-WAN, the method comprising: at the controller: receiving, from a particular node of a particular branch site in the SD-WAN, a flow notification indicating an anomaly in processing of packets that is detected by the particular node;dynamically generating a set of trace monitoring rules based on the detected anomaly and providing the set of trace monitoring rules to the particular node and at least one other node of another branch site in the SD-WAN, wherein the set of trace monitoring rules specify one or more packet flows to be traced by the packet processing stages of the particular node and the at least one other node;receiving, from the particular node of the particular branch site and the at least one other node of the other branch site, a set of trace monitoring results collected in response to the provided set of trace monitoring rules; andidentifying (i) one or more anomalies and (ii) one or more dynamic actions to correct the identified anomalies by analyzing the trace monitoring results.
  • 2. The method of claim 1 further comprising pushing the one or more dynamic actions to the particular node and the at least one other node, wherein each node performs the one or more dynamic actions to correct the identified anomalies.
  • 3. The method of claim 1, wherein the set of trace monitoring rules is a first set of trace monitoring rules, and the set of trace monitoring results is a first set of trace monitoring results, the method further comprising: receiving, through a user interface (UI), a request to trace a particular packet flow;based on the request, dynamically generating a second set of trace monitoring rules for tracing the particular packet flow specified in the request;providing the second set of trace monitoring rules to a particular set of nodes in the SD-WAN;receiving, from the particular set of nodes, a second set of trace monitoring results collected by the particular set of nodes in response to the provided second set of trace monitoring rules; andidentifying one or more anomalies detected by the particular set of nodes by analyzing the second set of trace monitoring results.
  • 4. The method of claim 3, wherein the particular set of nodes comprises nodes specified in the request for tracing the particular packet flow.
  • 5. The method of claim 4, further comprising providing, through the UI, a visualization of the particular set of nodes, the packet processing stages of each node in the set of nodes, and one or more paths between the particular set of nodes traversed by packets in the particular packet flow.
  • 6. The method of claim 5, wherein packet processing stages, nodes, and paths on which no anomalies are detected are identified by a first color in the visualization, wherein packet processing stages, nodes, and paths on which at least one anomaly is detected are identified by a second color in the visualization.
  • 7. The method of claim 6, wherein each packet processing stage in the visualization is selectable, wherein selecting a packet processing stage causes the UI to provide a pop-up window comprising information relating to the selected packet processing stage.
  • 8. The method of claim 7, wherein the information comprises at least (i) source and destination network addresses, (ii) source and destination ports, (iii) AppID, (iv) time elapsed, and (v) stage status.
  • 9. The method of claim 8, wherein for packet processing stages that have experienced an anomaly, the information further comprises a description of the anomaly.
  • 10. The method of claim 9, wherein the information further comprises a suggested remedial action for correcting the anomaly, the method further comprising: receiving, through the UI, a selection to apply the suggested remedial action; anddirecting the particular set of nodes to apply the remedial action.
  • 11. The method of claim 3, wherein the request specifies at least a number of packets to be traced.
  • 12. The method of claim 11, wherein the request further comprises any of (i) a source network address, (ii) a destination network address, (iii) a source port, (iv) a destination port, (v) an AppID.
  • 13. The method of claim 10, wherein the particular set of nodes is a first set of nodes, the method further comprising instructing a second set of nodes in the plurality of nodes to implement the at least one remedial action to prevent anomalies on the second set of nodes.
  • 14. The method of claim 1, wherein receiving the set of trace monitoring results from the particular node and the at least one other node further comprises receiving the set of trace results from a first trace monitor agent executing on the particular node and a second trace monitor agent executing on the at least one other node.
  • 15. The method of claim 14, wherein the first and second trace monitor agents receive trace results collected by the packet processing stages of the particular node and the at least one other node, respectively.
  • 16. The method of claim 1 further comprising providing a second set of trace monitoring rules to a set of nodes including the particular node, wherein the second set of trace monitoring rules are specified for one of (i) packet flows for a particular application, (ii) packet flows between a specified set of nodes in the plurality of nodes, and (iii) all packet flows between the plurality of nodes in the SD-WAN.
  • 17. The method of claim 1, wherein the set of trace monitoring rules further comprise a set of exception rules, wherein each exception rule defines a threshold value for identifying anomalous behavior on the particular node and the at least one other node.
  • 18. A non-transitory machine readable medium storing a program for execution by a set of processing units, the program for detecting and remediating anomalies in a software-defined wide area network (SD-WAN) connecting a plurality of branch sites, the SD-WAN comprising a controller, at least one enterprise datacenter, and at least one node at each branch site, each node at each branch site comprising a set of packet processing stages for processing packet flows that traverse the SD-WAN, the program comprising sets of instructions for: at the controller: receiving, from a particular node of a particular branch site in the SD-WAN, a flow notification indicating an anomaly in processing of packets that is detected by the particular node;dynamically generating a set of trace monitoring rules based on the detected anomaly and providing the set of trace monitoring rules to the particular node and at least one other node of another branch site in the SD-WAN, wherein the set of trace monitoring rules specify one or more packet flows to be traced by the packet processing stages of the particular node and the at least one other node;receiving, from the particular node of the particular branch site and the at least one other node of the other branch site, a set of trace monitoring results collected in response to the provided set of trace monitoring rules; andidentifying (i) one or more anomalies and (ii) one or more dynamic actions to correct the identified anomalies by analyzing the trace monitoring results.
  • 19. The non-transitory machine readable medium of claim 18 further comprising a set of instructions for pushing the one or more dynamic actions to the particular node and the at least one other node, wherein each node performs the one or more dynamic actions to correct the identified anomalies.
  • 20. The non-transitory machine readable medium of claim 18, wherein the set of trace monitoring rules is a first set of trace monitoring rules, and the set of trace monitoring results is a first set of trace monitoring results, the program further comprising sets of instructions for: receiving, through a user interface (UI), a request to trace a particular packet flow;based on the request, dynamically generating a second set of trace monitoring rules for tracing the particular packet flow specified in the request;providing the second set of trace monitoring rules to a particular set of nodes in the SD-WAN; receiving, from the particular set of nodes, a second set of trace monitoring results collected by the particular set of nodes in response to the provided second set of trace monitoring rules; andidentifying one or more anomalies detected by the particular set of nodes by analyzing the second set of trace monitoring results.
Priority Claims (1)
Number Date Country Kind
202041050012 Nov 2020 IN national
US Referenced Citations (825)
Number Name Date Kind
5652751 Sharony Jul 1997 A
5909553 Campbell et al. Jun 1999 A
6154465 Pickett Nov 2000 A
6157648 Voit et al. Dec 2000 A
6201810 Masuda et al. Mar 2001 B1
6363378 Conklin et al. Mar 2002 B1
6445682 Weitz Sep 2002 B1
6744775 Beshai et al. Jun 2004 B1
6976087 Westfall et al. Dec 2005 B1
7003481 Banka et al. Feb 2006 B2
7280476 Anderson Oct 2007 B2
7313629 Nucci et al. Dec 2007 B1
7320017 Kurapati et al. Jan 2008 B1
7373660 Guichard et al. May 2008 B1
7581022 Griffin et al. Aug 2009 B1
7680925 Sathyanarayana et al. Mar 2010 B2
7681236 Tamura et al. Mar 2010 B2
7962458 Holenstein et al. Jun 2011 B2
8094575 Vadlakonda et al. Jan 2012 B1
8094659 Arad Jan 2012 B1
8111692 Ray Feb 2012 B2
8141156 Mao et al. Mar 2012 B1
8224971 Miller et al. Jul 2012 B1
8228928 Parandekar et al. Jul 2012 B2
8243589 Trost et al. Aug 2012 B1
8259566 Chen et al. Sep 2012 B2
8274891 Averi et al. Sep 2012 B2
8301749 Finklestein et al. Oct 2012 B1
8385227 Downey Feb 2013 B1
8566452 Goodwin et al. Oct 2013 B1
8630291 Shaffer et al. Jan 2014 B2
8661295 Khanna et al. Feb 2014 B1
8724456 Hong et al. May 2014 B1
8724503 Johnsson et al. May 2014 B2
8745177 Kazerani et al. Jun 2014 B1
8799504 Capone et al. Aug 2014 B2
8804745 Sinn Aug 2014 B1
8806482 Nagargadde et al. Aug 2014 B1
8855071 Sankaran et al. Oct 2014 B1
8856339 Mestery et al. Oct 2014 B2
8964548 Keralapura et al. Feb 2015 B1
8989199 Sella et al. Mar 2015 B1
9009217 Nagargadde et al. Apr 2015 B1
9055000 Ghosh et al. Jun 2015 B1
9060025 Xu Jun 2015 B2
9071607 Twitchell, Jr. Jun 2015 B2
9075771 Gawali et al. Jul 2015 B1
9135037 Petrescu-Prahova et al. Sep 2015 B1
9137334 Zhou Sep 2015 B2
9154327 Marino et al. Oct 2015 B1
9203764 Shirazipour et al. Dec 2015 B2
9306949 Richard et al. Apr 2016 B1
9323561 Ayala et al. Apr 2016 B2
9336040 Dong et al. May 2016 B2
9354983 Yenamandra et al. May 2016 B1
9356943 Lopilato et al. May 2016 B1
9379981 Zhou et al. Jun 2016 B1
9413724 Xu Aug 2016 B2
9419878 Hsiao et al. Aug 2016 B2
9432245 Sorenson et al. Aug 2016 B1
9438566 Zhang et al. Sep 2016 B2
9450817 Bahadur et al. Sep 2016 B1
9450852 Chen et al. Sep 2016 B1
9462010 Stevenson Oct 2016 B1
9467478 Khan et al. Oct 2016 B1
9485163 Fries et al. Nov 2016 B1
9521067 Michael et al. Dec 2016 B2
9525564 Lee Dec 2016 B2
9559951 Sajassi et al. Jan 2017 B1
9563423 Pittman Feb 2017 B1
9602389 Maveli et al. Mar 2017 B1
9608917 Anderson et al. Mar 2017 B1
9608962 Chang Mar 2017 B1
9621460 Mehta et al. Apr 2017 B2
9641551 Kariyanahalli May 2017 B1
9648547 Hart et al. May 2017 B1
9665432 Kruse et al. May 2017 B2
9686127 Ramachandran et al. Jun 2017 B2
9715401 Devine et al. Jul 2017 B2
9717021 Hughes et al. Jul 2017 B2
9722815 Mukundan et al. Aug 2017 B2
9747249 Cherian et al. Aug 2017 B2
9755965 Yadav et al. Sep 2017 B1
9787559 Schroeder Oct 2017 B1
9807004 Koley et al. Oct 2017 B2
9819540 Bahadur et al. Nov 2017 B1
9819565 Djukic et al. Nov 2017 B2
9825822 Holland Nov 2017 B1
9825911 Brandwine Nov 2017 B1
9825992 Xu Nov 2017 B2
9832128 Ashner et al. Nov 2017 B1
9832205 Santhi et al. Nov 2017 B2
9875355 Williams Jan 2018 B1
9906401 Rao Feb 2018 B1
9930011 Clemons, Jr. et al. Mar 2018 B1
9935829 Miller et al. Apr 2018 B1
9942787 Tillotson Apr 2018 B1
9996370 Khafizov et al. Jun 2018 B1
10038601 Becker et al. Jul 2018 B1
10057183 Salle et al. Aug 2018 B2
10057294 Xu Aug 2018 B2
10135789 Mayya et al. Nov 2018 B2
10142226 Wu et al. Nov 2018 B1
10178032 Freitas Jan 2019 B1
10178037 Appleby et al. Jan 2019 B2
10187289 Chen et al. Jan 2019 B1
10200264 Menon et al. Feb 2019 B2
10229017 Zou et al. Mar 2019 B1
10237123 Dubey et al. Mar 2019 B2
10250498 Bales et al. Apr 2019 B1
10263832 Ghosh Apr 2019 B1
10320664 Nainar et al. Jun 2019 B2
10320691 Matthews et al. Jun 2019 B1
10326830 Singh Jun 2019 B1
10348767 Lee et al. Jul 2019 B1
10355989 Panchai et al. Jul 2019 B1
10425382 Mayya et al. Sep 2019 B2
10454708 Mibu Oct 2019 B2
10454714 Mayya et al. Oct 2019 B2
10461993 Turabi et al. Oct 2019 B2
10498652 Mayya et al. Dec 2019 B2
10511546 Singarayan et al. Dec 2019 B2
10523539 Mayya et al. Dec 2019 B2
10550093 Ojima et al. Feb 2020 B2
10554538 Spohn et al. Feb 2020 B2
10560431 Chen et al. Feb 2020 B1
10565464 Han et al. Feb 2020 B2
10567519 Mukhopadhyaya et al. Feb 2020 B1
10574528 Mayya et al. Feb 2020 B2
10594516 Cidon et al. Mar 2020 B2
10594591 Floujyo et al. Mar 2020 B2
10594659 El-Moussa et al. Mar 2020 B2
10608844 Cidon et al. Mar 2020 B2
10637889 Ermagan et al. Apr 2020 B2
10666460 Cidon et al. May 2020 B2
10666497 Tahhan et al. May 2020 B2
10686625 Cidon et al. Jun 2020 B2
10693739 Naseri et al. Jun 2020 B1
10715427 Raj et al. Jul 2020 B2
10749711 Mukundan et al. Aug 2020 B2
10778466 Cidon et al. Sep 2020 B2
10778528 Mayya et al. Sep 2020 B2
10778557 Ganichev et al. Sep 2020 B2
10805114 Cidon et al. Oct 2020 B2
10805272 Mayya et al. Oct 2020 B2
10819564 Turabi et al. Oct 2020 B2
10826775 Moreno et al. Nov 2020 B1
10841131 Cidon et al. Nov 2020 B2
10911374 Kumar et al. Feb 2021 B1
10938693 Mayya et al. Mar 2021 B2
10951529 Duan et al. Mar 2021 B2
10958479 Cidon et al. Mar 2021 B2
10959098 Cidon et al. Mar 2021 B2
10992558 Silva et al. Apr 2021 B1
10992568 Michael et al. Apr 2021 B2
10999100 Cidon et al. May 2021 B2
10999137 Cidon et al. May 2021 B2
10999165 Cidon et al. May 2021 B2
10999197 Hooda et al. May 2021 B2
11005684 Cidon May 2021 B2
11018995 Cidon et al. May 2021 B2
11044190 Ramaswamy et al. Jun 2021 B2
11050588 Mayya et al. Jun 2021 B2
11050644 Hegde et al. Jun 2021 B2
11071005 Shen et al. Jul 2021 B2
11089111 Markuze et al. Aug 2021 B2
11095612 Oswal et al. Aug 2021 B1
11102032 Cidon et al. Aug 2021 B2
11108851 Kurmala et al. Aug 2021 B1
11115347 Gupta et al. Sep 2021 B2
11115426 Pazhyannur Sep 2021 B1
11115480 Markuze et al. Sep 2021 B2
11121962 Michael et al. Sep 2021 B2
11121985 Cidon et al. Sep 2021 B2
11128492 Sethi et al. Sep 2021 B2
11153230 Cidon et al. Oct 2021 B2
11171885 Cidon et al. Nov 2021 B2
11212140 Mukundan et al. Dec 2021 B2
11212238 Cidon et al. Dec 2021 B2
11223514 Mayya et al. Jan 2022 B2
11245641 Ramaswamy et al. Feb 2022 B2
11252079 Michael et al. Feb 2022 B2
11252105 Cidon et al. Feb 2022 B2
11252106 Cidon et al. Feb 2022 B2
11258728 Cidon et al. Feb 2022 B2
11310170 Cidon et al. Apr 2022 B2
11323307 Mayya et al. May 2022 B2
11349722 Mayya et al. May 2022 B2
11363124 Markuze et al. Jun 2022 B2
11374904 Mayya et al. Jun 2022 B2
11375005 Rolando et al. Jun 2022 B1
11381474 Kumar et al. Jul 2022 B1
11381499 Ramaswamy et al. Jul 2022 B1
11388086 Ramaswamy et al. Jul 2022 B1
11394640 Ramaswamy et al. Jul 2022 B2
11418997 Devadoss et al. Aug 2022 B2
11438789 Devadoss et al. Sep 2022 B2
11444865 Ramaswamy et al. Sep 2022 B2
11444872 Mayya et al. Sep 2022 B2
20020085488 Kobayashi Jul 2002 A1
20020087716 Mustafa Jul 2002 A1
20020152306 Tuck Oct 2002 A1
20020198840 Banka et al. Dec 2002 A1
20030061269 Hathaway et al. Mar 2003 A1
20030088697 Matsuhira May 2003 A1
20030112766 Riedel et al. Jun 2003 A1
20030112808 Solomon Jun 2003 A1
20030126468 Markham Jul 2003 A1
20030161313 Jinmei et al. Aug 2003 A1
20030189919 Gupta et al. Oct 2003 A1
20030202506 Perkins et al. Oct 2003 A1
20030219030 Gubbi Nov 2003 A1
20040059831 Chu et al. Mar 2004 A1
20040068668 Lor et al. Apr 2004 A1
20040165601 Liu et al. Aug 2004 A1
20040224771 Chen et al. Nov 2004 A1
20050078690 DeLangis Apr 2005 A1
20050149604 Navada Jul 2005 A1
20050154790 Nagata et al. Jul 2005 A1
20050172161 Cruz et al. Aug 2005 A1
20050195754 Nosella Sep 2005 A1
20050210479 Andjelic Sep 2005 A1
20050265255 Kodialam et al. Dec 2005 A1
20060002291 Alicherry et al. Jan 2006 A1
20060114838 Mandavilli et al. Jun 2006 A1
20060171365 Borella Aug 2006 A1
20060182034 Klinker et al. Aug 2006 A1
20060182035 Vasseur Aug 2006 A1
20060193247 Naseh et al. Aug 2006 A1
20060193252 Naseh et al. Aug 2006 A1
20070050594 Augsburg et al. Mar 2007 A1
20070064604 Chen et al. Mar 2007 A1
20070064702 Bates et al. Mar 2007 A1
20070083727 Johnston et al. Apr 2007 A1
20070091794 Filsfils et al. Apr 2007 A1
20070103548 Carter May 2007 A1
20070115812 Hughes May 2007 A1
20070121486 Guichard et al. May 2007 A1
20070130325 Lesser Jun 2007 A1
20070162619 Aloni et al. Jul 2007 A1
20070162639 Chu et al. Jul 2007 A1
20070177511 Das et al. Aug 2007 A1
20070237081 Kodialam et al. Oct 2007 A1
20070260746 Mirtorabi et al. Nov 2007 A1
20070268882 Breslau et al. Nov 2007 A1
20080002670 Bugenhagen et al. Jan 2008 A1
20080049621 McGuire et al. Feb 2008 A1
20080055241 Goldenberg et al. Mar 2008 A1
20080080509 Khanna et al. Apr 2008 A1
20080095187 Jung et al. Apr 2008 A1
20080117930 Chakareski et al. May 2008 A1
20080144532 Chamarajanagar et al. Jun 2008 A1
20080181116 Kavanaugh et al. Jul 2008 A1
20080219276 Shah Sep 2008 A1
20080240121 Xiong et al. Oct 2008 A1
20090013210 McIntosh et al. Jan 2009 A1
20090028092 Rothschild Jan 2009 A1
20090125617 Kiessig et al. May 2009 A1
20090141642 Sun Jun 2009 A1
20090154463 Hines et al. Jun 2009 A1
20090247204 Sennett et al. Oct 2009 A1
20090268605 Campbell et al. Oct 2009 A1
20090274045 Meier et al. Nov 2009 A1
20090276657 Wetmore et al. Nov 2009 A1
20090303880 Maltz et al. Dec 2009 A1
20100008361 Guichard et al. Jan 2010 A1
20100017802 Lojewski Jan 2010 A1
20100046532 Okita Feb 2010 A1
20100061379 Parandekar et al. Mar 2010 A1
20100080129 Strahan Apr 2010 A1
20100088440 Banks et al. Apr 2010 A1
20100091782 Hiscock Apr 2010 A1
20100091823 Retana et al. Apr 2010 A1
20100107162 Edwards et al. Apr 2010 A1
20100118727 Draves et al. May 2010 A1
20100118886 Saavedra May 2010 A1
20100165985 Sharma et al. Jul 2010 A1
20100191884 Holenstein et al. Jul 2010 A1
20100223621 Joshi et al. Sep 2010 A1
20100226246 Proulx Sep 2010 A1
20100290422 Haigh et al. Nov 2010 A1
20100309841 Conte Dec 2010 A1
20100309912 Mehta et al. Dec 2010 A1
20100322255 Hao et al. Dec 2010 A1
20100332657 Elyashev et al. Dec 2010 A1
20110007752 Silva et al. Jan 2011 A1
20110032939 Nozaki et al. Feb 2011 A1
20110040814 Higgins Feb 2011 A1
20110075674 Li et al. Mar 2011 A1
20110107139 Middlecamp et al. May 2011 A1
20110110370 Moreno et al. May 2011 A1
20110141877 Xu et al. Jun 2011 A1
20110142041 Imai Jun 2011 A1
20110153909 Dong Jun 2011 A1
20110235509 Szymanski Sep 2011 A1
20110255397 Kadakia et al. Oct 2011 A1
20120008630 Ould-Brahim Jan 2012 A1
20120027013 Napierala Feb 2012 A1
20120136697 Peles et al. May 2012 A1
20120157068 Eichen et al. Jun 2012 A1
20120173694 Yan et al. Jul 2012 A1
20120173919 Patel et al. Jul 2012 A1
20120182940 Taleb et al. Jul 2012 A1
20120221955 Raleigh et al. Aug 2012 A1
20120227093 Shalzkamer et al. Sep 2012 A1
20120250682 Vincent et al. Oct 2012 A1
20120250686 Vincent et al. Oct 2012 A1
20120281706 Agarwal et al. Nov 2012 A1
20120287818 Corti et al. Nov 2012 A1
20120300615 Kempf et al. Nov 2012 A1
20120307659 Yamada Dec 2012 A1
20120317270 Vrbaski et al. Dec 2012 A1
20120317291 Wolfe Dec 2012 A1
20130019005 Hui et al. Jan 2013 A1
20130021968 Reznik et al. Jan 2013 A1
20130044764 Casado et al. Feb 2013 A1
20130051237 Ong Feb 2013 A1
20130051399 Zhang et al. Feb 2013 A1
20130054763 Merwe et al. Feb 2013 A1
20130086267 Gelenbe et al. Apr 2013 A1
20130097304 Asthana et al. Apr 2013 A1
20130103834 Dzerve et al. Apr 2013 A1
20130117530 Kim et al. May 2013 A1
20130124718 Griffith et al. May 2013 A1
20130124911 Griffith et al. May 2013 A1
20130124912 Griffith et al. May 2013 A1
20130128889 Mathur et al. May 2013 A1
20130142201 Kim et al. Jun 2013 A1
20130170354 Takashima et al. Jul 2013 A1
20130173788 Song Jul 2013 A1
20130182712 Aguayo et al. Jul 2013 A1
20130185729 Vasic et al. Jul 2013 A1
20130191688 Agarwal et al. Jul 2013 A1
20130238782 Zhao et al. Sep 2013 A1
20130242718 Zhang Sep 2013 A1
20130254599 Katkar et al. Sep 2013 A1
20130258839 Wang et al. Oct 2013 A1
20130258847 Zhang et al. Oct 2013 A1
20130266015 Qu et al. Oct 2013 A1
20130266019 Qu et al. Oct 2013 A1
20130283364 Chang et al. Oct 2013 A1
20130286846 Atlas et al. Oct 2013 A1
20130297611 Moritz et al. Nov 2013 A1
20130297770 Zhang Nov 2013 A1
20130301469 Suga Nov 2013 A1
20130301642 Radhakrishnan et al. Nov 2013 A1
20130308444 Sem-Jacobsen et al. Nov 2013 A1
20130315242 Wang et al. Nov 2013 A1
20130315243 Huang et al. Nov 2013 A1
20130329548 Nakil et al. Dec 2013 A1
20130329601 Yin et al. Dec 2013 A1
20130329734 Chesla et al. Dec 2013 A1
20130346470 Obstfeld et al. Dec 2013 A1
20140016464 Shirazipour et al. Jan 2014 A1
20140019604 Twitchell, Jr. Jan 2014 A1
20140019750 Dodgson et al. Jan 2014 A1
20140040975 Raleigh et al. Feb 2014 A1
20140064283 Balus et al. Mar 2014 A1
20140071832 Johnsson et al. Mar 2014 A1
20140092907 Sridhar et al. Apr 2014 A1
20140108665 Arora et al. Apr 2014 A1
20140112171 Pasdar Apr 2014 A1
20140115584 Mudigonda et al. Apr 2014 A1
20140122559 Branson et al. May 2014 A1
20140123135 Huang et al. May 2014 A1
20140126418 Brendel et al. May 2014 A1
20140156818 Hunt Jun 2014 A1
20140156823 Liu et al. Jun 2014 A1
20140160935 Zecharia et al. Jun 2014 A1
20140164560 Ko et al. Jun 2014 A1
20140164617 Jalan et al. Jun 2014 A1
20140164718 Schalk et al. Jun 2014 A1
20140173113 Vemuri et al. Jun 2014 A1
20140173331 Martin et al. Jun 2014 A1
20140181824 Saund et al. Jun 2014 A1
20140208317 Nakagawa Jul 2014 A1
20140219135 Li et al. Aug 2014 A1
20140223507 Xu Aug 2014 A1
20140229210 Sharifian et al. Aug 2014 A1
20140244851 Lee Aug 2014 A1
20140258535 Zhang Sep 2014 A1
20140269690 Tu Sep 2014 A1
20140279862 Dietz et al. Sep 2014 A1
20140280499 Basavaiah et al. Sep 2014 A1
20140317440 Biermayr et al. Oct 2014 A1
20140321277 Lynn, Jr. et al. Oct 2014 A1
20140337500 Lee Nov 2014 A1
20140341109 Cartmell et al. Nov 2014 A1
20140365834 Stone et al. Dec 2014 A1
20140372582 Ghanwani et al. Dec 2014 A1
20150003240 Drwiega et al. Jan 2015 A1
20150016249 Mukundan et al. Jan 2015 A1
20150029864 Raileanu et al. Jan 2015 A1
20150039744 Niazi et al. Feb 2015 A1
20150046572 Cheng et al. Feb 2015 A1
20150052247 Threefoot et al. Feb 2015 A1
20150052517 Raghu et al. Feb 2015 A1
20150056960 Egner et al. Feb 2015 A1
20150058917 Xu Feb 2015 A1
20150088942 Shah Mar 2015 A1
20150089628 Lang Mar 2015 A1
20150092603 Aguayo et al. Apr 2015 A1
20150096011 Watt Apr 2015 A1
20150124603 Ketheesan May 2015 A1
20150134777 Onoue May 2015 A1
20150139238 Pourzandi et al. May 2015 A1
20150146539 Mehta et al. May 2015 A1
20150163152 Li Jun 2015 A1
20150169340 Haddad et al. Jun 2015 A1
20150172121 Farkas et al. Jun 2015 A1
20150172169 DeCusatis et al. Jun 2015 A1
20150188823 Williams et al. Jul 2015 A1
20150189009 Bemmel Jul 2015 A1
20150195178 Bhattacharya et al. Jul 2015 A1
20150201036 Nishiki et al. Jul 2015 A1
20150222543 Song Aug 2015 A1
20150222638 Morley Aug 2015 A1
20150236945 Michael et al. Aug 2015 A1
20150236962 Weres et al. Aug 2015 A1
20150244617 Nakil et al. Aug 2015 A1
20150249644 Xu Sep 2015 A1
20150257081 Ramanujan et al. Sep 2015 A1
20150271056 Chunduri et al. Sep 2015 A1
20150271104 Chikkamath et al. Sep 2015 A1
20150271303 Neginhal et al. Sep 2015 A1
20150281004 Kakadia et al. Oct 2015 A1
20150312142 Barabash et al. Oct 2015 A1
20150312760 O'Toole Oct 2015 A1
20150317169 Sinha et al. Nov 2015 A1
20150334025 Rader Nov 2015 A1
20150334696 Gu et al. Nov 2015 A1
20150341271 Gomez Nov 2015 A1
20150349978 Wu et al. Dec 2015 A1
20150350907 Timariu et al. Dec 2015 A1
20150358236 Roach et al. Dec 2015 A1
20150363221 Terayama et al. Dec 2015 A1
20150363733 Brown Dec 2015 A1
20150365323 Duminuco et al. Dec 2015 A1
20150372943 Hasan et al. Dec 2015 A1
20150372982 Herle et al. Dec 2015 A1
20150381407 Wang et al. Dec 2015 A1
20150381493 Bansal et al. Dec 2015 A1
20160020844 Hart et al. Jan 2016 A1
20160021597 Hart et al. Jan 2016 A1
20160035183 Buchholz et al. Feb 2016 A1
20160036924 Koppolu et al. Feb 2016 A1
20160036938 Aviles et al. Feb 2016 A1
20160037434 Gopal et al. Feb 2016 A1
20160072669 Saavedra Mar 2016 A1
20160072684 Manuguri et al. Mar 2016 A1
20160080502 Yadav et al. Mar 2016 A1
20160105353 Cociglio Apr 2016 A1
20160105392 Thakkar et al. Apr 2016 A1
20160105471 Nunes et al. Apr 2016 A1
20160105488 Thakkar et al. Apr 2016 A1
20160117185 Fang et al. Apr 2016 A1
20160134461 Sampath et al. May 2016 A1
20160134528 Lin et al. May 2016 A1
20160134591 Liao et al. May 2016 A1
20160142373 Ossipov May 2016 A1
20160150055 Choi May 2016 A1
20160164832 Bellagamba et al. Jun 2016 A1
20160164914 Madhav et al. Jun 2016 A1
20160173338 Wolting Jun 2016 A1
20160191363 Haraszti et al. Jun 2016 A1
20160191374 Singh et al. Jun 2016 A1
20160192403 Gupta et al. Jun 2016 A1
20160197834 Luft Jul 2016 A1
20160197835 Luft Jul 2016 A1
20160198003 Luft Jul 2016 A1
20160210209 Verkaik et al. Jul 2016 A1
20160212773 Kanderholm et al. Jul 2016 A1
20160218947 Hughes et al. Jul 2016 A1
20160218951 Vasseur et al. Jul 2016 A1
20160255169 Kovvuri et al. Sep 2016 A1
20160261493 Li Sep 2016 A1
20160261495 Xia et al. Sep 2016 A1
20160261506 Hegde et al. Sep 2016 A1
20160261639 Xu Sep 2016 A1
20160269298 Li et al. Sep 2016 A1
20160269926 Sundaram Sep 2016 A1
20160285736 Gu Sep 2016 A1
20160301471 Kunz et al. Oct 2016 A1
20160308762 Teng et al. Oct 2016 A1
20160315912 Mayya et al. Oct 2016 A1
20160323377 Einkauf et al. Nov 2016 A1
20160328159 Coddington et al. Nov 2016 A1
20160330111 Manghirmalani et al. Nov 2016 A1
20160352588 Subbarayan et al. Dec 2016 A1
20160353268 Senarath et al. Dec 2016 A1
20160359738 Sullenberger et al. Dec 2016 A1
20160366187 Kamble Dec 2016 A1
20160371153 Dornemann Dec 2016 A1
20160378527 Zamir Dec 2016 A1
20160380886 Blair et al. Dec 2016 A1
20160380906 Hodique et al. Dec 2016 A1
20170005986 Bansal et al. Jan 2017 A1
20170006499 Hampel et al. Jan 2017 A1
20170012870 Blair et al. Jan 2017 A1
20170019428 Cohn Jan 2017 A1
20170026283 Williams et al. Jan 2017 A1
20170026355 Mathaiyan et al. Jan 2017 A1
20170034046 Cai et al. Feb 2017 A1
20170034052 Chanda et al. Feb 2017 A1
20170034129 Sawant et al. Feb 2017 A1
20170048296 Ramalho et al. Feb 2017 A1
20170053258 Carney et al. Feb 2017 A1
20170055131 Kong et al. Feb 2017 A1
20170063674 Maskalik et al. Mar 2017 A1
20170063782 Jain et al. Mar 2017 A1
20170063794 Jain et al. Mar 2017 A1
20170064005 Lee Mar 2017 A1
20170075710 Prasad et al. Mar 2017 A1
20170093625 Pera et al. Mar 2017 A1
20170097841 Chang et al. Apr 2017 A1
20170104653 Badea Apr 2017 A1
20170104755 Arregoces et al. Apr 2017 A1
20170109212 Gaurav et al. Apr 2017 A1
20170118173 Arramreddy et al. Apr 2017 A1
20170123939 Maheshwari et al. May 2017 A1
20170126516 Tiagi et al. May 2017 A1
20170126564 Mayya et al. May 2017 A1
20170134186 Mukundan et al. May 2017 A1
20170134520 Abbasi et al. May 2017 A1
20170139789 Fries et al. May 2017 A1
20170142000 Cai May 2017 A1
20170149637 Banikazemi et al. May 2017 A1
20170155557 Desai et al. Jun 2017 A1
20170163473 Sadana et al. Jun 2017 A1
20170171310 Gardner Jun 2017 A1
20170180220 Leckey et al. Jun 2017 A1
20170181210 Nadella et al. Jun 2017 A1
20170195161 Ruel et al. Jul 2017 A1
20170195169 Mills et al. Jul 2017 A1
20170201585 Doraiswamy et al. Jul 2017 A1
20170207976 Rovner et al. Jul 2017 A1
20170214545 Cheng et al. Jul 2017 A1
20170214701 Hasan Jul 2017 A1
20170223117 Messerli et al. Aug 2017 A1
20170237710 Mayya et al. Aug 2017 A1
20170257260 Govindan et al. Sep 2017 A1
20170257309 Appanna Sep 2017 A1
20170264496 Ao et al. Sep 2017 A1
20170279717 Bethers et al. Sep 2017 A1
20170279741 Elias et al. Sep 2017 A1
20170279803 Desai et al. Sep 2017 A1
20170280474 Vesterinen et al. Sep 2017 A1
20170288987 Pasupathy et al. Oct 2017 A1
20170289002 Ganguli et al. Oct 2017 A1
20170289027 Ratnasingham Oct 2017 A1
20170295264 Touitou et al. Oct 2017 A1
20170302565 Ghobadi et al. Oct 2017 A1
20170310641 Jiang et al. Oct 2017 A1
20170310691 Vasseur et al. Oct 2017 A1
20170317954 Masurekar et al. Nov 2017 A1
20170317969 Masurekar et al. Nov 2017 A1
20170317974 Masurekar et al. Nov 2017 A1
20170337086 Zhu et al. Nov 2017 A1
20170339054 Yadav et al. Nov 2017 A1
20170339070 Chang et al. Nov 2017 A1
20170364419 Lo Dec 2017 A1
20170366445 Nemirovsky et al. Dec 2017 A1
20170366467 Martin et al. Dec 2017 A1
20170373950 Szilagyi et al. Dec 2017 A1
20170374174 Evens et al. Dec 2017 A1
20180006995 Bickhart et al. Jan 2018 A1
20180007005 Chanda et al. Jan 2018 A1
20180007123 Cheng et al. Jan 2018 A1
20180013636 Seetharamaiah et al. Jan 2018 A1
20180014051 Phillips et al. Jan 2018 A1
20180020035 Boggia et al. Jan 2018 A1
20180034668 Mayya et al. Feb 2018 A1
20180041425 Zhang Feb 2018 A1
20180062875 Tumuluru Mar 2018 A1
20180062914 Boutros et al. Mar 2018 A1
20180062917 Chandrashekhar et al. Mar 2018 A1
20180063036 Chandrashekhar et al. Mar 2018 A1
20180063193 Chandrashekhar et al. Mar 2018 A1
20180063233 Park Mar 2018 A1
20180063743 Tumuluru et al. Mar 2018 A1
20180069924 Tumuluru et al. Mar 2018 A1
20180074909 Bishop et al. Mar 2018 A1
20180077081 Lauer et al. Mar 2018 A1
20180077202 Xu Mar 2018 A1
20180084081 Kuchibhotla et al. Mar 2018 A1
20180097725 Wood et al. Apr 2018 A1
20180114569 Strachan et al. Apr 2018 A1
20180123910 Fitzgibbon May 2018 A1
20180131608 Jiang et al. May 2018 A1
20180131615 Zhang May 2018 A1
20180131720 Hobson et al. May 2018 A1
20180145899 Rao May 2018 A1
20180159796 Wang et al. Jun 2018 A1
20180159856 Gujarathi Jun 2018 A1
20180167378 Kostyukov et al. Jun 2018 A1
20180176073 Dubey et al. Jun 2018 A1
20180176082 Katz et al. Jun 2018 A1
20180176130 Banerjee et al. Jun 2018 A1
20180213472 Ishii et al. Jul 2018 A1
20180219765 Michael et al. Aug 2018 A1
20180219766 Michael et al. Aug 2018 A1
20180234300 Mayya et al. Aug 2018 A1
20180248790 Tan et al. Aug 2018 A1
20180260125 Botes et al. Sep 2018 A1
20180262468 Kumar et al. Sep 2018 A1
20180270104 Zheng et al. Sep 2018 A1
20180278541 Wu et al. Sep 2018 A1
20180287907 Kulshreshtha et al. Oct 2018 A1
20180295101 Gehrmann Oct 2018 A1
20180295529 Jen et al. Oct 2018 A1
20180302286 Mayya et al. Oct 2018 A1
20180302321 Manthiramoorthy et al. Oct 2018 A1
20180307851 Lewis Oct 2018 A1
20180316606 Sung et al. Nov 2018 A1
20180351855 Sood et al. Dec 2018 A1
20180351862 Jeganathan et al. Dec 2018 A1
20180351863 Vairavakkalai et al. Dec 2018 A1
20180351882 Jeganathan et al. Dec 2018 A1
20180367445 Bajaj Dec 2018 A1
20180373558 Chang et al. Dec 2018 A1
20180375744 Mayya et al. Dec 2018 A1
20180375824 Mayya et al. Dec 2018 A1
20180375967 Pithawala et al. Dec 2018 A1
20190013883 Vargas et al. Jan 2019 A1
20190014038 Ritchie Jan 2019 A1
20190020588 Twitchell, Jr. Jan 2019 A1
20190020627 Yuan Jan 2019 A1
20190028378 Houjyo et al. Jan 2019 A1
20190028552 Johnson et al. Jan 2019 A1
20190036808 Shenoy et al. Jan 2019 A1
20190036810 Michael et al. Jan 2019 A1
20190036813 Shenoy et al. Jan 2019 A1
20190046056 Khachaturian et al. Feb 2019 A1
20190058657 Chunduri et al. Feb 2019 A1
20190058709 Kempf et al. Feb 2019 A1
20190068470 Mirsky Feb 2019 A1
20190068493 Ram et al. Feb 2019 A1
20190068500 Hira Feb 2019 A1
20190075083 Mayya et al. Mar 2019 A1
20190103990 Cidon et al. Apr 2019 A1
20190103991 Cidon et al. Apr 2019 A1
20190103992 Cidon et al. Apr 2019 A1
20190103993 Cidon et al. Apr 2019 A1
20190104035 Cidon et al. Apr 2019 A1
20190104049 Cidon et al. Apr 2019 A1
20190104050 Cidon et al. Apr 2019 A1
20190104051 Cidon et al. Apr 2019 A1
20190104052 Cidon et al. Apr 2019 A1
20190104053 Cidon et al. Apr 2019 A1
20190104063 Cidon et al. Apr 2019 A1
20190104064 Cidon et al. Apr 2019 A1
20190104109 Cidon et al. Apr 2019 A1
20190104111 Cidon et al. Apr 2019 A1
20190104413 Cidon et al. Apr 2019 A1
20190109769 Jain Apr 2019 A1
20190132221 Boutros et al. May 2019 A1
20190132234 Dong et al. May 2019 A1
20190140889 Mayya et al. May 2019 A1
20190140890 Mayya et al. May 2019 A1
20190158371 Dillon et al. May 2019 A1
20190158605 Markuze et al. May 2019 A1
20190199539 Deng et al. Jun 2019 A1
20190220703 Prakash et al. Jul 2019 A1
20190238364 Boutros et al. Aug 2019 A1
20190238446 Barzik et al. Aug 2019 A1
20190238449 Michael et al. Aug 2019 A1
20190238450 Michael et al. Aug 2019 A1
20190238483 Marichetty et al. Aug 2019 A1
20190268421 Markuze et al. Aug 2019 A1
20190268973 Bull et al. Aug 2019 A1
20190278631 Guim Bernat et al. Sep 2019 A1
20190280962 Michael et al. Sep 2019 A1
20190280963 Michael et al. Sep 2019 A1
20190280964 Michael et al. Sep 2019 A1
20190306197 Degioanni Oct 2019 A1
20190313907 Khachaturian et al. Oct 2019 A1
20190319847 Nahar et al. Oct 2019 A1
20190327109 Guichard et al. Oct 2019 A1
20190334813 Raj et al. Oct 2019 A1
20190334820 Zhao Oct 2019 A1
20190342219 Liu et al. Nov 2019 A1
20190356736 Narayanaswamy et al. Nov 2019 A1
20190364099 Thakkar et al. Nov 2019 A1
20190364456 Yu Nov 2019 A1
20190372888 Michael et al. Dec 2019 A1
20190372889 Michael et al. Dec 2019 A1
20190372890 Michael et al. Dec 2019 A1
20190394081 Tahhan et al. Dec 2019 A1
20200014609 Hockett et al. Jan 2020 A1
20200014615 Michael et al. Jan 2020 A1
20200014616 Michael et al. Jan 2020 A1
20200014661 Mayya et al. Jan 2020 A1
20200014663 Chen et al. Jan 2020 A1
20200021514 Michael et al. Jan 2020 A1
20200021515 Michael et al. Jan 2020 A1
20200036624 Michael et al. Jan 2020 A1
20200044943 Bor-Yaliniz et al. Feb 2020 A1
20200059420 Abraham Feb 2020 A1
20200059457 Raza et al. Feb 2020 A1
20200059459 Abraham et al. Feb 2020 A1
20200092207 Sipra et al. Mar 2020 A1
20200097327 Beyer et al. Mar 2020 A1
20200099659 Cometto et al. Mar 2020 A1
20200106696 Michael et al. Apr 2020 A1
20200106706 Mayya et al. Apr 2020 A1
20200119952 Mayya et al. Apr 2020 A1
20200127905 Mayya et al. Apr 2020 A1
20200127911 Gilson et al. Apr 2020 A1
20200153701 Mohan et al. May 2020 A1
20200153736 Liebherr et al. May 2020 A1
20200162407 Tillotson May 2020 A1
20200169473 Rimar May 2020 A1
20200177503 Hooda et al. Jun 2020 A1
20200177550 Vallur et al. Jun 2020 A1
20200177629 Hooda et al. Jun 2020 A1
20200186471 Shen et al. Jun 2020 A1
20200195557 Duan et al. Jun 2020 A1
20200204460 Schneider et al. Jun 2020 A1
20200213212 Dillon et al. Jul 2020 A1
20200213224 Cheng et al. Jul 2020 A1
20200218558 Sreenath et al. Jul 2020 A1
20200235990 Janakiraman et al. Jul 2020 A1
20200235999 Mayya et al. Jul 2020 A1
20200236046 Jain et al. Jul 2020 A1
20200241927 Yang et al. Jul 2020 A1
20200244721 S et al. Jul 2020 A1
20200252234 Ramamoorthi et al. Aug 2020 A1
20200259700 Bhalla Aug 2020 A1
20200267184 Vera-Schockner Aug 2020 A1
20200280587 Janakiraman et al. Sep 2020 A1
20200287819 Theogaraj et al. Sep 2020 A1
20200287976 Theogaraj et al. Sep 2020 A1
20200296011 Jain et al. Sep 2020 A1
20200296026 Michael et al. Sep 2020 A1
20200301764 Thoresen et al. Sep 2020 A1
20200314006 Mackie et al. Oct 2020 A1
20200314614 Moustafa et al. Oct 2020 A1
20200322230 Natal et al. Oct 2020 A1
20200322287 Connor et al. Oct 2020 A1
20200336336 Sethi et al. Oct 2020 A1
20200344143 Faseela et al. Oct 2020 A1
20200344163 Gupta et al. Oct 2020 A1
20200351188 Arora et al. Nov 2020 A1
20200358878 Bansal et al. Nov 2020 A1
20200366530 Mukundan et al. Nov 2020 A1
20200366562 Mayya et al. Nov 2020 A1
20200382345 Zhao et al. Dec 2020 A1
20200382387 Pasupathy et al. Dec 2020 A1
20200412576 Kondapavuluru et al. Dec 2020 A1
20200413283 Shen Dec 2020 A1
20210006482 Hwang et al. Jan 2021 A1
20210006490 Michael et al. Jan 2021 A1
20210029019 Kottapalli Jan 2021 A1
20210029088 Mayya et al. Jan 2021 A1
20210036888 Makkalla et al. Feb 2021 A1
20210036987 Mishra et al. Feb 2021 A1
20210067372 Cidon et al. Mar 2021 A1
20210067373 Cidon et al. Mar 2021 A1
20210067374 Cidon et al. Mar 2021 A1
20210067375 Cidon et al. Mar 2021 A1
20210067407 Cidon et al. Mar 2021 A1
20210067427 Cidon et al. Mar 2021 A1
20210067442 Sundararajan et al. Mar 2021 A1
20210067461 Cidon et al. Mar 2021 A1
20210067464 Cidon et al. Mar 2021 A1
20210067467 Cidon et al. Mar 2021 A1
20210067468 Cidon et al. Mar 2021 A1
20210092062 Dhanabalan et al. Mar 2021 A1
20210105199 C H et al. Apr 2021 A1
20210112034 Sundararajan et al. Apr 2021 A1
20210126830 R. Apr 2021 A1
20210126853 Ramaswamy et al. Apr 2021 A1
20210126854 Guo et al. Apr 2021 A1
20210126860 Ramaswamy et al. Apr 2021 A1
20210144091 C H May 2021 A1
20210160169 Shen et al. May 2021 A1
20210160813 Gupta et al. May 2021 A1
20210176255 Hill et al. Jun 2021 A1
20210184952 Mayya et al. Jun 2021 A1
20210184966 Ramaswamy et al. Jun 2021 A1
20210184983 Ramaswamy et al. Jun 2021 A1
20210194814 Roux et al. Jun 2021 A1
20210226880 Ramamoorthy Jul 2021 A1
20210234728 Cidon et al. Jul 2021 A1
20210234775 Devadoss et al. Jul 2021 A1
20210234786 Devadoss et al. Jul 2021 A1
20210234804 Devadoss et al. Jul 2021 A1
20210234805 Devadoss et al. Jul 2021 A1
20210235312 Devadoss et al. Jul 2021 A1
20210235313 Devadoss et al. Jul 2021 A1
20210266262 Subramanian et al. Aug 2021 A1
20210279069 Salgaonkar et al. Sep 2021 A1
20210314289 Chandrashekhar et al. Oct 2021 A1
20210328835 Mayya et al. Oct 2021 A1
20210336880 Gupta et al. Oct 2021 A1
20210377109 Shrivastava et al. Dec 2021 A1
20210377156 Michael et al. Dec 2021 A1
20210392060 Silva et al. Dec 2021 A1
20210392070 Tootaghaj et al. Dec 2021 A1
20210399920 Sundararajan et al. Dec 2021 A1
20210399978 Michael et al. Dec 2021 A9
20210400113 Markuze et al. Dec 2021 A1
20210409277 Jeuk et al. Dec 2021 A1
20220006726 Michael et al. Jan 2022 A1
20220006751 Ramaswamy et al. Jan 2022 A1
20220006756 Ramaswamy et al. Jan 2022 A1
20220035673 Markuze et al. Feb 2022 A1
20220038370 Vasseur et al. Feb 2022 A1
20220038557 Markuze et al. Feb 2022 A1
20220045927 Liu Feb 2022 A1
20220086035 Devaraj et al. Mar 2022 A1
20220094644 Cidon et al. Mar 2022 A1
20220123961 Mukundan et al. Apr 2022 A1
20220131740 Mayya et al. Apr 2022 A1
20220131807 Srinivas et al. Apr 2022 A1
20220141184 Oswal et al. May 2022 A1
20220158923 Ramaswamy et al. May 2022 A1
20220166713 Markuze et al. May 2022 A1
20220210041 Gandhi et al. Jun 2022 A1
20220210042 Gandhi et al. Jun 2022 A1
20220231949 Ramaswamy et al. Jul 2022 A1
20220231950 Ramaswamy et al. Jul 2022 A1
20220232411 Vijayakumar et al. Jul 2022 A1
20220239596 Kumar et al. Jul 2022 A1
20220294701 Mayya et al. Sep 2022 A1
Foreign Referenced Citations (33)
Number Date Country
1926809 Mar 2007 CN
102577270 Jul 2012 CN
102811165 Dec 2012 CN
104956329 Sep 2015 CN
106656847 May 2017 CN
110447209 Nov 2019 CN
111198764 May 2020 CN
1912381 Apr 2008 EP
3041178 Jul 2016 EP
3509256 Jul 2019 EP
2010233126 Oct 2010 JP
2017059991 Mar 2017 JP
2574350 Feb 2016 RU
03073701 Sep 2003 WO
2007016834 Feb 2007 WO
2012167184 Dec 2012 WO
2015092565 Jun 2015 WO
2016061546 Apr 2016 WO
2017083975 May 2017 WO
2019070611 Apr 2019 WO
2019094522 May 2019 WO
2020012491 Jan 2020 WO
2020018704 Jan 2020 WO
2020091777 May 2020 WO
2020101922 May 2020 WO
2020112345 Jun 2020 WO
2021040934 Mar 2021 WO
2021118717 Jun 2021 WO
2021150465 Jul 2021 WO
2021211906 Oct 2021 WO
2022005607 Jan 2022 WO
2022154850 Jul 2022 WO
2022159156 Jul 2022 WO
Non-Patent Literature Citations (56)
Entry
Non-Published Commonly Owned U.S. Appl. No. 17/233,427, filed Apr. 16, 2021, 124 pages, VMware, Inc.
Non-Published Commonly Owned U.S. Appl. No. 17/361,292, filed Jun. 28, 2021, 35 pages, Nicira, Inc.
Sarhan, Soliman Abd Elmonsef, et al., “Data Inspection in SDN Network,” 2018 13th International Conference on Computer Engineering and Systems (ICCES), Dec. 18-19, 2018, 6 pages, IEEE, Cairo, Egypt.
Xie, Junfeng, et al., A Survey of Machine Learning Techniques Applied to Software Defined Networking (SDN): Research Issues and Challenges, IEEE Communications Surveys & Tutorials, Aug. 23, 2018, 38 pages, vol. 21, Issue 1, IEEE.
Del Piccolo, Valentin, et al., “A Survey of Network Isolation Solutions for Multi-Tenant Data Centers,” IEEE Communications Society, Apr. 20, 2016, vol. 18, No. 4, 37 pages, IEEE.
Fortz, Bernard, et al., “Internet Traffic Engineering by Optimizing OSPF Weights,” Proceedings IEEE INFOCOM 2000, Conference on Computer Communications, Nineteenth Annual Joint Conference of the IEEE Computer and Communications Societies, Mar. 26-30, 2000, 11 pages, IEEE, Tel Aviv, Israel, Israel.
Francois, Frederic, et al., “Optimizing Secure SDN-enabled Inter-Data Centre Overlay Networks through Cognitive Routing,” 2016 IEEE 24th International Symposium on Modeling, Analysis and Simulation of Computer and Telecommunication Systems (MASCOTS), Sep. 19-21, 2016, 10 pages, IEEE, London, UK.
Huang, Cancan, et al., “Modification of Q.SD-WAN,” Rapporteur Group Meeting—Doc, Study Period 2017-2020, Q4/11-DOC1 (190410), Study Group 11, Apr. 10, 2019, 19 pages, International Telecommunication Union, Geneva, Switzerland.
Michael, Nithin, et al., “HALO: Hop-by-Hop Adaptive Link-State Optimal Routing,” IEEE/ACM Transactions on Networking, Dec. 2015, 14 pages, vol. 23, No. 6, IEEE.
Mishra, Mayank, et al., “Managing Network Reservation for Tenants in Oversubscribed Clouds,” 2013 IEEE 21st International Symposium on Modelling, Analysis and Simulation of Computer and Telecommunication Systems, Aug. 14-16, 2013, 10 pages, IEEE, San Francisco, CA, USA.
Mudigonda, Jayaram, et al., “NetLord: A Scalable Multi-Tenant Network Architecture for Virtualized Datacenters,” Proceedings of the ACM SIGCOMM 2011 Conference, Aug. 15-19, 2011, 12 pages, ACM, Toronto, Canada.
Non-Published Commonly Owned U.S. Appl. No. 16/721,964, filed Dec. 20, 2019, 39 pages, VMware, Inc.
Non-Published Commonly Owned U.S. Appl. No. 16/721,965, filed Dec. 20, 2019, 39 pages, VMware, Inc.
Non-Published Commonly Owned U.S. Appl. No. 16/792,908, filed Feb. 18, 2020, 48 pages, VMware, Inc.
Non-Published Commonly Owned U.S. Appl. No. 16/792,909, filed Feb. 18, 2020, 49 pages, VMware, Inc.
Non-Published Commonly Owned U.S. Appl. No. 16/851,294, filed Apr. 17, 2020, 59 pages, VMware, Inc.
Non-Published Commonly Owned U.S. Appl. No. 16/851,301, filed Apr. 17, 2020, 59 pages, VMware, Inc.
Non-Published Commonly Owned U.S. Appl. No. 16/851,308, filed Apr. 17, 2020, 59 pages, VMware, Inc.
Non-Published Commonly Owned U.S. Appl. No. 16/851,314, filed Apr. 17, 2020, 59 pages, VMware, Inc.
Non-Published Commonly Owned U.S. Appl. No. 16/851,323, filed Apr. 17, 2020, 59 pages, VMware, Inc.
Non-Published Commonly Owned U.S. Appl. No. 16/851,397, filed Apr. 17, 2020, 59 pages, VMware, Inc.
Non-Published Commonly Owned U.S. Appl. No. 17/072,764, filed Oct. 16, 2020, 33 pages, VMware, Inc.
Non-Published Commonly Owned U.S. Appl. No. 17/072,774, filed Oct. 16, 2020, 34 pages, VMware, Inc.
Non-Published Commonly Owned U.S. Appl. No. 17/085,893, filed Oct. 30, 2020, 34 pages, VMware, Inc.
Non-Published Commonly Owned U.S. Appl. No. 17/085,916, filed Oct. 30, 2020, 35 pages, VMware, Inc.
Non-Published Commonly Owned U.S. Appl. No. 17/103,614, filed Nov. 24, 2020, 38 pages, VMware, Inc.
Non-Published Commonly Owned Related U.S. Appl. No. 17/143,092 with similar specification, filed Jan. 6, 2021,42 pages, VMware, Inc.
Non-published Commonly Owned U.S. Appl. No. 17/187,913, filed Mar. 1, 2021, 27 pages, Nicira, Inc.
Non-Published Commonly Owned U.S. Appl. No. 15/803,964, filed Nov. 6, 2017, 15 pages, The Mode Group.
Non-Published Commonly Owned U.S. Appl. No. 16/216,235, filed Dec. 11, 2018, 19 pages, VMware, Inc.
Ray, Saikat, et al., “Always Acyclic Distributed Path Computation,” University of Pennsylvania Department of Electrical and Systems Engineering Technical Report, May 2008, 16 pages, University of Pennsylvania ScholarlyCommons.
Webb, Kevin C., et al., “Blender: Upgrading Tenant-Based Data Center Networking,” 2014 ACM/IEEE Symposium an Architectures for Networking and Communications Systems (ANCS), Oct. 20-21, 2014, 11 pages, IEEE, Marina del Rey, CA, USA.
Yap, Kok-Kiong, et al., “Taking the Edge off with Espresso: Scale, Reliability and Programmability for Global Intemet Peering,” SIGCOMM '17: Proceedings of the Conference of the ACM Special Interest Group on Data Communication, Aug. 21-25, 2017, 14 pages, Los Angeles, CA.
Alsaeedi, Mohammed, et al., “Toward Adaptive and Scalable OpenFlow-SDN Flow Control: A Survey,” IEEE Access, Aug. 1, 2019, 34 pages, vol. 7, IEEE, retrieved from https://ieeexplore.ieee.org/document/8784036.
Long, Feng, “Research and Application of Cloud Storage Technology in University Information Service,” Chinese Excellent Masters' Theses Full-text Database, Mar. 2013, 72 pages, China Academic Journals Electronic Publishing House, China.
Non-Published Commonly Owned U.S. Appl. No. 17/562,890, filed Dec. 27, 2021, 36 pages, Nicira, Inc.
Non-Published Commonly Owned U.S. Appl. No. 17/572,583, filed Jan. 10, 2022, 33 pages, Micira, Inc.
Noormohammadpour, Mohammad, et al., “DCRoute: Speeding up Inter-Datacenter Traffic Allocation while Guaranteeing Deadlines,” 2016 IEEE 23rd International Conference on High Performance Computing (HiPC), Dec. 19-22, 2016, 9 pages, IEEE, Hyderabad, India.
Guo, Xiangyi, et al., (U.S. Appl. No. 62/925,193), filed Oct. 23, 2019, 26 pages.
Lasserre, Marc, et al., “Framework for Data Center (DC) Network Virtualization,” RFC 7365, Oct. 2014, 26 pages, IETF.
Lin, Weidong, et al., “Using Path Label Routing in Wide Area Software-Defined Networks with Open Flow,” 2016 International Conference on Networking and Network Applications, Jul. 2016, 6 pages, IEEE.
Non-Published Commonly Owned U.S. Appl. No. 17/467,378, filed Sep. 6, 2021, 157 pages, VMware, Inc.
Non-Published Commonly Owned U.S. Appl. No. 17/474,034, filed Sep. 13, 2021, 349 pages, VMware, Inc.
Non-Published Commonly Owned U.S. Appl. No. 17/542,413, filed Dec. 4, 2021, 173 pages, VMware, Inc.
Barozet, Jean-Marc, “Cisco SD-WAN as a Managed Service,” BRKRST-2558, Jan. 27-31, 2020, 98 pages, Disco, Barcelona, Spain, retrieved from https://www.ciscolive.eom/c/dam/r/ciscolive/emea/docs/2020/pdf/BRKRST-2558.pdf.
Jivorasetkul, Supalerk, et al., “End-to-End Header Compression over Software-Defined Networks: a Low Latency Network Architecture,” 2012 Fourth International Conference on Intelligent Networking and Collaborative Systems, Sep. 19-21, 2012, 2 pages, IEEE, Bucharest, Romania.
Alvizu, Rodolfo, et al., “SDN-Based Network Orchestration for New Dynamic Enterprise Networking Services,” 2017 19th International Conference on Transparent Optical Networks, Jul. 2-6, 2017, 4 pages, IEEE, Girona, Spain.
Barozet, Jean-Marc, “Cisco SDWAN,” Deep Dive, Dec. 2017, 185 pages, Cisco, Retreived from https://www.coursehero.com/file/71671376/Cisco-SDWAN-Deep-Divepdf/.
Bertaux, Lionel, et al., “Software Defined Networking and Virtualization for Broadband Satellite Networks,” IEEE Communications Magazine, Mar. 18, 2015, 7 pages, vol. 53, IEEE, retrieved from https://ieeexplore.ieee.org/document/7060482.
Cox, Jacob H., et al., “Advancing Software-Defined Networks: A Survey,” IEEE Access, Oct. 12, 2017, 40 pages. vol. 5, IEEE, retrieved from https://ieeexplore.ieee.org/document/8066287.
Duan, Zhenhai, et al., “Service Overlay Networks: SLAs, QoS, and Bandwidth Provisioning,” IEEE/ACM Transactions on Networking, Dec. 2003, 14 pages, vol. 11, IEEE, New York, NY, USA.
Li, Shengru, et al., “Source Routing with Protocol-oblivious Forwarding (POF) to Enable Efficient e-Health Data Transfers,” 2016 IEEE International Conference on Communications (ICC), May 22-27, 2016, 6 pages, IEEE, Kuala Lumpur, Malaysia.
Ming, Gao, et al., “A Design of SD-WAN-Oriented Wide Area Network Access,” 2020 International Conference on Computer Communication and Network Security (CCNS), Aug. 21-23, 2020, 4 pages, IEEE, Xi'an, China.
Tootaghaj, Diman Zad, et al., “Homa: An Efficient Topology and Route Management Approach in SD-WAN Overlays,” IEEE INFOCOM 2020—IEEE Conference on Computer Communications, Jul. 6-9, 2020, 10 pages, IEEE, Toronto, ON, Canada.
Non-Published Commonly Owned U.S. Appl. No. 17/850,112, filed Jun. 27, 2022, 41 pages, Nicira, Inc.
Non-Published Commonly Owned U.S. Appl. No. 17/943,147, filed Sep. 12, 2022, 42 pages, Nicira, Inc.
Related Publications (1)
Number Date Country
20220158924 A1 May 2022 US