The present invention pertains to an agricultural harvester, and, more specifically, to a combine header reel.
An agricultural harvester known as a “combine” is historically termed such because it combines multiple harvesting functions with a single harvesting unit, such as picking, threshing, separating, and cleaning. A combine includes a header which removes the crop from a field, and a feeder housing which transports the crop matter into a threshing rotor. The threshing rotor rotates within a perforated housing, which may be in the form of adjustable concaves, and performs a threshing operation on the crop to remove the grain. Once the grain is threshed it falls through perforations in the concaves onto a grain pan. From the grain pan the grain is cleaned using a cleaning system, and is then transported to a grain tank onboard the combine. A cleaning fan blows air through the sieves to discharge chaff and other debris toward the rear of the combine. Non-grain crop material such as straw from the threshing section proceeds through a residue handling system, which may utilize a straw chopper to process the non-grain material and direct it out the rear of the combine. When the grain tank becomes full, the combine is positioned adjacent a vehicle into which the grain is to be unloaded, such as a semi-trailer, gravity box, straight truck, or the like, and an unloading system on the combine is actuated to transfer the grain into the vehicle.
More particularly, a rotary threshing or separating system includes one or more rotors that can extend axially (front to rear) or transversely (side to side) within the body of the combine, and which are partially or fully surrounded by perforated concaves. The crop material is threshed and separated by the rotation of the rotor within the concaves. Coarser non-grain crop material such as stalks and leaves pass through a straw beater to remove any remaining grains, and then are transported to the rear of the combine and discharged back to the field. The separated grain, together with some finer non-grain crop material such as chaff, dust, straw, and other crop residue are discharged through the concaves and fall onto a grain pan where they are transported to a cleaning system. Alternatively, the grain and finer non-grain crop material may also fall directly onto the cleaning system itself.
A cleaning system further separates the grain from non-grain crop material, and typically includes a fan directing an airflow stream upwardly and rearwardly through vertically arranged sieves which oscillate in a fore and aft manner. The airflow stream lifts and carries the lighter non-grain crop material towards the rear end of the combine for discharge to the field. Clean grain, being heavier, and larger pieces of non-grain crop material, which are not carried away by the airflow stream, fall onto a surface of an upper sieve (also known as a chaffer sieve), where some or all of the clean grain passes through to a lower sieve (also known as a cleaning sieve). Grain and non-grain crop material remaining on the upper and lower sieves are physically separated by the reciprocating action of the sieves as the material moves rearwardly. Any grain and/or non-grain crop material which passes through the upper sieve, but does not pass through the lower sieve, is directed to a tailings pan. Grain falling through the lower sieve lands on a bottom pan of the cleaning system, where it is conveyed forwardly toward a clean grain auger. The clean grain auger conveys the grain to a grain elevator, which transports the grain upwards to a grain tank for temporary storage. The grain accumulates to the point where the grain tank is full and is discharged to an adjacent vehicle such as a semi-trailer, gravity box, straight truck or the like by an unloading system on the combine that is actuated to transfer grain into the vehicle.
The operator of a combine has a multitude of tasks to accomplish in order to operate the combine effectively and safely. One such task is maintaining the header at an appropriate height as the combine traverses the ground. Rises or depressions in the ground contour, for instance, require the operator to raise or lower the header, respectively, to maintain a proper height of the header above the ground in order to harvest the crop material properly. Additionally, the operator typically raises the header when the combine reaches an end of a crop row and thus enters the headland (which can also be referred to as the endrow), which generally is a strip of land at least partially circumscribing a field of crop, so that for example travel in headland is more easily facilitated and obstructions that could damage header are avoided. After turning around in the headland and aligning the combine on a new set of rows of unharvested crop, the operator typically lowers the header to begin traversing the rows and thereby harvesting the crop. The operator may also use the headland as a way to traverse a field and thereby exit the field (or enter it and travel to the point at which the operator will begin harvesting in the rows of crop) without traveling through a field of unharvested crops or otherwise when not harvesting. This burden of raising and lowering of the header in and around the headland can be compounded as the operator monitors the overall harvesting operations of the combine and the presence of any other combines or vehicles in the vicinity.
What is needed in the art is a way to automatically raise the header at the end of a row of crop material.
The present invention provides a control system for automatically raising the header at the end of a row of crop material.
The invention in one form is directed to a control system of an agricultural harvester for controllably harvesting a crop material, the control system including: a lidar sensor configured for sensing a field condition in a forward path of travel of the agricultural harvester and thereby for outputting a field condition signal corresponding thereto; and a controller operatively coupled with the lidar sensor and a header assembly of the agricultural harvester configured for removing the crop material from a field, the controller configured for receiving the field condition signal and for outputting an adjustment signal to raise the header assembly, based at least partially on the field condition signal, when the agricultural harvester reaches an end of a plurality of crop rows.
The invention in another form is directed to an agricultural harvester, including: a header assembly configured for removing a crop material from a field; a lidar sensor configured for sensing a field condition in a forward path of travel of the agricultural harvester and thereby for outputting a field condition signal corresponding thereto; and a controller operatively coupled with the lidar sensor and the header assembly, the controller configured for receiving the field condition signal and for outputting an adjustment signal to the header assembly to raise the header assembly, based at least partially on the field condition signal, when the agricultural harvester reaches an end of a plurality of crop rows. The invention in yet another form is directed to a method of controllably operating an agricultural harvester, the method including the steps of: providing that the agricultural harvester includes a header assembly which is configured for removing a crop material from a field; sensing, by a lidar sensor, a field condition in a forward path of travel of the agricultural harvester; outputting, by the lidar sensor, a field condition signal corresponding to the field condition; receiving, by a controller operatively coupled with the lidar sensor and the header assembly, the field condition signal; and outputting, by the controller, an adjustment signal to the header assembly and thereby raising the header assembly, based at least partially on the field condition signal, when the agricultural harvester reaches an end of a plurality of crop rows.
An advantage of the present invention is that the operator does not have to raise the header at the end of a crop row.
Another advantage of the present invention is that the operator does not have to lower the header at the beginning of a crop row.
For the purpose of illustration, there are shown in the drawings certain embodiments of the present invention. It should be understood, however, that the invention is not limited to the precise arrangements, dimensions, and instruments shown. Like numerals indicate like elements throughout the drawings. In the drawings:
The terms “grain”, “straw” and “tailings” are used principally throughout this specification for convenience but it is to be understood that these terms are not intended to be limiting. Thus “grain” refers to that part of the crop material which is threshed and separated from the discardable part of the crop material, which is referred to as non-grain crop material, MOG or straw. Incompletely threshed crop material is referred to as “tailings”. Also, the terms “forward”, “rearward”, “left” and “right”, when used in connection with the agricultural harvester and/or components thereof are usually determined with reference to the direction of forward operative travel of the harvester, but again, they should not be construed as limiting. The terms “longitudinal” and “transverse” are determined with reference to the fore-and-aft direction of the agricultural harvester and are equally not to be construed as limiting. The terms “downstream” and “upstream” are determined with reference to the intended direction of crop material flow during operation, with “downstream” being analogous to “rearward” and “upstream” being analogous to “forward.”
Referring now to the drawings, and more particularly to
Header 110 is mounted to the front of combine 100 and includes a cutter bar 111 for severing crops from a field during forward motion of combine 100. A rotatable reel 112 feeds the crop into header 110, and a double auger 113 feeds the severed crop laterally inwardly from each side toward feeder housing 120. Feeder housing 120 conveys the cut crop to threshing and separating system 130, and is selectively vertically movable using appropriate actuators, such as hydraulic cylinders (not shown).
Threshing and separating system 130 is of the axial-flow type, and generally includes a threshing rotor 131 at least partially enclosed by a rotor cage and rotatable within a corresponding perforated concave 132. The cut crops are threshed and separated by the rotation of rotor 131 within concave 132, and larger elements, such as stalks, leaves and the like are discharged from the rear of combine 100. Smaller elements of crop material including grain and non-grain crop material, including particles lighter than grain, such as chaff, dust and straw, are discharged through perforations of concave 132. Threshing and separating system 130 can also be a different type of system, such as a system with a transverse rotor rather than an axial rotor, etc.
Grain which has been separated by the threshing and separating assembly 130 falls onto a grain pan 133 and is conveyed toward cleaning system 140. Cleaning system 140 may include an optional pre-cleaning sieve 141, an upper sieve 142 (also known as a chaffer sieve or sieve assembly), a lower sieve 143 (also known as a cleaning sieve), and a cleaning fan 144. Grain on sieves 141, 142 and 143 is subjected to a cleaning action by fan 144 which provides an air flow through the sieves to remove chaff and other impurities such as dust from the grain by making this material airborne for discharge from a straw hood 171 of a residue management system 170 of combine 100. Optionally, the chaff and/or straw can proceed through a chopper 180 to be further processed into even smaller particles before discharge out of the combine 100 by a spreader assembly 200. It should be appreciated that the “chopper” 180 referenced herein, which may include knives, may also be what is typically referred to as a “beater”, which may include flails, or other construction and that the term “chopper” as used herein refers to any construction which can reduce the particle size of entering crop material by various actions including chopping, flailing, etc. Grain pan 133 and pre-cleaning sieve 141 oscillate in a fore-to-aft manner to transport the grain and finer non-grain crop material to the upper surface of upper sieve 142. Upper sieve 142 and lower sieve 143 are vertically arranged relative to each other, and likewise oscillate in a fore-to-aft manner to spread the grain across sieves 142, 143, while permitting the passage of cleaned grain by gravity through the openings of sieves 142, 143.
Clean grain falls to a clean grain auger 145 positioned crosswise below and toward the front of lower sieve 143. Clean grain auger 145 receives clean grain from each sieve 142, 143 and from a bottom pan 146 of cleaning system 140. Clean grain auger 145 conveys the clean grain laterally to a generally vertically arranged grain elevator 151 for transport to grain tank 150. Tailings from cleaning system 140 fall to a tailings auger trough 147. The tailings are transported via tailings auger 147 and return auger 148 to the upstream end of cleaning system 140 for repeated cleaning action. A pair of grain tank augers 152 at the bottom of grain tank 150 convey the clean grain laterally within grain tank 150 to unloader 160 for discharge from combine 100.
Sensor 107 is a lidar sensor 107 that uses lidar technology to sense range, that is, distance, to an object, whatever that object may be, i.e., ground, vegetation, buildings, riverbed, etc. Lidar is an abbreviation for, variously, “light detection and ranging,” and “laser imaging, detection, and ranging.” In general, a lidar sensor uses light, as opposed to sound or radio waves, to find a distance to an object, and the light can be ultraviolet, visible, or near infrared light. To find the distance to an object, the basic equation of distance (d) being in terms of velocity (v) and time (t) is employed, namely, d=vt, wherein v is the speed of light (c). A lidar sensor sends out a pulse of light to an object. This pulse of light is reflected off of the object and travels back to the lidar sensor, which receives the pulse and tracks the amount of time it took for the pulse of light to travel the distance to and from the object. To calculate the distance to the object, from a known reference point (whether on the ground or in the air or otherwise), as opposed the full path of travel to and from the object, d=ct/2. When scanning a relatively large area (as in mapping), large numbers of pulses of light per second are sent out and received by the lidar sensor, which generates for each pulse a three-dimensional (xyz) coordinate, a location point in space. The points together form a three-dimensional data set, a point cloud, which point cloud processing software can use to generate a three-dimensional model, a map, of what has been scanned. Lidar sensors can be used on stationary or mobile platforms to generate the three-dimensional map. This is referred to as time-of-flight technology, and is well-known in the art.
Referring now to
Referring now to
At scanning angle 353 (corresponding to the first scenario), combine 100 approaches rows of crop material 206 to begin harvesting the rows. Initially, lidar sensor 107 senses only the ground, not crop material, leading controller 108 to make the determination to leave header 110 in headland position 352. The following describes an exemplary embodiment on how this determination can be made, according to the present invention, though other ways fall within the scope of the present invention. That is, with sensor 107 set at predetermined angle 353, sensor 107 can measure the distance from sensor to a point on a horizontal plane beneath the wheels of combine 100. This distance (distance A, shown as the full length of broken lines associated with angle 353 in
So that controller 108 does not move header 110 from crop removal position 351 to headland position 352, or vice versa, at inappropriate times, a threshold distance can be set in controller 108, which can correspond to an estimated or actual average crop height, which can be referred to as a threshold crop height. The threshold crop height can, for example, be according to the operator's estimate of the average crop height, or some lesser height which would not otherwise trigger moving header 110 at inappropriate times. This threshold crop height being entered into control system 106 (such as by way of an operator's input device 401) prior to harvesting. On the other hand, sensor 107 can pre-scan standing crop material 206 from headland 210, with actual measurements of the height of crop material 206 being taken, which can be used to develop a threshold crop height. Alternatively, controller 108 may access a database that includes such information as average crop height for a specific geographic area, or controller 108 may calculate an estimated average crop height considering various conditions during the growing season that would affect crop growth. Alternatively, a combination of any of the aforementioned ways of ascertaining a threshold average crop height can be utilized, or any other suitable manner. Regardless of the manner of determining the threshold crop height, this value is used to trigger the raising and lowering of header 110, or, some value less than this value can be used as the threshold crop height, to account for margins of error. For instance, the length of broken line 354 in
At angle 355, sensor 107 has already detected the predetermined threshold crop height to trigger the lowering of header 110 to crop removal position 351. However, so that header is not lowered too soon, a threshold distance corresponding to the horizontal distance between sensor 107 and the crops in a foreground can be set in control system 106. That is, though controller is “preparing” to lower header 110 to crop removal position upon detecting a distance associated with the threshold crop height, controller 108 may delay this lowering until header 110 is within a short, predetermined distance of crop material 206, for example, three meters, or some other desirable distance. Such a distance can be preset in controller 108, and a known position of combine 100 and the sensed position of the beginning of the crop material 206 can be used to determine when to lower header 110 to crop removal position 351.
At angle 356, sensor 107 “sees” beyond crop material 206 and into headland 210, having sensed the known distance to ground, which is too long for there to be crop material 206. Controller is now “preparing” to raise header 110 to headland position 352, which it can do based upon a known position of combine 100 and a sensed position of dividing line 211 (knowing the position of the last of crop material 206 before headland 210), and can raise header 110 to headland position 352 at dividing line 211. Alternatively, at angle 356 controller 108 can determine that combine 100 has neared headland 210 when sensor 107 senses a sudden predetermined increase in distance corresponding to a drop in height to level ground. Conversely, controller 108 can determine that combine has neared standing crop material 206 while in, for example, headland 210 when sensor 107 senses a sudden decrease in distance corresponding to an increase in height from level ground, namely, the threshold crop height.
In sum, lidar sensor 107 is configured for sensing a first field condition—that is, an absence of crop material 206 in forward path of travel 202, as in headland 210 and associated with angles 353, 356—in forward path of travel 202 and thereby for outputting a first field condition signal (indicated in
Referring now to
In general, controller 108 may correspond to any suitable processor-based device(s), such as a computing device or any combination of computing devices. Thus, as shown in
Accordingly, more specifically, controller 108 receives certain inputs and transmits certain outputs. For example, controller 108 receives input signals from lidar sensor 107 concerning the presence or absence of crop material 206 at certain positions in field 205 and the position of combine 100 (such positioning of combine 100 can alternatively or in addition thereto come from a separate GPS system associated with combine 100), and operator input device 401 concerning the predetermined threshold crop height and/or the predetermined threshold change. Controller 108 can form an adjustment module 406 to adjust header 110 from crop removal position 351 to headland position 352, or vice versa, based at least partly on this input information, as well as on an algorithm and data 404 stored in memory 403 such as the current actual position of combine 100 and header 110, and controller 108 can output a signal to header 110 based on adjustment module 406.
In use, the operator can operate combine 100 without the operator needing to decide to raise header 110 to headland position 352 upon entry into headland 210 after harvesting a set of rows 203 of crop material or to lower header 110 to crop removal position 351 upon lining up to harvest a select set of rows 203 of crop material 206. The operator can input into controller 108 by way of suitable input device 401 in cab, for example, a predetermined threshold crop height and/or a predetermined change (whether increasing or decreasing). When operator is harvesting a select set of rows 203 of crop material 206 and control system 106 senses an end of the row 203 of crops 206, control system 106 can automatically raise header 110 to headland position 352 at the end of the rows 203, based at least partially on information from sensor 107, the thresholds, and also on control system 106 knowing the position of combine 100 in relation to the end of the rows 203, such as by way of a GPS in lidar sensor 107 (presumed in
Referring now to
It is to be understood that the steps of the method of controllably performing work are performed by controller 108 upon loading and executing software code or instructions which are tangibly stored on a tangible computer readable medium, such as on a magnetic medium, e.g., a computer hard drive, an optical medium, e.g., an optical disc, solid-state memory, e.g., flash memory, or other storage media known in the art. Thus, any of the functionality performed by controller 108 described herein, such as the method of controllably performing work, is implemented in software code or instructions which are tangibly stored on a tangible computer readable medium. The controller 108 loads the software code or instructions via a direct interface with the computer readable medium or via a wired and/or wireless network. Upon loading and executing such software code or instructions by controller 108, controller 108 may perform any of the functionality of controller 108 described herein, including any steps of the method of controllably performing work described herein.
The term “software code” or “code” used herein refers to any instructions or set of instructions that influence the operation of a computer or controller. They may exist in a computer-executable form, such as machine code, which is the set of instructions and data directly executed by a computer's central processing unit or by a controller, a human-understandable form, such as source code, which may be compiled in order to be executed by a computer's central processing unit or by a controller, or an intermediate form, such as object code, which is produced by a compiler. As used herein, the term “software code” or “code” also includes any human-understandable computer instructions or set of instructions, e.g., a script, that may be executed on the fly with the aid of an interpreter executed by a computer's central processing unit or by a controller.
These and other advantages of the present invention will be apparent to those skilled in the art from the foregoing specification. Accordingly, it is to be recognized by those skilled in the art that changes or modifications may be made to the above-described embodiments without departing from the broad inventive concepts of the invention. It is to be understood that this invention is not limited to the particular embodiments described herein, but is intended to include all changes and modifications that are within the scope and spirit of the invention.