Autonomous integrated-circuit card

Information

  • Patent Grant
  • 7346718
  • Patent Number
    7,346,718
  • Date Filed
    Tuesday, June 10, 2003
    21 years ago
  • Date Issued
    Tuesday, March 18, 2008
    16 years ago
Abstract
An autonomous integrated circuit card includes a logic external communication interface which directly communicates with a communication device connected to an integrated circuit card terminal main body via a network, in addition to a host device interface connected to an integrated card reader/writer via a physical layer. A communication control unit includes a software module which directly communicates with the communication device via the external communication interface. A central processing unit performs authentication via the communication control unit and reads value information stored in a nonvolatile memory. Further, the central processing unit encrypts the read value information by use of an encryption processing unit and directly transmits the encrypted value information to the communication device via the communication control unit and the external communication interface.
Description
CROSS REFERENCE TO RELATED APPLICATION

This application claims benefit of priority under 35 U.S.C. § 119 to Japanese Patent Application No. 2002-169315, filed on Jun. 10, 2002, the entire contents of which are incorporated by reference herein.


BACKGROUND OF THE INVENTION

1. Field of the Invention


The present invention relates to an integrated circuit (IC) card, more specifically, to an autonomous IC card which is configured to directly and autonomously communicate with another device connected to an IC card terminal directly or via a network.


2. Description of the Related Art



FIG. 1 is a view for describing a conventional scheme of exchanges of signals between an IC card and an IC card terminal.


Here, the IC card terminal includes an IC card reader/writer 200 and an IC card terminal main body 300. Although an IC card 100 and the IC card reader/writer 200 are schematically illustrated as being separated herein, the IC card 100 and the IC card reader/writer 200 may be configured into a contact less type as described therein, or alternatively, the IC card 100 and the IC card reader/writer 200 may be configured into a contact type in which the IC card 100 is typically inserted into the IC card reader/writer 200.


Upon processing by use of the IC card 100 as described above, the IC card terminal main body 300 serves as a master device and the IC card 100 serves as a slave device. In other words, when an operator intends to execute processing by use of the IC card 100, the operator firstly inputs an instruction to an input terminal (not shown) provided to the IC card terminal main body 300. In response to the instruction, the IC card terminal main body 300 being the master device transmits a command to the IC card 100 via the IC card reader/writer 200. Upon receipt of the command, the IC card 100 being the slave device executes processing corresponding to the command, and returns an execution result to the IC card terminal main body 300 via the IC card reader/writer 200.



FIG. 2 is a view for describing a conventional scheme of exchanges of signals in the case where two IC cards communicate with each other.


In the drawing, an IC card reader/writer 200b is connected to the IC card terminal main body 300 in addition to the configuration shown in FIG. 1. Here, an IC card 100b is connected to the IC card reader/writer 200b either in a contactless mode or in a contact mode.


As similar to the case in FIG. 1, an operator firstly inputs an instruction concerning communication between the IC cards to the input terminal (not shown) provided to the IC card terminal main body 300. In response to the instruction, the IC card terminal main body 300 transmits a command to an IC card 100a via an IC card reader/writer 200a. Upon receipt of the command, the IC card 100a executes processing corresponding to the command, and outputs a response A which is an execution result. The response A outputted from the IC card 100a is inputted to the IC card terminal main body 300 via the IC card reader/writer 200a. The IC card terminal main body 300 performs a relaying operation of information, concerning the response A in this case. The response A outputted from the IC card terminal main body 300 is inputted to the IC card 100b via the IC card reader/writer 200b. The IC card 100b executes processing corresponding to the inputted response A, and outputs a response B which is an execution result. The response B outputted from the IC card 100b is inputted to the IC card terminal main body 300 via the IC card reader/writer 200b. The IC card terminal main body 300 performs a relaying operation of information, concerning the response B in this case. The response B outputted from the IC card terminal main body 300 is inputted to the IC card 100a via the IC card reader/writer 200a.


The operations are basically the same when the above-described exchanges between the IC card 100a and the IC card 100b continue. In other words, the IC card terminal main body 300 always plays a role to perform relaying operations of information exchanged between the IC card 100a and the IC card 100b.


Incidentally, in conventional communication between IC cards, the IC card terminal main body always plays the role to perform relaying operations of information concerning the communication between the IC cards as described above. Therefore, conventionally, an intermediate device as represented by the IC card terminal main body has been capable of falsification or theft of the information communicated between the IC cards. Hence there has been conventionally a problem that communication of accurate information between the IC cards is not ensured.


SUMMARY OF THE INVENTION

The present invention has been made in the light of the foregoing problem. It is an object of the present invention to provide an autonomous IC card capable of ensuring safe communication of accurate information by directly communicating with another communication device seemingly without interposing an intermediate device, such as an IC card terminal, between the IC card and the another communication device when the IC card communicates with the another communication device connected to the IC card terminal directly or via a network.


To attain the foregoing object, there is provided an autonomous IC card comprising a logic host interface which is connected to an IC card terminal via a physical layer, a logic external communication interface which communicates with a communication device connected thereto via the IC card terminal physically, and an IC chip configured to recognize connection of the communication device and directly communicate with the communication device via the logic external communication interface.


According to the present invention, the autonomous IC card can autonomously recognize the communication device connected thereto via the IC card terminal, and directly communicate with the communication device.


In a preferred embodiment of the present invention, the IC chip includes a communication control unit being a software module which directly communicates with the communication device via the logic external communication interface.


According to the present invention, the communication control unit can execute processing by use of the software module which is not conscious of the connected IC card terminal.


In a preferred embodiment of the present invention, the communication control unit includes a session management command group which establishes a session communication path for the communication device, and a transaction management command group which establishes a transaction session for the communication device.


In a preferred embodiment of the present invention, the IC chip includes an encryption processing unit which performs mutual authentication processing with the communication device and encrypts and decrypts information concerning communication with the communication device.


According to the present invention, the encryption processing unit performs the mutual authentication processing with the communication device, and encrypts and decrypts the information concerning the communication with the communication device.


In a preferred embodiment of the present invention, the IC chip includes an assigned unique identifier. Here, the IC chip identifies the communication device and performs the mutual authentication processing based on the identifier.


In a preferred embodiment of the present invention, the encryption processing unit selects an appropriate authentication process and an appropriate encryption process out of a plurality of authentication processes and a plurality of encryption processes respectively to perform those processes, depending on a type of the identified communication device.


In a preferred embodiment of the present invention, the IC chip includes a storage unit which stores value information. Here, the IC chip communicates with the communication device concerning the value information.


The nature, principle and utility of the invention will become more apparent from the following detailed description when read in conjunction with the accompanying drawings.





BRIEF DESCRIPTION OF THE DRAWINGS

In the accompanying drawings:



FIG. 1 is a view for describing a conventional scheme of exchanges of signals between an IC card and an IC card terminal;



FIG. 2 is a view for describing a conventional scheme of exchanges of signals in the case where two IC cards communicate with each other;



FIG. 3 is a view showing a logical configuration of one embodiment of an IC card according to the present invention;



FIG. 4 is a view showing a system configuration for performing communication between IC cards by use of an autonomous IC card of the present invention; and



FIG. 5 is a view showing another system configuration for performing communication by use of the autonomous IC card of the present invention.





DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS

Now, an embodiment of an autonomous IC card according to the present invention will be described in detail with reference to the accompanying drawings.



FIG. 3 is a view showing a logical configuration of one embodiment of the IC card according to the present invention.


In FIG. 3, an autonomous IC card 1 of the present invention includes a central processing unit (CPU) 10, a read-only memory (ROM) 11, a random access memory (RAM) 12, a nonvolatile memory 13, an encryption processing unit 14, a communication control unit 15, an external communication interface 16, and a host device interface 17.


Here, the above-described configuration is a mixture of a physical configuration (hardware) and a logical configuration (software). Description will be made below severally regarding both the configurations.


The host device interface 17 is a conventionally provided physical interface for performing external communication. As similarly to the related art, the host device interface 17 includes a contact type and a contactless type. The CPU 10 is a central processing unit which executes all kinds of operations except part of floating-point operations. Note that a floating-point processing unit (not shown) is specially provided for executing some floating-point operations. The ROM 11 is a read-only memory in which software (such as an operating system (OS) or programs) unique to the autonomous IC card 1 and a chip ID of the present invention to be described later are stored. The RAM 12 is a random access memory in which data treated by the software which operates inside the autonomous IC card are temporarily stored. Contents in the RAM 12 are completely deleted when power supply to the IC card is stopped.


The nonvolatile memory 13 stores value information to be described later. The value information is equivalent to data containing values such as electronic tickets and electronic money. Note that since the nonvolatile memory 13 is a memory designed to preserve contents, the contents therein are preserved even if the power supply is stopped.


These are the physical configuration elements.


The external communication interface 16 is a logical interface which allows a chip of the present invention to be described later, which includes the CPU 10 and the like, to perform direct communication with the outside. A conventional IC card only includes a logic interface for communicating only with a device which is physically connected thereto, typically, only with an IC card terminal. However, the autonomous IC card 1 of the present invention includes the external communication interface 16 which performs direct communication with an external device (a service client with the chip of the present invention incorporated therein, which will be described later) in addition to the logic host interface. Note that this external communication interface 16 is an interface which performs communication in accordance with a protocol to be described in detail later in “4. API protocol for the present chip”.


The communication control unit 15 is a software module which controls communication with the external device via the external communication interface 16. The communication control unit 15 is the software module which realizes the entirety of “10. API specification for the present chip” to be described later. The software module is closely related to “10.1 Session management command group” and “10.2 Transaction management command group” in particular. Communication is performed directly with the external device by use of this module.


The encryption processing unit 14 is a module for enabling various types of mutual authentication and encryption communication as defined in “3.4 Authentication, access control and encryption”, “5. eTP key certificate”, and “6. key entity”, which will be described later. The encryption processing unit 14 selects and switches appropriate mutual authentication and appropriate encryption communication out of a plurality of options of mutual authentication and a plurality of options of encryption communication respectively. Here, the risk of theft of the data contents or falsification of the data via the intermediate device such as the IC card terminal will be further reduced by performing the mutual authentication and the encryption communication by use of the encryption processing unit 14.


Note that a configuration unit according to the present invention shown in FIG. 3 is preferably materialized by use of a one-chip microcomputer (hereinafter referred to as an “IC chip”), specifications of which will be listed in detail in the last part of the description of the embodiment.


Now, description will be made regarding overall characteristics of the IC chip to be incorporated in the autonomous IC card of the present invention.


The IC chip according to the present invention is designed to function as anode in a distributed environment. Therefore, if a device, in which the IC card of the present invention is connected to an IC card terminal main body including an IC card reader/writer either in a contact mode or in a contactless mode to operate the device, is configured to be capable of physically communicating with, for example, another IC card via a network, each of those IC cards severally including the IC chips according to the present invention has a function as a node on the communication network. Moreover, in this event, the IC card reader/writer and the IC card terminal main body play a role as a gateway (bridge) for making communicable a physical layer of contactless communication with the network. In other words, the above-described external communication interface 16 controls the IC card communication as the node in a distributed system, while the host device interface 17 plays the role for making communicable the physical layer of the contactless communication.


Therefore, in order to function as the node in the distributed environment, the IC chip according to the present invention has a unique identifier (ID) in the entire distributed system, which is represented by the above-described network as the simplest example.


Moreover, the IC chip incorporated in the autonomous IC card of the present invention identifies a plurality of devices which are connected via the network and severally provided with the similar IC chips, and performs mutual authentication with those devices first. The IC card is designed to then perform communication with those devices after confirming those devices as qualified entities. There are two modes upon the authentication, namely, an (information) issuer mode and an owner mode. These modes will be described in detail later.


Furthermore, the IC chip according to the present invention adopts an access control list based on the above-described ID to protect resources owned by the IC chip. That is, the access control list is added to each of chips and files (and records).


The IC chip according to the present invention deals with “owner”, “issuer”, and “other” service clients uniformly. The IC card issues an application programming interface (API) for changing the access control list in accordance with authority owned by each service client. In this way, the IC chip can flexibly perform control such as restriction, release, or transfer of access rights.


Meanwhile, the IC chip according to the present invention supports a hybrid mode for retaining contents while distributing the contents among a plurality of contents holders, for example, between the chip of the present invention and a value information storage server on the network. The IC chip according to the present invention further provides a link function between the contents as a mechanism for supporting the hybrid mode.


Next, description will be made regarding a concrete example of communication by use of the autonomous IC card of the present invention.



FIG. 4 is a view showing a system configuration for performing communication between IC cards by use of the autonomous IC card of the present invention.


In the drawing, an autonomous IC card 1a is connected to an IC card reader/writer 2a provided on an IC card terminal main body 3 either in a contact mode or in a contactless mode. Meanwhile, an autonomous IC card 1b is similarly connected to an IC card reader/writer 2b provided on the IC card terminal main body 3 either in a contact mode or in a contactless mode.


In the configuration as described above, when an operator intends to cause the autonomous IC card 1a to communicate with the autonomous IC card 1b, the operator inputs an instruction to an input terminal (not shown) provided to the IC card terminal main body 3. In response to the instruction, the IC card terminal main body 3 transmits a command to the IC card 1a via the IC card reader/writer 2a. Upon receipt of the command, the autonomous IC card 1a directly and autonomously communicates with the autonomous IC card 1b in a software manner via the external communication interface 16 shown in FIG. 3. The reason why the autonomous IC card 1a can directly communicate with the autonomous IC card 1b is because the autonomous IC card 1a can function as the node in the distributed environment as described above. Upon such communication, if the encryption processing unit 14 shown in FIG. 3 encrypts and decrypts the communication data, it is possible to surely prevent the risk such as falsification or theft of the data in the course of communication.



FIG. 5 is a view showing another system configuration for performing communication by use of the autonomous IC card of the present invention.


Upon the communication by use of the autonomous IC card of the present invention, the other one to communicate with does not need to be an IC card, but may be another communication device. In the drawing, the IC card terminal main body 3 is connected to a communication device 5 via a network 4. When the autonomous IC card 1 communicates with the communication device 5 via the network 4, the autonomous IC card 1 which has received a command from the IC card terminal main body 3 communicates with the communication device 5 directly and autonomously in a software manner.


Now, description will be made regarding detailed specifications of the IC chip (hereinafter simply referred to as the “present chip”) which is incorporated in the autonomous IC card of the present invention. In the following description, contents holders (CHs) correspond to the above-described autonomous IC cards 1 and 1a, and service clients (SCs) correspond to all the devices communicating with the autonomous IC cards 1 and 1a, that is, to the above-described IC card terminal main body 3, the autonomous IC card 1b, and the communication device 5.


Here, in order to facilitate understanding of the overview, a table of contents will be provided hereunder and indexes will be provided to the respective configurations of the IC chip in the following description.


TABLE OF CONTENTS



  • 1. Introduction



1.1 The present chip as a node in the distributed environment


1.2 Mutual authentication method specified with the present chip ID


1.3 Resources protection mechanism by the access control list method based on the present chip ID


1.4 Realization of comprehensive access control on the chip owner, the value information issuer, and the value information user


1.5 Transaction mechanism with roll-back capability


1.6 Storage structure having the link function


1.7 Consistency with related chip systems


1.8 Moderate standardization corresponding to various chips

  • 2. System Specification


2.1 System architecture


2.2 The present chip identifier (the present chip ID)

  • 3. Outlines of the Present Chip


3.1 The present chip


3.2 Data structure model


3.3 The present chip API


3.4 Authentication, access control and encryption

  • 4. The Present Chip API Protocol


4.1 Packet type


4.2 List of command identifiers (command ID)


4.3 List of error codes


4.4 MAC, trailer


4.5 Session communication and non-session communication

  • 5. eTP Key Certificate


Utilization of the certificate upon authentication during session establishment

    • 1. Outline
    • 2. Details
  • 6. Key Entity
  • 7. Standard Content Format of the Invention
  • 8. Settlement Processing in Operating Standard CONTENTS of the Invention by the Key Entity
  • 9. Specifications of the Present Chip API (Data Type Definitions)
  • 10. Specifications of the Present Chip API (Command Definitions)


10.1 Session management command group


10.2 Transaction management command group


10.3 File management command group


10.4 Record management command group


10.5 Key entity management command group


10.6 Authentication assistance management command group


SPECIFICATIONS OF ENCRYPTION IMPLEMENTATION

1. Introduction


The present chip (a value information-added chip) is a computer system (such as an IC card) which constitutes a storage medium for value information in a highly functional distributed system which a project related to the present invention aims for, and external specifications of the computer system. Based on the assumption of future technological advance, the present chip is put into a series of the 8-bit CPU version, the 16-bit CPU version, and the 32-bit CPU version, and the present chip provides a common command and a common message format concerning a common operation. Among various systems of the specifications of the present chip, this description particularly explains an overview of the specifications in the case of adopting the IC chip of the 16-bit CPU version as a target hardware.


In this chapter, description will be made regarding characteristics of the present chip in comparison with other existing tamper-resistant chips.


1.1 The Present Chip as a Node in the Distributed Environment


Unlike a conventional IC chip which is designed as a computer peripheral unit to be operated via a reader/writer, the present chip is designed as a node in a distributed environment. A service provider module on a network and the chip, and the chip and a card, perform peer-to-peer communication on an equal basis. A reader/writer device constitutes a gateway (bridge) for making communicable a physical layer of contactless communication with a local area network (LAN).


In architecture of the present chip, the present chip has an identifier (the present chip ID) which is unique in the entire distributed system. The present chip ID is used not only for identifying the chip physically, but also for controlling a path in the distributed environment. Here, upon authentication communication, the present chip ID is utilized by the other one to communicate with as an identifier.


Therefore, the target for authentication of the present chip is not the reader/writer, but is calculation entities (contents holders) on the network, the calculation entities exchanging information with the chip via the network and the reader/writer.


1.2 Mutual Authentication Method Specified with the Present Chip ID


The present chip performs communication after performing mutual authentication and thereby confirming that the other one to communicate with is a qualified entity. In the present chip architecture, the present chip-incorporated contents holders (CHs) and the present chip-incorporated service clients (SCs) both include consistent unique identifiers (the present chip ID), and identify the present chip ID of the other one to communicate with after the mutual authentication.


1.3 Resources Protection Mechanism by the Access Control List Method Based on the Present Chip ID


The present chip specifies a SC which issues the present chip API through the mutual authentication. Therefor, an access control list based on the present chip ID is used to protect resources owned by the present chip. The present chip at the moment expresses attributes such as an “issuer”, an “owner” and the like by use of the present chip ID with respect to the resources. Moreover, it is possible to designate commands which can be issued by the “issuer”, the “owner”, and “other” SCs by use of the access control list.


1.4 Realization of Comprehensive Access Control on the Chip Owner, the Value Information Issuer, and the Value Information User


Various applications storing value information may be implemented in the present chip. The value information includes various types. For example, the following types of information are conceivable as the information in the chip:

    • information which cannot be changed by the chip owner but only by the information issuer (e.g. a seat number of an electronic ticket);
    • information which is not disclosed even to the chip owner (e.g. a key for changing the electronic ticket);
    • information which can be fully controlled only by the chip owner (e.g. personal information of the chip owner); and
    • information which can be read by anybody.


The present chip uniformly treats the “issuer”, the “owner”, and the “other” SCs in the access control list, and issues an API for changing the access control list in accordance with authority owned by each SC. In this way, the present chip can flexibly perform control such as restriction, release, or transfer of access rights.


1.5 Transaction Mechanism with Roll-back Capability


It is essential to safely transfer the value information to the present chip. Therefor, concerning creation and deletion of the value information in particular, the present chip provides a transaction mechanism to ensure atomicity of processing. After starting a transaction, an operation attributable to an issued command is reflected by a commit command upon ending the transaction. If an abort command is issued, or if the commit command does not reach on or before a defined timeout duration, then the issued command is subjected to roll-back. Similarly, if the present chip is powered off in the course of the transaction due to any trouble, then roll-back processing takes place in an initial state when the present chip becomes active again.


1.6 Storage Structure Having the Link Function


Various types of tamper-resistant chips currently exist in terms of information processing capability and also in terms of resources such as storage capacity or the like. Among all, there may be a case where hardware with small resources cannot store all the value information of conceivable applications into the chip. Meanwhile, it is also desirable in view of processing efficiency to adopt a method of distributing the value information into the chips for retention. Therefore, the present invention supports a hybrid method for distributing and retaining the contents among a plurality of the contents holders of the present invention, such as the present chip and a value information storage server on a network. Moreover, the present invention provides a link function between the contents as a mechanism for supporting the hybrid method.


1.7 Consistency with Related Chip Systems


The present chip has consistency with other architectures of the project related to the present invention regarding API command conventions, error codes, methods of statically and dynamically treating the resources, and the like. For example, general parts of the error codes are in common between a related chip and the present chip. In this way, the present invention assists an engineer having experience in development on the related chip architecture in developing the present chip applications.


1.8 Moderate Standardization Corresponding to Various Chips


The present chip provides API systems consistent with various IC cards including 8-bit to 32-bit CPUs, contact/contactless/dual interfaces, and smart cards to radio frequency identifications (RF-IDs).


2. System Specifications


2.1 System Architecture


The present chip architecture is distributed system architecture for safely storing tamper-resistant value information and for safely exchanging the tamper-resistant value information on a computer network. The present chip architecture essentially includes the following elements.


(A) Value Information Network Infrastructure (Entity Network Infrastructure)


This is the architecture for exchanging the value information and includes the following two elements.


A-i) The Present Chip-incorporated Content Holders (CHs)


The present chip-incorporated contents holders are calculation entities on the distributed system. The present chip-incorporated content holders store the value information and provides the present chip-incorporated API, thereby allowing operation of this value information from the outside. For example, the present chip-incorporated content holders include the following.


The present chip: A tamper-resistant LSI chip which safely stores the value information.


A present chip box: A large-volume electronic safe housed in a tamper-resistant casing, which safely stores the value information.


A-ii) The Present Chip-incorporated Service Clients (SCs)


The present chip-incorporated service clients are calculation entities for accessing the value information stored in the present chip-incorporated content holder through the present chip API. For example, the present chip-incorporated service clients include the following types.


The present chip: A sophisticated one of the present chips also has a function as a client.


An issuing server: A server which issues the value information and stores the value information in the present chip-incorporated content holder.


A service field system: An application system which uses the value information stored in the present chip. The service field system includes an electronic ticketing gate, for example.


*Attention: There exists also a calculation entity which serves as the present chip-incorporated service client as well as the present chip box.


(B) Authentication/Encryption Network Infrastructure (AENI)


This is an authentication system in the case where the present chip implements authentication and encryption of a public key encryption system. An authentication station plays a main role.


(C) Application Network Infrastructure (ANI)


This is equivalent to various communication systems which depend on applications. In the case of the electronic ticketing, for example, the application network infrastructure includes network protocols for instructing search or purchase of tickets, and the like. The instructions up to the purchase are conducted within the ANI frames, and transfer of the ticket being the value information is conducted in the ENI which applies the functions of the present chip.


2.2 The Present Chip Identifier (The Present Chip ID)


The present chip-incorporated content holders and service clients severally have unique identifiers, each of which is referred to as the present chip identifier (the present chip IDs). The present chip ID is used on the network for authentication of the present chip-incorporated content holders and service clients, path control of messages, and the like. The present chip ID is expressed by a 16-octet (128-bit) number.


* The present chip ID is an exchange format of an identifier used in the ENI communication protocols. The present chip ID does not define an internal saving format within the present chip.


* Considering facility of implementing the path control, it is also conceivable to adopt a implementing method which defines an identifier in a protocol on a network layer of the ENI directly as the present chip ID. For example, lower bits of a network address may be applied to the present chip ID without modification.


* The present chip ID for the owner will be defined as “0x00˜00” (all “0”).


For example, if the present chip-incorporated service client having the present chip ID “X” establishes a session after being authenticated in an owner authentication mode and then creates a file in the session, an issuer ID column of the file stores “0”.


* The present chip ID for an administrative superuser will be defined as “0xff˜ff” (all “1”).


3. Outlines of the Present Chip


3.1 The Present Chip


The present chip is a small-size calculation entity used for allowing a user, who directly receives services using the value information from various enterprises, to carry the value information. The present chip is an object to be mainly handled by these specifications. In general, the present chip is thought to be implemented principally on hardware such as an IC card, a smart card, or a portable terminal. Considering large differences in information processing capabilities and resources provided in these pieces of hardware, and also considering the fact that the tamper-resistant technology still remains at a stage of development, the specifications of the present chip provide various specifications corresponding to various types of hardware while standardizing only the interfaces, whereby the present chips are made into series.









TABLE 1





Table: Series of the present chip specifications


















The present chip/8
for 8-bit CPU chip



The present chip/16
for 16-bit CPU chip



The present chip/32
for 32-bit CPU chip



The present chip/T
for terminal











3.2 Data Structure Model


The value information to be stored in the present chip box or the present chip will be visible from outside as a following hierarchical data structure.


● Folder


A structure for compiling a plurality of sets of files.


Only a route folder exists in the present chip /16.


● File


The resources for storing the value information. Whereas a record is stored in the file, the present chip /16 adopts a structure in which only a single record is stored in one file.


3.3 The Present Chip API


The present chip is operated by the present chip API from the present chip-incorporated service client.


Basically, the present chip API is a protocol based on a session using the following procedures:

    • Mutual authentication and establishment of an encryption communication path between the present chip and the present chip-incorporated service client,


→ Establishment of a session (transaction);

    • Transmission of a command message; and
    • Cutoff of the session (transaction).


*A session/transaction method involves a high frequency of message exchanges and therefore may be unsuitable for an application which requires high responsiveness such as “& Go”. Accordingly, authentication or encryption is applied to each command message. A non-session protocol is also adopted concerning part of commands.


* A command issued as “session ID=0” will be treated as a non-session mode.


▪ Session Commands


eopn_ses Open Session


ecfm_ses Confirm Session


ecls_ses Close Session


▪ Transaction Commands


eopn_tra Open Transaction


ecfm_tra Confirm Transaction


ecom_tra Commit Transaction


eabo_tra Abort Transaction


▪ File Operation Commands


ecre_fil Create File


edel_fil Delete File


etra_fil Transfer File


eupd_fim Update File Mode


eenc_fil Encrypt File


edec_fil Decrypt File


▪ Record Operation Commands


eupd_rec Update Record


erea_rec Read Record


▪ Key Entity Operation Commands


ecre_key Create Key


edel_key Delete Key


eupd_key Update Key


▪ Authentication Ancillary Command


ecfm_cer Confirm Certificate


▪ Control Commands


epol_chp Polling Chip


eini_car Initialize Card


eupd_cer Update My Certificate


eupd_cpk Update CA Public Key


3.4 Authentication, Access Control and Encryption


The present chip and the present chip-incorporated service client perform the mutual authentication upon establishing the session. Being specialized in the hardware or the like which is incorporated in the chip, various types of concrete algorithms for this authentication can be used.


• Authentication Modes


Authentication includes an (information) issuer mode and an owner mode, which are designated upon authentication. The authentication algorithm is (generally) different depending on each mode.


The (Information) Issuer Mode:


A mode to authenticate the present chip-incorporated service client as an issuer of the file. After being authenticated by the issuer mode, the file created by the present chip-incorporated service client becomes accessible with the issuer authority, and other resources become accessible with other authority.


The Owner Mode:


A mode to authenticate the present chip-incorporated service client as an owner of the chip. A human-friendly authentication method such as a password is usually used. The present chip-incorporated service client authenticated by the owner mode possesses the owner authority.


• Status of the Present Chip After the Mutual Authentication


After the authentication, the present chip retains the following information:

    • The present chip ID of the officially authenticated present chip-incorporated service client;
    • A common key for encryption of a message to be transmitted to the present chip-incorporated service client;
    • A common key for decryption of a message arrived from the present chip-incorporated service client;
    • The session ID; and
    • The session mode (the issuer mode/the owner mode).


• Access Control


The following information is attached to the chip and the file (and the record):

    • The present chip ID representing the issuer; and
    • The access control list (operations permitted depending on authorities).


The access is restricted in accordance with the authority to be owned by the session defined as below.


• File Access Mode


The mode for allowing the SC having the present chip ID=eid to access a file F in the present chip (the present chip ID of the present chip SC which has created the file F=F.eid) includes the following three types.


1. The Owner Access:


Access in the session after clearing the owner authentication


* In this case, eid=0x00 (all “0”)


2. The (Information) Issuer Access:


Access in the session after clearing the (information) issuer authentication, where eid=F.eid.


3. Other Access


Access in the session after clearing (information) creator authentication, where eid !=F.eid, or access in a non-session mode.


• The Access Control List for a Route Folder
















TABLE 2







F
E
D
C
B
A
9
8


Reserved
Reserved
Reserved
Reserved
Reserved
Reserved
Reserved
Reserved


7
6
5
4
3
2
1
0


Reserve
Reserve
ACL5
ACL4
ACL3
ACL2
ACL1
ACL0





ACL0 =0/1 ecre_fil owner access No/Yes


* whether or not creation of a file in a route folder is permitted by the owner access


ACL1 =0/1 ecre_fil other access No/Yes


* whether or not creation of a file in the route folder is permitted by an access other than the owner access


ACL2 =0/1 edel_fil owner access No/Yes


* whether or not deletion of a file from the route folder is permitted by the owner access


ACL3 =0/1 edel_fil other access No/Yes


* whether or not deletion of a file from the route folder is permitted by an access other than the owner access


ACL4 =0/1 etra_fil owner access No/Yes


* whether or not transfer of a file from the route folder is permitted by the owner access


ACL5 =0/1 etra_fil other access No/Yes


* whether or not transfer of a file from the route folder is permitted by an access other than the owner access

















TABLE 3







cre_fil
del_fil
tra_fil





















Owner access
ACL0
ACL2
ACL4



Issuer access






Other access
ACL1
ACL3
ACL5







* The (information) issuer of the route folder manages as the owner.



* In other words, a general value information server for filing the value information into the route folder and creating the key entity corresponds to the “other access” depending on the route folder.






• The access control list for a file
















TABLE 4







F
E
D
C
B
A
9
8


ACLf
ACLe
ACLd
ACLc
ACLb
ACLa
ACL9
ACL8


7
6
5
4
3
2
1
0


ACL7
ACI6
ACL5
ACL4
ACL3
ACL2
ACL1
ACL0





ACL0 =0/1 eupd_rec owner access No/Yes


ACL1 =0/1 eupd_rec other access No/Yes


ACL2 =0/1 erea_rec owner access No/Yes


ACL3 =0/1 erea_rec other access No/Yes


ACL4 =0/1 eupd_fim owner access No/Yes


ACL5 =0/1 eupd_fim other access No/Yes


ACL6 =0/1 elst_fil owner access No/Yes


ACL7 =0/1 elst_fil other access No/Yes


ACL8 =0/1 edel_fil owner access No/Yes


ACL9 =0/1 edel_fil other access No/Yes


ACLa =0/1 etra_fil owner access No/Yes


ACLb =0/1 etra_fil other access No/Yes


ACLc =0/1 eenc_fil owner access No/Yes


ACLd =0/1 eenc_fil other access No/Yes


ACLe =0/1 edec_fil owner access No/Yes


ACLf =0/1 edec_fil other access No/Yes






















TABLE 5







upd
rea
upd
lst
del
tra
enc




rec
rec
fim
fil
fil
fil
fil
dec_fil
























Owner
ACL0
ACL2
ACL4
ACL6
ACL8
ACLa
ACLc
ACLe


access


Issuer
always
always
always
always
always
always
always
always yes


access
yes
yes
yes
yes
yes
yes
yes


Other
ACL1
ACL3
ACL5
ACL7
ACL9
ACLb
ACLd
ACLf


access









• The Access Control List for a Key Entity
















TABLE 6







F
E
D
C
B
A
9
8


ACLf
ACLe
ACLd
ACLc
ACLb
ACLa
ACL9
ACL8


7
6
5
4
3
2
1
0


ACL7
ACI6
ACL5
ACL4
ACL3
ACL2
ACL1
ACL0





ACL0 =0/1 eupd_key owner access No/Yes


ACL1 =0/1 eupd_key other access No/Yes


ACL2 =0/1 erea_key owner access No/Yes


ACL3 =0/1 erea_key other access No/Yes


ACL4 =0/1 eupd_kym owner access No/Yes


ACL5 =0/1 eupd_kym other access No/Yes


ACL8 =0/1 edel_key owner access No/Yes


ACL9 =0/1 edel_key other access No/Yes


ACLc =0/1 eenc_fil owner access No/Yes


ACLd =0/1 eenc_fil other access No/Yes


ACLe =0/1 edec_fil owner access No/Yes


ACLf =0/1 edec_fil other access No/Yes




















TABLE 7







upd_








key
rea_key
upd_kym
del_key
enc_fil
dec_fil






















Owner
ACL0
ACL2
ACL4
ACL8
ACLc
ACLe


access


Issuer
always
always
always
always
always
always


access
yes
yes
yes
yes
yes
yes


Other
ACL1
ACL3
ACL5
ACL9
ACLd
ACLf


access










4. The Present Chip API Protocol


4.1 Packet Type


* The mark “□” on the right end of the packet type represents a unencrypted portion and the mark “▪” represents an encrypted portion in an encoding session, respectively.


* Numeric data equal to or more than 2 octets are stored using Little Endian format.


A Routing Header

















TABLE 8





D0
D1
D2
D3
D4
D5
D6
D7
















The present chip ID (Destination 0)



The present chip ID (Destination 1)



The present chip ID (Source 0)



The present chip ID (Source 1)























The Present Chip Session Unit (Forward)

















TABLE 9





D0
D1
D2
D3
D4
D5
D6
D7




















SID
Serial
Command ID
Data Length
Reserved




No.

(byte number)










DATA



. . .



DATA



















The Present Chip Session Unit (Backward)

















TABLE 10





D0
D1
D2
D3
D4
D5
D6
D7




















SID
Serial
Error Code
Data Length
Reserved




No.

(byte number)










DATA



. . .



DATA



















MAC, Trailer

















TABLE 11





D0
D1
D2
D3
D4
D5
D6
D7


















MAC ID
MAC Length
Reserved









MAC (1)



MAC (MD5 e.g.: 2)














*MAC is attached to the data after encryption.







4.2 List of Command Identifiers (Command ID)


A command identifier (command ID) of the present chip API is expressed by a positive 1-byte integer.


The command identifiers are commonly defined in the series of the present chips /8, 16, and 32, which are as follows.









TABLE 12







Table: List of the command identifiers of the present chip API












ID
Mnemonic
8/16/32
Meaning







0x01
eopn_ses

custom character

Open Session



0x02
ecfm_ses

custom character

Confirm Session



0x03
ecls_ses

custom character

Close Session



0x04
eopn_ses

custom character

Open Transaction



0x05
ecfm_tra

custom character

Confirm Transaction



0x06
ecom_tra

custom character

Commit Transaction



0x07
eabo_tra

custom character

Abort Transaction



(0x11
ecre_fol

custom character

Create Folder)



(0x12
edel_fol

custom character

Delete Folder)



(0x13
eupd_fom

custom character

Update Folder Mode



0x21
ecre_fil

custom character

Create File



0x22
edel_fil

custom character

Delete File



0x23
etra_fil

custom character

Transfer File



(0x24
erdm_fil

custom character

Redeem File)



0x25
eenc_fil

custom character

Encrypted File



0x26
edec_fil

custom character

Decrypted File



0x27
eupd_fim

custom character

Update File Mode



0x2F
elst_fid

custom character

List File ID



(0x31
ecre_rec

custom character

Create Record)



(0x32
edel_rec

custom character

Delete Record)



0x33
eupd_rec

custom character

Update Record



0x34
erea_rec

custom character

Read Record



(0x35
eupd_rcm

custom character

Update Record Mode)



0x41
epol_car

custom character

Poll Card



0x51
eini_car

custom character

Initialize Card



0x52
eupd_cer

custom character

Update My Certificate



0x53
eupd_cpk

custom character

Update CA Public Key



0x61
ecre_key

custom character

Create Key



0x62
edel_key

custom character

Delete Key



0x63
eupd_key

custom character

Update Key



0x71
ecfm_cer

custom character

Confirm Certificate







* Not loaded on the present chip/16 First version.







4.3 List of Error Codes


An error code of a command in the present chip is expressed by a signed integer. When an operation is closed normally, either E_OK=0 or a positive number representing a result of the operation is returned. If the operation is not closed normally and some errors occur, a negative number is returned. The error code is expressed by the following conventions.


• Description “E_” represents a general error that occurs in local command processing in the chip (common to the error codes of a related chip).


• Description “EN_” represents a general error concerning communication (common to the error codes of a related chip except session error).


• Description “ES_” mainly represents a general error concerning security (dedicated to the present chip).









TABLE 13







Table: List of error codes of the present chip API









Code
Mnemonic
Meaning





-0x00
E_OK
Normally Closed


-0x05
E_SYS
System Error


-0x0a
E_NOMEN
Memory Shortage


-0x11
E_NOSPT
Unsupported Function


-0x21
E_PAR
Parameter Error


-0x23
E_ID
Invalid ID Number


-0x34
E_NOEXS
No Object Exists


-0x3f
E_OBJ
Invalid Object Status


-0x41
E_MACV
Memory Not Accessible, Memory Access




Violation


-0x42
E_OACV
Object Access Violation


-0x55
E_TMOUT
Polling Failed or Timeout


-0x72
EN_OBJNO
Specify Object Number Not Accessible By




The Present Chip


-0x73
E_PROTO
Protocol Not Supported By The Present Chip


-0x74
E_RSFN
Command Not Supported By The Present Chip


-0x77
EN_PAR
Parameter Is Not In The Range Supported




By The Present Chip Is Specified


-0x7a
EN_EXEC
Not Executable Due To Resource Shortage




On The Present Chip Side


-0x7f
EN_NOSES
No Specified Session


-0x81
ES_AUTH
Authentication Error


-0x82
ES_EACL
Access Control Violation










4.4 MAC, Trailer













TABLE 14








Length




MAC ID
(bytes)
Contents




















0x0l
16
Check SUM



0x02
2
CRC-CCITT



0x03
4
Reserved



0x04
16
Reserved



0x05
16
HMAC with MD5 (RFC 2085)



0x06
16
Reserved










1 Check SUM
















TABLE 15





D0
D1
D2
D3
D4
D5
D6
D7

















MAC ID
MAC Length
Reserved







MAC (1)


. . .


MAC (16)





2 CRC-CCITT


Generation polynomial in CRC-CCITT


G(X) = X{circumflex over ( )}16 + X{circumflex over ( )}12 + X{circumflex over ( )}5 + 1


*When a packet size is an odd number, CRC is performed after the latter byte is subjected to null padding.




















TABLE 16





D0
D1
D2
D3
D4
D5
D6
D7

















MAC ID
MAC Length
Reserved


MAC





5 HMAC with MD5 [RFC 2085]






Used in a session/transaction encryption communication path.


First 64 bytes in a key of a secret key encryption for the encryption communication path is used as a key K. Here, HMAC is calculated by the following formula.

MD5 (K xor opad|MD5 (K xor ipad|TEXT))

    • opad+the byte 0x36 repeated 64 times
    • ipad+the byte 0x36 repeated 64 times
    • “|” means simple bit append.
    • e.g. (“0100”|“1001”)=(“01001001”)


* In the case of performing the encryption communication after establishment of the session, a number obtained by repeating a 16-byte encryption key for 4 times, in other words, an exchanged random number in the case of RSA authentication of eopn_ses ( ), is used as the 64-byte secret key by appending as follows.

K=Ra|Rb|Ra|Rb|Ra|Rb|Ra|Rb|
















TABLE 17





D0
D1
D2
D3
D4
D5
D6
D7

















MAC ID
MAC Length
Reserved







MAC (1)


MAC (2)










4.5 Session Communication and Non-session Communication


Regarding communication with the present chip, the session/transaction as the “encryption” communication path is established after the “mutual authentication”, and “encrypted” message communication is performed thereafter. Concerning the “erea_rec command” (i.e. read the contents of the record), non-session communication, which is directly executed without passing through an “authentication” phase, is supported. In this event, it is possible to start up by retrieving the command with the “session ID=0”, instead of establishing a session. This access by the non-session communication will be successful if the relevant file permits “the other access”. At this point, an access packet is not encrypted. This is used in places where a “touch & go application” is highly required, such as in ticket gating.


* A service provider will bear a higher risk by use of this mode. The following sound source chip is incorporated.


5. eTP Key Certificate


Utilization of the certificate upon authentication during session establishment


1. Outline


The mutual authentication upon establishing a session with the present chip /16 is based on the premise of a public key basis and existence of PKI.

    • The present chip ID is allocated to each of the present chip-incorporated CHs and the present chip-incorporated SCs, and the pair of a public key and a secret key for authentication is allocated upon issuance.
    • A certificate signed by the present chip-incorporated CA is always stored inside the present chip-incorporated CH or the present chip-incorporated SC, so that the present chip-incorporated CH and the present chip-incorporated SC can indicate the possession of the officially issued pairs (of the present chip ID and public key) to each other when establishing the session/transaction.


*Although it is assumed that there will be a plurality of the present chip-incorporated CA in the future, the present chip-incorporated CA is limited to one in this version.

    • In the certificate, the signature (S_ca(id, PK_id)) of the present chip-incorporated CA certifies that the present chip ID, the pair of the public keys, and (id, PK_id) are officially issued.


      2. Details


As a step prior to an authentication step, the present chip-incorporated nodes (which refer to the present chip-incorporates SC and the present chip-incorporated CH collectively) transmit the public keys of the present chips of their own to each other as the certificates signed by the present chip device issuer. * see Note (1)


The present chip-incorporated node has a public key of a key signed by a certificate issuer in the form of a certificate. Validity is confirmed by use of this key.


Then, the following is verified. *see Note (2)


“Validity of the public key transmitted from the opponent node”


=“the official signature by the issuer”+“the certificate in validity period”


When the validity is not confirmed, the communication is cut off without establishing the session. *see Note (3)


* Note (1)


In the authentication on the public key basis, consideration should also be made regarding the case where the certificate is “cancelled and nullified” upon transferring/exchanging a high value in a session thereafter. The present chip /16 uses either one of the following:


1. a CRL (nullified list), (however, the data size becomes large); or


2. server access for inquiring whether or not a specific certificate is “cancelled and nullified”.


* Note (2)


In addition, it is also possible to place an inqury whether or not the certificate is “cancelled and nullified” as described in Note (1).


* Note (3)


Before confirmation of the validity of the certificate is completed, it is effective to start the authentication step tentatively and adopt an implementation in which the validity is confirmed by another task, while transmitting a packet necessary for the authentication to the opponent, or waiting for a packet necessary for the authentication from the opponent. Although such an implementation requires interruption and a multi-task OS to be achieved in the chip, it is still effective means for implementing the entire authentication in a short processing time period.


The foregoing description is a device for reducing the time required for initial setting of communication of the node such as the present chip or a card. The node implemented on a server machine should always complete confirmation of the signature off-line in the first place and then proceed to confirmation of “cancellation and nullification”. This is for preventing a DoS which is a waste of server inquiry processing attributable to transmission of an invalid certificate from a device having the invalid certificate.


The format of the eTP key certificate (ver. 0.1)
















TABLE 18





D0
D1
D2
D3
D4
D5
D6
D7




















ver
Reserved
Certificate
Signature
Reserved
Issuer




number
method

ID








Start of Expiration Date
End of Expiration Date







The present chip ID (1)


The present chip ID (2)











CAKEY
Reserved
Key length
Signature length
Reserved


#







Public key (1)


. . .


Public key (17)


Signature (1)


. . .


Signature (16)









• ver: a version number of the certificate format, which is set as ver=“1” in ver. 0.1


• Certificate number: a certificate serial number of the key for the present chip ID


• Signature method: signature algorithm specifiers


0: the portion up to the key field portion of the certificate is subjected to SHA-1 hash, and the result is subjected to RSA encryption (implementation)


1: Reserved


2: Reserved


3: Reserved


• Issuer ID: an ID of the issuer (a CA station) of the certificate, which is fixed to “0” in ver. 0.1


• Start of Effective duration, End of Expiration Date: effective duration of the certificate


• Unsigned 4 octet integers (Accumulation of seconds starting from 0:00 AM on Jan. 1, 2000)


• CAKEY#: an ID number of a key for distinction when a plurality of keys are used by the CA for key signature


• Key length: a bit-length size of a key having an added end.


* When the key is not a multiple number of 8 octets in the certificate, “0” is added (null padding) to the end of the key field for storing the key, and the key is thereby stored as 8-octet multiple number data. The “key length” bit in the key field is an effective key.


• Signature length: A bit length of the hash (such as sha-1) used for the signature to be added to the end


* The hash obtains 8-octet multiple number data with null padding at the last if necessary, and then creates the signature by encrypting the number with the CA key.


When the signature is confirmed, this 8-octet multiple number data added to the end are decrypted with the public key of a CA server saved in the present chip-incorporated node. The head signature length bit among the decrypted values becomes a hash value to be used for confirmation.


• Concrete example of the length (when RSA/sha-1 signature is applied):

    • RSA
      • The public key for the present chip authentication is set to 1024 bits by RSA
      • 1024 bits=128 bytes=16×8 bytes
      • “sha-1” is used as a hash function for signature
    • sha-1
      • An output of sha-1 is 160 bits
      • 160 bits=20 bytes


This byte length is made to be a multiple of 8 by null padding, and the 24-byte data are signed by RSA encryption.


The overall length of the certificate is calculated as follows:


the length of the certificate is equal to


• a fixed length portion (40 bytes); and


the length of the key portion is equal to


• a signature portion (128 bytes),


accordingly, the overall length is equal to the sum of the two portions (168 bytes).


Since the signature portion after encryption requires 1024 bits, the length of 128 bytes is used.


However, it should be noted that the key portion is not simply equal to 128 bytes.


This is because, regarding the RSA key, a common quotation of 1024 bits as the public key takes the pair of N of 1024 bits and an exponent e(e, N) into account. Therefore, it is necessary to input the both (e, N) into the key portion.


In the case of RSA, the e and N will be inputted to the key field as described below.


The byte length for e: (1 byte)


The value e itself: This is expanded into a byte unit as required to be buried as a byte sequence. Subsequently, the value N is buried as a byte sequence.


Considering the case where e=3 in (e, N), as an example, the byte data of 130 bytes is inputted to the key field as described below.


Public Key=0x01|0x03| byte sequence of N (128 bytes)


Since 130 is not a multiple of 8, the value is padded to 136 bytes. Hence, the key data occupies 136 bytes.


Accordingly, the overall length can be calculated as follows:


















fixed length portion
 (40 bytes)



+length occupied by the key portion
(136 bytes)



+signature portion
(128 bytes)




=304 bytes










In this way, the aggregate length is equal to 304 bytes when e=3.


6. Key Entity


The key entity is a system data format which compiles an encryption key and information necessary for value information operation by use of the encryption key. The encryption key and the information are stored in a normal file by the present chip.
















TABLE 19





D0
D1
D2
D3
D4
D5
D6
D7

















keyObj ID
Encryption
Reserved



Mode



Specifier







KEY (1)


KEY (2)









BANK ID
Reserved
Balance of Payment








LEN
Reserved









Encryption Mode Specifier: Specifies which encryption algorithm each of KEY (1) and KEY (2) is a key for. As described below, such specification is performed by the same mode as specification of the encryption algorithm for the encryption communication path in “eopn_ses”.












TABLE 20







Encryption Mode Specifier
Types of Encryption









0x01
DES



0x02
3DES



0x03
Rijndael



0x04
Hierocrypt-3



0x05
Camellia











7. Standard Content Format of the Invention


The standard content format is a standard content data format which manipulates a value information operation inside the present chip. By operating the key entity, it is possible to add an encryption/decryption operation and to change accounting information inside the key entity to be atomic in this event.


Basically, an assumption is made herein that a sales model that charges money for decrypting of the encrypted contents is surely performed inside the present chip.


▪ Overall Content Format











TABLE 21









(A) Content Header



(B) Accounting Header



(C) Encryption Content Body



(D) Signature Trailer










(A) Content Header
















TABLE 22





D0
D1
D2
D3
D4
D5
D6
D7

















Content ID
Segment ID
Publisher Info.









(B) Accounting Header
















TABLE 23





D0
D1
D2
D3
D4
D5
D6
D7


















Payment
Expression
Parameter (1)
Parameter (2)


Scheme
Length


Parameter (3)
Parameter (4)
Parameter (5)
Parameter (6)









(C) Encrypted Contents
















TABLE 24





D0
D1
D2
D3
D4
D5
D6
D7

















Encryption
Data Length
Reserved


Mode
LEN


Specifier







Encryption KEY (1)


Encryption KEY (2)


Encrypted Content Body (1)


. . .


Encrypted Content Body (m)





* The encryption KEYs (1) and (2) are encrypted by the use of the key which is stored in the key entity required for decrypting the contents. In the present chip /16, only common-key encryption is considered as the encryption of the key entity due to the factor of the file capacity thereof, and public-key encryption will not be considered herein (because the data length of the encryption key thereof will be elongated after encryption)






(D) Signature Trailer
















TABLE 25





D0
D1
D2
D3
D4
D5
D6
D7

















Signature ID
Signature
Reserved



Length







Signature (1)


. . .


Signature (n)





* The mode of signature will be set to the same mode as a signature trailer of an eTP packet.






K is created by the following method using K1 and K2 obtained by decrypting the encryption key (1) and the encryption key (2) included in the contents with a key in the key entity as 64-byte secret keys in the case of HMAC with MD 5 [RFC 2085]

K=K1|K2|K1|K2|K1|K2|K1|K2


▪ Accounting Header














TABLE 26








Payment scheme





Payment Method
Parameter
Parameter 2
. . .









Fixed Price
0x01
Price (unit:




Payment

sen (0.01 yen))










▪ Encrypted Contents












TABLE 27







Encryption Mode Specifier
Types of Encryption









0x01
DES



0x02
3DES



0x03
Rijndael



0x04
Hierocrypt-3



0x05
Camellia










▪ Signature Trailer


Similar specifications to the packet of the present chip


8. Settlement Processing in Operating Standard Contents of the Invention by the Key Entity


The following method is adopted as a calculation method using the key entity.


(1) Calculation of a charged amount of the accounting header in the present encryption contents (which is only a fixed amount in the present chip /16).


(2) Subtraction processing for an amount of settlement from a MONEY field of the key entity.


9. Specifications of the Present Chip API (Data Type Definitions)


















B
Signed 1-byte integer



UB
Unsigned 1-byte integer



H
Signed 2-byte integer



UH
Unsigned 2-byte integer


























SID
Unsigned 1-byte integer (Session Id)



FID
Unsigned 2-byte integer (File/Folder Id)



RID
Unsigned 2-byte integer (Record Id)



CACL
Unsigned 2-byte integer (Chip Access




Control List)



FACL
Unsigned 2-byte integer (File Access




Control List)



KEYACL
Unsigned 2-byte integer (Key Object Access




Control List)



TIME
Unsigned 4-byte integer (Accumulation of




seconds starting from 0:00AM on January 1, 2000)



ERR
Signed 2-byte integer










• Definition Examples by C Language Expressions

















#typedef unsigned char UB:



#typedef unsigned short UH:



#typedef unsigned long UW:



#typedef struct etronid {



  UB item[16] ;










}ETRONID;
/* the present chip ID */



#typedef UB SID;
/* Session ID */



#typedef UB FID;
/* File ID */



#typedef UH RID;
/* Record ID */



#typedef UH CACL;
/* Chip Access Control List */



#typedef UH FACL;
/* File Access Control List */



#typedef UH KEYACL;
/* Key Entity Access Control









List */










#define ISSUER_MODE 1
/* Issuer Mode */



#define OWNER_MODE 2
/* Owner Mode */



#define FILE_DYNAMIC 0x01
  /* Dynamic Multi-record









File */










#define FILE_STATIC 0x02
  /* Static Single-record









File */










#typedef UH TME;
  /* Time */











10. Specifications of the Present Chip API (Command Definitions)


10.1 Session Management Command Group Session Construction Open/Confirm Session


[Feature Outline]


A safe session transmission path is constructed for the present chip. The “eopn_ses” is used in the case of using authentication when 1 path is satisfactory, and the “eopn_ses” and “ecnf_ses” are used in this order in the case of using authentication which requires 2 paths.


By this session construction, a temporarily common encryption key, which is effective only during the session between the present chip-incorporated service client side, Caller and the present chip side, a Callee side, is shared in common.


The mode of authentication and the encryption type are selectable in accordance with parameters in the packet. An error occurs when authentication/encryption unusable on the present chip side is specified.

















[Function expression]



ERR eopn_ses (ETRONID destId, ETRONID srcId, TIME t,









UB authMode, UB authAlgorithm,



UB sessionAlgorithm, UH len,



UB*authData, UH*rlen,



UB**rAuthData);










destId
the chip ID of the present chip being









an object for issuing a command











(Destination present chip ID)



srcId
the present chip of the present









chip-incorporated service client calling the command









(Source present chip ID)










t
time



authMode
specify the authentication mode



authAlgorithm
the specifier of the algorithm used









for authentication










sessionAlgorithm
the specifier of the encryption









algorithm in a session after authentication










len
an outbound packet length (an octet









number)










authData
data to be passed from the present









chip-incorporated service client to the present chip for



authentication (len-16)










rlen
a return packet length (an octet









number)










rAuthData
data returned from the present chip









to the present chip-incorporated service client for



authentication (rlen-8)










[Parameter values]




□ authMode



0x01 ISSUER
Issuer mode



0x02 OWNER
Owner mode



□ authAlgorithm



0x01 Reserved









0x02 RSA (off-line authentication using a certificate)



0x03 RSA (on-line authentication for confirming the









CRL)









0x04 Reserved



□ sessionAlgorithm



0x01 DES



0x02 3DES



0x03 Reserved



0x04 Reserved



0x05 Reserved









[Return values]



in the 1-path authentication



> 0  Session ID (upon normal closing)



< 0  Error code



in the 2-path authentication



<= 0 Error code










[Outbound Packet Format]
















TABLE 28





D0
D1
D2
D3
D4
D5
D6
D7



















Reserved
Serial
Command
Len
Reserved



(0x01)
ID
(octet)




(0x01)











t
auth
auth
ses
auth



Mode
Algorithm
Algorithm
Data







authData


. . .


authData


















TABLE 29





Field Name
Data Length
Meaning







Command ID
2(=0x0l)
Command Code


len
2
Packet Length (octet number)


t
4
Time


authmode
1
Authentication Mode


authAlgorithm
1
Authentication Algorithm




Specifier


sessionAlgorithm
1
Session Encryption Algorithm




Specifier


authData
len-16
Data for Authentication









[Return Packet Format]
















TABLE 30





D0
D1
D2
D3
D4
D5
D6
D7



















Reserved
Serial
Error
rLen
Reserved



(0x01)
Code
(octet)











t
auth
auth
ses
auth



Mode
Algorithm
Algorithm
Data







rAuthData


. . .


rAuthData




















TABLE 31







Field Name
Data Length
Meaning









Error Code
2
Error Code (, Session ID (in the





1-path case))



rlen
2
Return Packet Length (octet





number)



rAuthData
rlen-8
Data for Authentication










[Function Expression]

















ERR ecnf_ses (ETRONID destId, ETRONID srcId, TIME t,











UH len, UB*authData, UH*rlen,




UB**rAuthData);



destId
the chip ID of the present chip being









the object for issuing a command











(Destination present chip ID)



srcId
the present chip of the present









chip-incorporated service client calling the command











(Source present chip ID)



t
time



len
an outbound packet length (an octet









number)










authData
data to be passed from the present









chip-incorporated service client to the present chip for



authentication (len-12)










rlen
a return packet length (an octet









number)










rAuthData
data returned from the present chip









to the present chip-incorporated service client for



authentication (rlen-8)









[Return values]



> 0  Session ID (upon normal closing)



< 0  Error code










[Outbound Packet Format]
















TABLE 32





D0
D1
D2
D3
D4
D5
D6
D7



















Reserved
Serial
Command
len
Reserved



(0x02)
ID (0x02)
(octet)








t
authData


. . .


authData




















TABLE 33







Field Name
Data Length
Meaning









Command ID
2(=0x02)
Command Data



len
2
Packet Length (octet)



t
4
Time



authData
len-12
Data for Authentication










[Return Packet Format]
















TABLE 34





D0
D1
D2
D3
D4
D5
D6
D7



















Reserved
Serial
Error Code
rlen
Reserved



(0x02)







rAuthData


. . .


rAuthData




















TABLE 35







Field Name
Data Length
Meaning









Error Code
2
Error Code, Session ID



rlen
2
Return Packet Length (octet





number)



rAuthData
len-8
Data for Authentication










[Detailed Feature]


The “open/confirm session” command establishes a session as the safe encryption communication path after the mutual authentication between the present chip-incorporated service client and the present chip. The concrete actions depend on the authentication and encryption modes, and the modes usually depend on an encryption supporting function of the present N chip hardware (implementation dependency). A session establishment protocol includes authentication in the issuer mode and authentication in the owner mode, which are distinguished by the authmode parameter in the “open session” command.


▪ Authentication in the Issuer Mode (Authmode=ISSUER) by the Public Key Encryption









TABLE 36









embedded image














(1) eopn_ses (A → B)



<<Parameter Example>>










authMode
0x02 (ISSUER)



authAlgorithm
0x03  (RSA:  on-line







authentication for confirming CRL)










sessionAlgorithm
0x02 (3DES)



authData
the eTP public key certificate







for A










MAC trailer
check sum









<<Action by B>>



Confirm the validity of the eTP certificate for A



Confirm the expiration date of the eTP certificate



Confirm the signature on the eTP certificate by use







of the public key of the CA station → to (2)









Confirm the CRL list



Retrieve the public key for A



(2) ecfm_cer (B → CRL Rep.Server)



<<Parameter Example>>










checkMode
0x00



certificateId
***********



MAC trailer
check sum









(3) ecfm_cer (B ← CRL Rep.Server)



<<Parameter Example>>










Error Code
E_OK or not



MAC trailer
check sum









(4) eopn_ses (A ← B)



<<Parameter Example>>










Error Code
E_OK or not



authMode
0x02 (ISSUER)



authAlgorithm
0x03  (RSA:  on-line







authentication for confirming CRL)










sessionAlgorithm
0x02 (3DES)










authData
1. the eTP public key certificate for







B









2. a value obtained by RSA encryption







of the 64-bit random number Rb with the public key for A










MAC trailer
check sum









<<Action by A side>>



Confirm the validity of the eTP certificate for B



Confirm the expiration date of the eTP certificate



Confirm the CRL list → to (5)



Confirm the signature on the eTP certificate by use







of the public key of the CA station









Retrieve the public key for B out of the certificate



Retrieve the random number Rb received in authData2.







after decryption with the secret key for A









Assign the retrieved random number Rb as part of the







secret key of 3DES for session encryption









Create digital signature for the retrieved random







number Rb by use of the secret key for A









(5) ecfm_cer (A → CRL Rep.Server)



<<Parameter Example>>










checkMode
0x00



certificateId
***********



MAC trailer
check sum









(6) ecfm_cer (A ← CRL Rep.Server)



<<Parameter Example>>










Error Code
E_OK or not



MAC trailer
check sum









(7) ecfm_ses (A → B)



<<Parameter Example>>










authData
1. a value obtained by RSA encryption







of the 64-bit Ra with the public key for B, and









2. a value obtained by RSA encryption







with the secret key for A, of the digital signature by the


secret key for A for the random number received from B,









are appended and transmitted










MAC trailer
check sum









<<Action by B side>>



Retrieve Ra and the digital signature obtained by







decrypting the data received in authData with the public key


for A









Assign the retrieved Ra as part of the secret key of







3DES for session encryption









Create digital signature for the retrieved Ra by use







of the secret key for B









Confirm the retrieved signature with the public key







for A









(8) ecfm_ses (Caller ← Callee)



<<Parameter Example>>










Error Code
E_OK or not



authData
the digital signature for the







random number Ra received from A according to the secret key


for B










MAC trailer
check sum









<<Action by A side>>



Confirm the received signature by use of the public







key of B









(supplementary) Details of authentication algorithms



Details of algorithms



Keys for encryption and authentication



Secret key sk= d



Public key pk= (e, n)



Encryption algorithm for a normal sentence m



E_pk(m) = m{circumflex over ( )}e mod n



Decryption algorithm for an encrypted sentence c



D_sk(C) = c{circumflex over ( )}d mod n



Signature creation algorithm for a message M



f_sk(M) = (h(M)){circumflex over ( )}d mod n



Here, h(M) is a hash function such as MD5 or SHA-1



Verification algorithm for signature s to the message







M









g_pk(M,s)= if(h(M)==s{circumflex over ( )}e mod n) then 1 else 0 endif



List of information owned by the respective nodes



CA station (C)



Public key for CA pk_c (130B)



Secret key for CA sk_c (128B)



Caller (A) side










Public key for A
pk_a (130B)



Secret key for A
sk_a (128B)



Certificate for A
cer_a (304B)









Signature of CA station in certificate for A  s_(a,c)







(128B)










Public key for CA station
pk_c (130B)









Random number Ra created during mutual authentication







(8B)










Callee (B) side




Public key for B
pk_b (130B)



Secret key for B
sk_b (128B)



Certificate for B
cer_b (304B)









Signature of CA station in certificate for B  s_(b,c)







(128B)










Public key for CA station
pk_c (130B)









Random number Rb created during mutual authentication







(8B)









Details of authentication algorithms on the RSA basis







by the eTP









eopn_ses: (A) → (B)



[Transmitted information]  (cer_a)  *total 304







bytes










Certificate for A
cer_a:




including  PK_a  and







s_(a,c)









[Action by B]



Confirmation of the expiration date of the certificate



Confirmation of the signature of the certificate









g_(pk_c)(cer_a, s_(a,c))









Confirmation of the CRL of the certificate



eopn_ses: (A) ← (B)










[Transmitted information]
(cer_b | rb)  *total







432 bytes










Certificate for B
cer_b:




including  pk_b  and







s_(b,c)










Random number (Rb) created by B
rb=E_(pk_a)(Rb)









[Action by A]



Confirmation of the expiration date of the certificate



Confirmation of the signature of the certificate









g_(pk_c)(cer_b, s_(b,c))









Confirmation of the CRL of the certificate










Decryption of the message (rb)
Rb′=D_(sk_a)(rb)









Creation of the signature for the received random number








(Rb′)
srb=f_(sk_a)(Rb′)









ecfm_ses: (A) → (B)










[Transmitted information]
(x_a1 | x_a2)  *total







256 bytes









The random number (Ra) and the signature (srb) created








by A
x_a1=E_(pk_b)(Ra)



x_a2=E_(pk_b)(srb)









[Action by B]



Decryption of the message (x_a)









Ra′=D_(sk_b)(x_a1)



srb′=D_(sk_b)(x_a2)









Verification of the received signature (srb)









g_(pk_a)(Rb,srb′)









Creation of the signature for the received random number








(Ra′)
sra=f_(sk_b)(Ra′)









ecfm_ses: (A) ← (B)










[Transmitted information]
(x_b) *total 128







bytes










The signature (sra) created by B
x_b=E_(pk_a)(sra)









[Action by A]










Decryption of the message (x_b)
sra′=D_(sk_a)(x_b)









Verification of the received signature (sra)









g_(pk_b)(Ra,sra′)









In this way, a pair of (Ra,Rb) are left to both A and







B, and a session common key is created therefrom by a certain


algorithm.









Setting of encryption communication parameters after







establishing the session










Example)
a 3DES case









3DES encryption based on the E-D-E mode using Ra-Rb-Ra







is performed. In this event, the value stored in the sid column


of the outbound packet of “eopn_ses ( )” is used as the session


ID. In other words, the session id, which was specified by


the caller who was first called, is used as it is.










Example)
a DES case










DES encryption is performed by use of Rb as the key.


In this event, Ra is used as the session ID.


▪ Authentication in the Owner Mode (Authmode=OWNER) According to the Secret Key Encryption


An example of an operation for establishing the session according to the 2-path mode owner authentication using the “eopn_ses” and “ecfm_ses” will be described below. This mode basically applies the following method. Specifically, the present chip retains a password depending on the owner, and authentication is performed by use of the password. When authentication is started, the present chip creates a random number and transmits the random number to the R/W. Thereafter, the R/W side uses the random number to encrypt the password, and then transmits the password to the present chip.









TABLE 37









embedded image














(1) eopn_ses (A → B)



The random number Ra is created, then,



ID_A; and



Ra



are transmitted to B.



(2) eopn_ses (A ← B)



The random number Rb is created, then,



X1= E1_Key(ID_A | Ra); and



X2= E2_P(Pb)



are calculated and returned to A.



(3) ecfm_ses (A → B)



a. Decryption is performed by D1_Key(X1) and Ra is







confirmed.









(Authentication is performed to qualify the present







chip).









b. R_B= D2_P(X2) is calculated and X2 is decrypted to







retrieve Rb.









c. R′b is created by modifying R_B by means of partial







bit inversion, then,









Y= E3_P(R′b)



is created and trasmitted to B.



(4) ecfm_ses (A ← B)



Decryption is performed by D3_p(Y) and R′b is confirmed.



(Authentication is performed to confirm that the







qualified owner is operating through the present


chip-incorporated service client)


.









The session ID (sid) is created from Ra and is returned







to A









Here, “|” means to append and join bit sequences. For







example, when A= “010010011” and B= “00100101”, then,


(A | B)= “01001001100100101”









ID_A and ID_B represent the present chip IDs (128 bits)







of the present chip-incorporated service client (A) and the


present chip (B), respectively.









When E2 is assumed to be the operation of DES, the







E3 is an operation in which an argument is bit-inverted and


then subjected to DES.









Closing of the session



Close Session



[Feature outline]



The session is closed.



[Function expression]



ERR ecls_ses (SID sid, ETRONID destId, ETRONID srcID,









TIME t, UH len, UH*rlen);










destId
the chip ID of the present chip being







an object of a command









(Destination present chip ID)










srcId
the present chip ID of the present







chip-incorporated service client calling the command









(Source present chip ID)










t
time



len
an outbound packet length (an octet







number)










rlen
a return packet length (an octet







number)









[Return value]



<= 0 Error code










[Outbound Packet Format]
















TABLE 38





D0
D1
D2
D3
D4
D5
D6
D7






















SID
Serial
Command ID

Len

Reserved




No.
(0x03)

(12)








t





















TABLE 39







Field Name
Data Length
Meaning









Command ID
2(=0x03)
Command Code



len
2(=12)
Packet Length (octet





number)



t
4
Time










[Return Packet Format]


















TABLE 40







D0
D1
D2
D3
D4
D5
D6
D7
























SID
Serial
Error Code

Len

Reserved




No.


(8)





















TABLE 41







Field Name
Data Length
Meaning









Error Code
2
Error Code(, Session ID)



rlen
2
Return Packet Length (octet





number)










[Access Control]


This command is always usable by the present chip-incorporated service client which constructed the session.

















[Detailed feature]



The established session is closed.









10.2 Transaction management command group









Construction of a transaction session



Open/Confirm Transaction



[Feature outline]



A transaction session is constructed for the present









chip. The “eopn_tra” is used in the case of using



authentication when 1 path is satisfactory, and the “eopn_tra”



and “ecnf_tra” are used in this order in the case of using



authentication which requires 2 paths.









* Basic operations are similar to “eopn_ses” and









“ecfm_ses”. However, the difference is roll-back capability



regarding the subsequent processing.









[Function expression]



ERR eopn_tra (ETRONID destId, ETRONID srcId, TIME t,









UB authMode, UB authAlgorithm,



UB sessionAlgorithm, UH len,



UB*authData, UH*rlen,



UB**rAuthData);










destId
the chip ID of the present chip being









an object of a command











(Destination present chip ID)



srcId
the present chip of the present









chip-incorporated service client calling the command











(Source present chip ID)



t
time



authMode
specify the authentication mode



authAlgorithm
the specifier of the algorithm used









for authentication










sessionAlgorithm
the specifier of the encryption









algorithm in a session after authentication










len
an outbound packet length (an octet









number)










authData
data to be passed from the present









chip-incorporated service client to the present chip for



authentication (len-16)










rlen
a return packet length (an octet









number)










rAuthData
data returned from the present chip









to the present chip-incorporated service client for



authentication (rlen-8)









[Parameter values]



refer to “eopn_ses”



[Return values]



in the 1-path authentication



> 0 Session ID (upon normal closing)



< 0 Error code



in the 2-path authentication



<= 0 Error code










[Outbound Packet Format]
















TABLE 42





D0
D1
D2
D3
D4
D5
D6
D7



















Reserved
Serial
Command
Len
Reserved



(0x01)
ID




(0x04)











t
auth
auth
ses
auth



Mode
Algorithm
Algorithm
Data







authData


. . .


authData


















TABLE 43





Field Name
Data Length
Meaning







Command ID
2(=0x04)
Command Code


len
2
Packet Length (octet number)


t
4
Time


authmode
1
Authentication Mode


authAlgorithm
1
Authentication Algorithm




Specifier


sessionAlgorithm
1
Session Encryption algorithm




Specifier


authData
len-16
Data for Authentication









[Return Packet Format]
















TABLE 44





D0
D1
D2
D3
D4
D5
D6
D7



















Reserved
Serial
Error
Rlen
Reserved



(0x01)
Code
(octet)







rAuthData


. . .


rAuthData




















TABLE 45









Field Name
Data Length
Meaning







Error Code
2
Error Code (, Session ID (in the





1-path case))



rlen
2
Return Packet Length (octet





number)



rAuthData
rlen-8
Data for Authentication













[Function expression]



ERR ecnf_tra (ETRONID destId, ETRONID srcId, TIME t,











UH len, UB*authData,




UH*rlen, UB**rAuthData);



destId
the chip ID of the present chip being










an object of a command





(Destination present chip ID)










srcId
the present chip of the present









chip-incorporated service client calling the command











(Source present chip ID)



t
time



len
an outbound packet length (an octet









number)










authData
data to be passed from the present









chip-incorporated service client to the present chip for



authentication (len-12)










rlen
a return packet length (an octet









number)










rAuthData
data returned from the present chip









to the present chip-incorporated service client for



authentication (rlen-8)









[Return values]



> 0 Session ID (upon normal closing)



< 0 Error code










[Outbound Packet Format]
















TABLE 46





D0
D1
D2
D3
D4
D5
D6
D7



















Reserved
Serial
Command ID
len
Reserved



(0x02)
(0x05)
(octet)








t
authData







. . .


authData




















TABLE 47







Field Name
Data Length
Meaning









Command ID
2(=0x02)
Command Code



len
2
Packet Length (octet number)



t
4
Time



authData
len-12
Data for Authentication










[Return Packet Format]
















TABLE 48





D0
D1
D2
D3
D4
D5
D6
D7



















Reserved
Serial
Error Code
rlen
Reserved



(0x02)

(octet)







rAuthData


. . .


rAuthData




















TABLE 49







Field Name
Data Length
Meaning









Error Code
2
Error Code(, Session ID)



rlen
2
Return Packet Length (octet





number)



rAuthData
rlen-8
Data for Authentication










[Detailed Feature]


Similar to “eopn_ses” and “ecfm_ses” Concerning authentication and encryption


However, only the following present chip APIs can be issued after establishment of the transaction. An error will occur if any other API is issued.


• Create File ecre_fil


• Delete File edel_fil


• Create Record ecre_rec


• Delete Record edel_rec


• Update Record eupd_rec


It must be guaranteed that the command sequences issued herein are reflected when “econ_tra” is issued, and that the command sequences are completely rolled back either in the event of issuance of “eabo_tra” or in the event of timeout after passage of a certain time period without issuance of “ecom_tra”.

















Closing of the transaction



Commit/Abort Transaction



[Feature outline]



The transaction is closed. “ecom_tra” is used for the









closure by committing, and “eabo_tar” is used for the closure



by aborting.









[Function expression]



ERR ecom_tra (SID sid, ETRONID destId,











ETRONID srcID, TIME t, UH len,




UH*rlen);



destId
the chip ID of the present chip being










an object of a command





(Destination present chip ID)










srcId
the present chip ID of the present









chip-incorporated service client calling the command











(Source present chip ID)



t
time



len
an outbound packet length (an octet









number)










rlen
a return packet length (an octet









number)









[Return value]



<= 0 Error code










[Outbound Packet Format]
















TABLE 50





D0
D1
D2
D3
D4
D5
D6
D7



















Reserved
Serial
Command ID
len
Reserved



No.
(0x06)
(12)








t





















TABLE 51







Field Name
Data Length
Meaning









Command ID
2(=0x06)
Command Code



len
2(0x0C)
Packet Length (octet





number)



t
4
Time










[Return Packet Format]


















TABLE 52







D0
D1
D2
D3
D4
D5
D6
D7

























SID
Serial
Error Code

rlen

Reserved





No.


(8)





















TABLE 53









Field Name
Data Length
Meaning







Error Code
2
Error Code(, Session ID)



rlen
2 (0x08)
Return Packet Length (octet





number)













[Function expression]



ERR eabo_tra (SID sid, ETRONID destId,











ETRONID srcID, TIME t, UH len,




UH*rlen);



destId
the chip ID of the present chip being










an object of a command





(Destination present chip ID)










srcId
the present chip ID of the present









chip-incorporated service client calling the command











(Source present chip ID)



t
time



len
an outbound packet length (an octet









number)










rlen
a return packet length (an octet









number)









[Return value]



<= 0 Error code










[Outbound Packet Format]
















TABLE 54





D0
D1
D2
D3
D4
D5
D6
D7






















SID
Serial
Command ID

len

Reserved




No.
(0x07)

(12)








t





















TABLE 55







Field Name
Data Length
Meaning









Command ID
2(=0x07)
Command Code



len
2(0x0C)
Packet Length (octet number)



t
4
Time










[Return Packet Format]


















TABLE 56







D0
D1
D2
D3
D4
D5
D6
D7

























SID
Serial
Error Code

rlen

Reserved





No.


(8)





















TABLE 57







Field Name
Data Length
Meaning









Error Code
2
Error Code(, Session ID)



rlen
2
Return Packet Length (octet





number)










[Access Control]


This command is always usable by the present chip-incorporated service client which constructed the session.


[Detailed Feature]


• The established transaction is committed or aborted.


• When the transaction is committed, all the commands issued between “ecfm_tra” and “ecom_tra” are reflected to a nonvolatile memory of the present chip.


• When the transaction is aborted or when no commitment arrives after waiting for a certain time period, then all the commands issued between “ecfm_tra” and “ecom_tra” are reflected to a nonvolatile memory of the present chip.


10.3 File Management Command Group

















[Restricted items for implementation]



A file in this system has the following restrictions.










Upper limit number of usable files
 50










File ID
0 to 49



Upper limit of a file size
256 (octets)









Creation of a file



Create File



[Feature outline]



A (vacant) file is created.



[Function expression]



ERR ecre_fil (SID sid, ETRONID destId, ETRONID srcId,











TIME t, UH len, FID fid, UH blk,




UH cnt, FACL facl, UH*rlen);



sid
session ID



destId
the chip ID of the present chip being









an object of a command











(Destination present chip ID)



srcId
the present chip ID of the present









chip-incorporated service client calling the command











(Source present chip ID)



t
time



fid
the file ID to be created



facl
an initial value of the file access









control list










blk
a starting address of the file (which









is fixed to “1” herein)










cnt
a file length (an octet number)



len
an outbound packet length (an octet









number)










rlen
a return packet length (an octet









number)









[Return values]



> 0 Created File ID (upon normal closing)



< 0 Error code










[Outbound Packet Format]
















TABLE 58





D0
D1
D2
D3
D4
D5
D6
D7



















SID
Serial
Command ID
len
Reserved



No.
(0x21)
(24)









t
fid
Reserved










facl
Reserved
blk
cnt




















TABLE 59







Field Name
Data Length
Meaning









Command ID
2(=0x21)
Command Code



len
2(=0x18)
Packet Length (octet number)



t
4
Time



fid
2
File ID



facl
2
Initial Access Control List



blk
2
0x0000



cnt
File ID
File Length (octet)










[Return Packet Format]
















TABLE 60





D0
D1
D2
D3
D4
D5
D6
D7



















SID
Serial
Error Code
rlen
Reserved



No.

(8)


















TABLE 61





Field Name
Data Length
Meaning







Error Code
2
File ID, Error Code


rlen
2(=0x08)
Return Packet Length (octet number)









[Access Control]


• Always usable in the issuer mode (the present chip ID of the ISSUER of a parent folder is equals to the present chip ID of the SC which constructed the Session)


• Usable in the owner mode and the other mode if permitted in the access control list of the parent folder

















[Detail of operation]



A file having the file ID specified by fid is created.









An error occurs when the specified fid is already in use.









Deletion of the file



Delete File



[Feature outline]



The file is deleted.



[Function expression]



ERR edel_fil (SID sid, ETRONID destId, ETRONID srcId,











TIME t, UH len, FID fid, UH*rlen);



sid
the session ID



destId
the chip ID of the present chip being









an object of a command











(Destination present chip ID)



srcId
the present chip ID of the present









chip-incorporated service client calling the command











(Source present chip ID)



t
time



fid
the file ID to be deleted



len
an outbound packet length (an octet









number)










rlen
a return packet length (an octet









number)









[Return values]



<= 0  Error code










[Outbound Packet Format]
















TABLE 62





D0
D1
D2
D3
D4
D5
D6
D7



















SID
Serial
Command ID
len
Reserved



No.
(0x22)
(16)









t
fid
Reserved




















TABLE 63







Field Name
Data Length
Meaning









Command ID
2(=0x22)
Command Code



len
2(=0x10)
Packet Length (octet number)



t
4
Time



fid
2
File ID to be deleted










[Return Packet Format]
















TABLE 64





D0
D1
D2
D3
D4
D5
D6
D7



















SID
Serial
Error Code
rlen
Reserved



No.

(8)




















TABLE 65







Field Name
Data Length
Meaning









Error Code
2
File ID, Error Code



rlen
2(=0x08)
Return Packet Length (octet





number)










[Access Control]


• The following conditions must be satisfied to execute “edel_fil”. Attention is needed herein because two types of access control lists are involved.


(CASE 1) Case of the Owner Authentication Access


1. It must be permitted that the route folder may be subjected to the command “edel_fil” as the “owner access”. In other words, “ACL2 of the route folder==1” must be satisfied.


2.It must be permitted that the object file may be subjected to the command “edel_fil” as the “owner access”. In other words, “ACL8 of the file==1” must be satisfied.


(CASE 2) Case of the Issuer Authentication Access


1. It must be permitted that the route folder may be subjected to the command “edel_fil” as the “other access”. In other words, “ACL3 of the route folder==1” must be satisfied.


2. It does not depend on ACL on the object file side (always OK).


(CASE 3) Case of the Other Access


1. It must be permitted that the route folder may be subjected to the command “edel_fil” as the “other access”. In other words, “ACL3 of the route folder==1” must be satisfied.


2. It must be permitted that the object file may be subjected to the command “edel_fil” as the “other access”. In other words, “ACL9 of the file==1” must be satisfied.


[Detail of Operation]


The file having the file ID specified by fid is deleted. A control block specifying a physical position of the file is cleared and the nonvolatile memory is released, and in addition, all data in the memory is set to “0” or “1”.


Request for Transferring a File


Request File Transfer


[Feature Outline]


The contents of the file are transferred to other present chip-incorporated contents holder.

















[Function expression]



ERR atra_fil (SID sid, ETRONID destId, ETRONID srcID,









TIME t, UH len, FID fid,



ETRONID targetID, Fid targetFid,



UH*rlen);










sid
the session ID



destId
the chip ID of the present chip being









an object of a command











(Destination present chip ID)



srcId
the present chip ID of the present









chip-incorporated service client calling the command











(Source present chip ID)



t
time



fid
the file ID to be created



targetId
the present chip ID of a transfer









destination of the file










targetFid
the file ID of the file to be









transferred at the transfer destination










len
an outbound packet length (an octet









number)










rlen
a return packet length (an octet









number)









[Return values]



> 0  Data length actually updated (normal closing)



< 0  Error code










[Packet Format]
















TABLE 66





D0
D1
D2
D3
D4
D5
D6
D7



















SID
Serial
Command ID
len
Reserved



No.
(0x23)
(36)









t
fid
Reserved







targetId


targetId









target Fid
Reserved


















TABLE 67





Field Name
Data Length
Meaning







Command ID
2(=0x23)
Command Code


len
2(=0x24)
Packet Length (octet number)


t
 4
Time


Fid
 2
File ID


targetId
16
The Present Chip ID of




Destination to which File is




transferred


targetFidId
 2
File ID of Transfer Destination









[Return Packet Format]
















TABLE 68





D0
D1
D2
D3
D4
D5
D6
D7



















SID
Serial
Error Code
rlen
Reserved



No.

(8)




















TABLE 69







Field Name
Data Length
Meaning









Error Code
2
File ID, Error Code



rlen
2(=0x08)
Return Packet Length (octet





number)










[Detail of Operation]


A chip in which this system call occurred performs a series of processing described below.


The following present chip API sequences are issued to the transfer destination chip.


















Establish Transaction Session
eopn_tra




ecfm_tra



Create File
ecre_fil



Create Record
ecre_rec



.
.



.
.



.
.



Commit Transaction
ecom_tra










The transaction is aborted if any abnormality is detected in mid-course. Meanwhile, the commands in the session are not reflected unless the commit command arrives normally.

















Encrypting and decrypting of the file data



Encrypting/Decrypting File



[Feature outline]



The file storing the encrypted contents is decrypted.



[Function expression]



ERR eenc_fil (SID sid, ETRONID destId, ETRONID srclD,









TIME t, UB len, FID srcFid,



FID destFid, FID keyed, UB*rlen,



UW*currentMoney, UW*payedMoney);









ERR ednc_fil (SID sid, ETRONID destId, ETRONID srcId,









TIME t, UB len, FID srcFid,



FID destFid, FID keyed, UB*rlen,



UW*currentMoney, UW*payedMoney);










sid
the session ID



destId
the chip ID of the present chip being







an object of a command









(Destination present chip ID)










srcId
the present chip ID of the present







chip-incorporated service client calling the command









(Source present chip ID)










t
time



srcFid
the file ID where the encrypted







contents are stored










destFid
the file ID storing the decrypted







contents










keyId
the file ID storing the key entity







to be used for decryption processing










currentMoney
the balance of money left in the key







entity










payedMoney
the amount of money settled this time



len
an outbound packet length (an octet







number)










rlen
a return packet length (an octet







number)









[Return value]



< =0 Error code



[Packet format]
























TABLE 70





D0
D1
D2
D3
D4
D5
D6
D7



















SID
Serial
Command ID
len
Reserved



No.
(0x34,35)
(84 +





signature





length)









t
srcFid
Reserved










destFid
Reserved
keyed
Reserved




















TABLE 71







Field Name
Data Length
Meaning









Command ID
2(0x34, 35)
Command Code



len
2
Packet Length (octet number)



t
4
Time



srcFid
1
Original File ID



destFidl
1
Output Destination File ID



keyed
1
Key Entity ID










[Return Packet Format]
















TABLE 72





D0
D1
D2
D3
D4
D5
D6
D7



















SID
Serial
Error Code
rlen
Reserved



No.

(16)








currentMoney
payedMoney


















TABLE 73





Field Name
Data Length
Meaning







Error Code
2
File ID, Error Code


rlen
2
Return Packet Length (octet




number)


currentMoney
4
Balnace of Money in Key Entity


payedMoney
4
Amount of MoneySettled This Time









[Detailed Feature]


▪ Operaton of edic_fil( )










TABLE 74





Encrypted Contents
Decrypted Contents

















embedded image











▪ Operation of eenc_fil( )










TABLE 75





Original Contents
Encrypted Contents

















embedded image














Encryption of the contents is carried out with the







“Original KEY”.









Encryption of the KEY is carried out with the specified







key of the key entity.









Signature acts on the data after completion of







encryption.









A value obtained by repeating the Original KEY for







four times is used as the 64-bit secret key K in HMAC with


MD5.









Changing the access control list of the file



Update File Mode



[Feature outline]



The access control list of the file is changed.



[Function expression]



ERR eupd_fim (SID sid, ETRONID destId, ETRONID srcId,









TIMEt, UHlen, FIDfid, FILACLfilacl,



UH*rlen);










sid
the session ID



destId
the chip ID of the present chip being







an object of a command









(Destination present chip ID)










srcId
the present chip ID of the present







chip-incorporated service client calling the command









(Source present chip ID)










t
time



fid
the file ID of the object of change







in the access control list










filacl
update data of the file access control







list










callerId
the present chip Id of the present







chip-incorporated service client calling the command










len
an outbound packet length (an octet







number)










rlen
a return packet length (an octet







number)









[Return value]



<= 0 Error code










[Outbound Packet Format]
















TABLE 76





D0
D1
D2
D3
D4
D5
D6
D7



















SID
Serial
Command ID
len
Reserved



No.
(0x27)
(20)









t
fid
Reserved









filacl
Reserved




















TABLE 77







Field Name
Data Length
Meaning









Command ID
2(=0x27)
Command Code



len
2(=0x14)
Packet Length (octet number)



t
4
Time



fid
2
File ID



filacl
2
File Access Control List










[Return Packet Format]
















TABLE 78





D0
D1
D2
D3
D4
D5
D6
D7



















SID
Serial
Error Code
rlen
Reserved



No.

(8)




















TABLE 79







Field Name
Data Length
Meaning









Error Code
2
File ID, Error Code



rlen
2(=0x08)
Return Packet Length (octet





number)










[Access Control]


• Always usable in the issuer mode (the present chip ID of the ISSUER of a parent folder is equals to the present chip ID of the SC which constructed the Session) with respect to the object file


• Usable in the owner mode and the other mode if permitted in the access conrol list of the object file


[Feature Outline]


The access control list of the file is changed to a specified value.

















Obtainment of a list of defined files



List File_ID



[Feature outline]



A list of the defined file is obtained.



[Function expression]



ERR elst_fid (SID sid, ETRONID destId, ETRONID srcId,









TIME t, UH len, FID fid, UH*rlen,



UB**fileCtrlBlk);










sid
the session ID



destId
the chip ID of the present chip being









an object of a command









(Destination present chip ID)










srcId
the present chip ID of the present









chip-incorporated service client calling the command









(Source present chip ID)










t
time



fid
the object file ID



fileCtrlBlk
a control block of the object file



len
an outbound packet length (an octet









number)










rlen
a return packet length (an octet









number)









[Return value]



<= 0 Error code



[Outbound packet format]
























TABLE 80





D0
D1
D2
D3
D4
D5
D6
D7



















SID
Serial
Command ID
len
Reserved



No.
(0x2F)
(16)









t
fid
Reserved




















TABLE 81







Field Name
Data Length
Meaning









Command ID
2(=0x2F)
Command Code



len
2(16)
Packet Length (octet number)



t
4
Time



fid
2
File ID










[Return Packet Format]
















TABLE 82





D0
D1
D2
D3
D4
D5
D6
D7



















SID
Serial
Error Code
rlen
Reserved



No.







FileCtrlBlk


. . .


FileCtrlBlk




















TABLE 83







Field Name
Data Length
Meaning









Error Code
2
File ID, Error Code



rlen
2
Return Packet Length (octet





number)



fileCtrlBlk
*r1en-8
Control Block of Object File










[Access Control]


• Always usable in the issuer mode (the present chip ID of the ISSUER of a parent folder is equals to the present chip ID of the SC which constructed the Session) with respect to the object file


• Usable in the owner mode and the other mode if permitted in the access control list of the object file


10.4 Record Management Command Group

















Updating the record data



Update Record



[Feature outline]



The contents of a record are changed.



[Function expression]



ERR eupd_rec(SID sid, ETRONID destId, ETRONID srcId,









TIME t, UH len, FID fid, UH blk,



UH cnt, UB*data, UH*rlen);










sid
the session ID



destId
the chip ID of the present chip being









an object of a command









(Destination present chip ID)










srcId
the present chip ID of the present









chip-incorporated service client calling the command









(Source present chip ID)










t
time



fid
the file ID to be changed



blk
a record number to be changed (fixed









to 1 herein)










cnt
a record data length to be changed









(an octet number)










data
the contents of data to be changed









(cnt octet)










len
an outbound packet length (an octet









number)










rlen
a return packet length (an octet









number)









[Return values]



> 0 Data length actually updated (normal closing)



< 0 Error code










[Packet Format]
















TABLE 84





D0
D1
D2
D3
D4
D5
D6
D7



















SID
Serial
Command ID
len
Reserved



No.
(0x33)









t
fid
Reserved









blk
cnt
data







data


. . .


data




















TABLE 85







Field Name
Data Length
Meaning









Command ID
2(0x33)
Command Code



len
2
Packet Length (octet number)



t
4
Time



fid
2
File ID



blk
2
Changed Record ID (fixed to 1





herein)



cnt
2
Data Length (octet number)



data
Cnt
Data to be Written










[Return Packet Format]
















TABLE 86





D0
D1
D2
D3
D4
D5
D6
D7



















SID
Serial
Error Code
rlen
Reserved



No.

(8)




















TABLE 87







Field Name
Data Length
Meaning









Error Code
2
File ID, Error Code



rlen
2
Return Packet Length (octet





number)










[Access Control]


• Always usable in the issuer mode (the present chip ID of the ISSUER of a parent folder is equals to the present chip ID of the SC which constructed the Session) with respect to the object file


• Usable in the owner mode and the other mode if permitted in the access control list of the object record


[Detail of Operation]


A request for writing data of cnt octets from the beginning in a blk record is issued. An upper limit may be provided to cnt depending on hardware conditions. The actually written octet number is returned to rCnt.

















Reading the data out of the record



Read Record



[Feature outline]



The contents of the record is read out.



[Function expression]



ERR erea_rec (SID sid, ETRONID destId, ETRONID srcId,









TIME t, UH len, FID fid, UH blk,



UH cnt, UH*rlen, UH*rCnt, UB*rData);










sid
the session ID



destId
the chip ID of the present chip being







an object of a command









(Destination present chip ID)










srcId
the present chip ID of the present









chip-incorporated service client calling the command









(Source present chip ID)










t
time



fid
the file ID to be read out



blk
the record ID to be read out



cnt
a data length to be read out (an octet







number)










rCnt
a length of the data actually read







out (an octet number)










rData
the read-out data (rCnt octet)



len
an outbound packet length (an octet







number)










rlen
a return packet length (an octet







number)









[Return value]



<= 0 Error code



[Packet format]
























TABLE 88





D0
D1
D2
D3
D4
D5
D6
D7



















SID
Serial
Command ID
len
Reserved



No.
(0x33)









t
fid
Reserved









blk
cnt




















TABLE 89







Field Name
Data Length
Meaning









Command ID
2(0x34)
Command Code



len
2
Packet Length (octet number)



t
4
Time



fid
2
File ID



blk
2
Record ID



cnt
2
Data Length (octet)










[Return Packet Format]
















TABLE 90





D0
D1
D2
D3
D4
D5
D6
D7



















SID
Serial
Error Code
rlen
Reserved



No.

(8)









rCnt
Reserved
rData







rData


. . .


rData




















TABLE 91







Field Name
Data Length
Meaning









Error Code
2
Read Out Data Length (octet





number), Error Code



rCnt
2
Data Length Actually Read Out





(octet number)



rData
rCnt
Read Out Data










[Access Control]


• Always usable in the issuer mode (the present chip ID of the ISSUER of a parent folder is equals to the present chip ID of the SC which constructed the Session) with respect to the object record


• Usable in the owner mode and the other mode if permitted in the access control list of the object record


[Detail of Operation]


A request for reading data of cnt octets from the beginning in the blk record is issued. An upper limit may be provided to cnt depending on hardware conditions. The octet number actually read is returned to rCnt.


The command is normally issued and executed when the session is established. However, it is also possible to call the command with sid=0 by the present chip-incorporated service client which does not establish the session, by specialization of “touch & go” applications. In this case, execution of the command succeeds when reading out with the other authority is permitted in the access control list of the record.


10.5 Key Entity Management Command Group


[Restricted Items for Implementation]


A key entity in this system has the following restrictions.


















Upper limit number of usable files
10



Key entity ID
0 to 9









Upper limit of a key entity size 256 (octets)



Creation of a key entity



Create Key Object



[Feature outline]



[Function expression]



ERR ecre_key (SID sid, ETRONID destId, ETRONID srcId,









TIME t, UH len, UH kid,



UH keyAlgorithm, UB*Key, UH bankId,



KEYACL acl, UL initMoney Val,



UH*rlen);










sid
the session ID



destId
the chip ID of the present chip being







an object of a command









(Destination present chip ID)










srcId
the present chip ID of the present







chip-incorporated service client calling the command









(Source present chip ID)










t
time



kid
the key entity ID



KeyAlgorithm
the encryption algorithm specifier



key
an encryption key



bankID
a bank ID



initMoney Val
an initial amount of money



acl
an initial access control list value







(unused in the first version)










len
an outbound packet length (an octet







number)










rlen
a return packet length (an octet







number)









[Return value]



<= 0 Error code]



[Packet format]
























TABLE 92





D0
D1
D2
D3
D4
D5
D6
D7



















SID
Serial
Command ID
len
Reserved



No.
(0x61)









t
kid
keyAlgorithm







KEY (1)


KEY (2)









BankID
acl
initMoney Val




















TABLE 93







Field Name
Data Length
Meaning









Command ID
 2(0x61)
Command Code



len
 2
Packet Length (octet number)



t
 4
Time



kid
 2
Key Entity ID



keyAlgorithm
 2
Encryption Algorithm





Specifier



key
16
Encryption Key



bankID
 2
Bank ID



acl
 2
Initial Access Control List





Value (unused in the first





version)



initMoneyVal
 4
Initial Money Amount










[Return Packet Format]


















TABLE 94







D0
D1
D2
D3
D4
D5
D6
D7

























SID
Serial
Error Code

rlen

Reserved





No.


(8)





















TABLE 95







Field Name
Data Length
Meaning









Error Code
2
Error Code



rlen
2
Return Packet Length (octet





number)

























Deletion of the key entity



Delete Key Object



[Feature outline]



[Function expression]



ERR edel_key (SID sid, ETRONID destId, ETRONID srcId,









TIME t, UB len, UH kid, UH*bankId,



UL*remainingMoney, UH*rsize,



UB**bookList, UH*rlen);










sid
the session ID



destId
the chip ID of the present chip being









an object of a command









(Destination present chip ID)










srcId
the present chip ID of the present









chip-incorporated service client calling the command









(Source present chip ID)










t
time



kid
the key entity ID to be deleted



bankID
the bank ID



remainingMoney
a remaining amount of money



rsize
a length of Distribution List



bookList
Distribution List



len
an outbound packet length (an octet









number)










rlen
a return packet length (an octet









number)









[Return value]



<= 0  Error code



[Packet format]
























TABLE 96





D0
D1
D2
D3
D4
D5
D6
D7



















SID
Serial
Command ID
len
Reserved



No.
(0x62)









t
kid
Reserved




















TABLE 97







Field Name
Data Length
Meaning









Command ID
2(0x62)
Command Code



len
2
Packet Length (octet number)



t
4
Time



kid
2
Key Entity ID










[Return Packet Format]
















TABLE 98





D0
D1
D2
D3
D4
D5
D6
D7



















SID
Serial
Error Code
rlen
Reserved



No.

(16)









BANK ID
Reserved
CurrentMoney




Balance after Payment




















TABLE 99







Field Name
Data Length
Meaning









Error Code
2
Error Code



rlen
2
Return Packet Length (octet





number)



bankId
2
Bank ID



currentMoney
4
Current Money Balance

























Updating the key entity



Update Key Object



[Feature outline]



An amount of money in the specified key entity is updated.



[Function expression]



ERR eupd_key (SID sid, ETRONID destId, ETRONID srcId,









TIME t, UH len, UH kid, UL addMoney,



UH*rlen, UL*currentMoney);










sid
the session ID



destId
the chip ID of the present chip being









an object of a command









(Destination present chip ID)










srcId
the present chip ID of the present









chip-incorporated service client calling the command









(Source present chip ID)










t
time



kid
the key entity ID to be updated



addMoney
the amount of money to be added



currentMoney
the amount of money after addition



len
an outbound packet length (an octet









number)










rlen
a return packet length (an octet









number)









[Return value]



<= 0  Error code



[Packet format]
























TABLE 100





D0
D1
D2
D3
D4
D5
D6
D7



















SID
Serial
Command ID
len
Reserved



No.
(0x63)









t
kid
Reserved


addMoney


















TABLE 101





Field Name
Data Length
Meaning







Command ID
2(0x63)
Command Code


len
2
Packet Length (octet number)


T
4
Time


kid
2
Key Entity ID to be Updated


addMoney
4
Amount of Money to be Added









[Return Packet Format]
















TABLE 102





D0
D1
D2
D3
D4
D5
D6
D7



















SID
Serial
Error Code
rlen
Reserved



No.

(12)








currentMoney



Balance after Addition


















TABLE 103





Field Name
Data Length
Meaning







Error Code
2
Error Code


rlen
2(12)
Return Packet Length (octet




number)


currentMoney
2
Amount of Money after Addition
























Reading information in the key entity



Read Key Object



[Feature outline]



Information on the amount of money is read out of the









specified key entity.









[Function expression]



ERR erea_key (SID sid, ETRONID destId, ETRONID srcId,











TIME t, UH len, UH kid, UH*rlen,




UL*currentMoney);



sid
the session ID



destId
the chip ID of the present chip being









an object of a command









(Destination present chip ID)










srcId
the present chip ID of the present









chip-incorporated service client calling the command











(Source present chip ID)



t
time



kid
the key entity ID being the object









for reading the money amount information










currentMoney
the current amount of money



len
an outbound packet length (an octet









number)










rlen
a return packet length (an octet









number)









[Return value]



<= 0  Error code



[Packet format]
























TABLE 104





D0
D1
D2
D3
D4
D5
D6
D7



















SID
Serial
Command ID
len
Reserved



No.
(0x64)









t
kid
Reserved




















TABLE 105







Field Name
Data Length
Meaning









Command ID
2(0x63)
Command Code



len
2
Packet Length (octet number)



t
4
Time



kid
2
Key Entity ID to be read










[Return Packet Format]
















TABLE 106





D0
D1
D2
D3
D4
D5
D6
D7



















SID
Serial
Error Code
rlen
Reserved



No.

(12)








currentMoney




















TABLE 107







Field Name
Data Length
Meaning









Error Code
2
Error Code



rlen
2(=12)
Return Packet Length (octet





number)



currentMoney
4
Current Amount of Money

























Updating the access control list of the key entity



Update Key Mode



[Feature outline]



The access control list of the key entity is updated.



* Not loaded in the first version



[Function expression]



ERR eupd_key (SID sid, ETRONID destId, ETRONID srcId,











TIME t, UH len, UH kid, KEYACL keyacl,




UH*rlen);



sid
the session ID



destId
the chip ID of the present chip being









an object of a command









(Destination present chip ID)










srcId
the present chip ID of the present









chip-incorporated service client calling the command









(Source present chip ID)










t
time



kid
the key entity ID being the object









for updating the access control list










keyacl
the key entity access control list









to be updated










len
an outbound packet length (an octet









number)










rlen
a return packet length (an octet









number)









[Return value]



<= 0  Error code



[Packet format]
























TABLE 108





D0
D1
D2
D3
D4
D5
D6
D7



















SID
Serial
Command ID
len
Reserved



No.
(0x65)









t
kid
Reserved


















TABLE 109





Field Name
Data Length
Meaning







Command ID
2(0x65)
Command Code


len
2
Packet Length (octet number)


t
4
Time


kid
2
Key Entity ID to be Updated


keyacl
2
Key Entity Access Control List









[Return Packet Format]
















TABLE 110





D0
D1
D2
D3
D4
D5
D6
D7



















SID
Serial
Error Code
rlen
Reserved



No.

(8)








currentMoney


















TABLE 111





Field Name
Data Length
Meaning







Error Code
2
Error Code


rlen
2(=8)
Return Packet Length (octet




number)


currentMoney
4
Amount of Money after Addition
























Obtainment of a list of defined key entities



List Key Object ID



[Feature outline]



A list of the defined key entity is obtained.



[Function expression]



ERR elst_kid (SID sid, ETRONID destId, ETRONID srcId,











TIME t, UH len, KID kid, UH*rlen,




UB**keyCtrlBlk);



sid
the session ID



destId
the chip ID of the present chip being









an object of a command









(Destination present chip ID)










srcId
the present chip ID of the present









chip-incorporated service client calling the command









(Source present chip ID)










t
time



kid
the object key entity ID



keyCtrlBlk
a control block of the object key









entity










len
an outbound packet length (an octet









number)










rlen
a return packet length (an octet









number)









[Return value]



<= 0 Error code



[Outbound Packet format]
























TABLE 112





D0
D1
D2
D3
D4
D5
D6
D7



















SID
Serial
Command ID
len
Reserved



No.
(0x6F)
(16)









t
kid
Reserved




















Table 113







Field Name
Data Length
Meaning









Command ID
2(=0x6F)
Command Code



len
2(=16)
Packet Length (octet number)



t
4
Time



kid
2
Key Entity ID










[Return Packet Format]
















TABLE 114





D0
D1
D2
D3
D4
D5
D6
D7



















SID
Serial
Error Code
rlen
Reserved



No.







keyCtrlBlk


. . .


keyCtrlBlk




















TABLE 115







Field Name
Data Length
Meaning









Error Code
2
Error Code



rlen
2(=8)
Return Packet Length (octet





number)



keyrlBlk
*rlen-8
Control Block of Object File










[Access Control]


• Always usable in the issuer mode (the present chip ID of the ISSUER of a parent folder is equals to the present chip ID of the SC which constructed the Session) with respect to the object key entity


• Usable in the owner mode and the other mode if permitted in the access control list of the object key entity


10.6 Authentication Assistance Management Command Group


Checking the eTP Certificate


Confirm Certificate

















Checking the eTP certificate



Confirm Certificate



[Function expression]



ERR ecfm_cer (SID sid, ETRONID destId, ETRONID srcId,











TIME t, UH len, UB checkMode,




UH serial, UHcaId, UB*rlen, UB*crl);



sid
the session ID



destId
the chip ID of the present chip being









an object of a command









(Destination present chip ID)










srcId
the present chip ID of the present









chip-incorporated service client calling the command











(Source present chip ID)



t
time



checkMode
a check mode of a list to be nullified



serial
a certificate number of a certificate









to be confirmed










caId
the issuer ID of the certificate to









be confirmed










crl
a nullified list (the present chip









format)










len
an outbound packet length (an octet









number)










rlen
a return packet length (an octet









number)









[checkMode]



0x00    return only the check



0x01    obtain the corresponding nullified list



[Return values]



> 0   Session ID (upon normal closing)



< 0   Error code



[Packet format]
























TABLE 116





D0
D1
D2
D3
D4
D5
D6
D7



















SID
Serial
Command ID
len
Reserved



No.
(0x71)









t
checkMode
Reserved









Serial
CA ID




















TABLE 117







Field Name
Data Length
Meaning









Command ID
 2(0x71)
Command Code



len
 2
Packet Length



t
 4
Time



checkMode
 2
Check Mode



certificateId
16
Certificate ID to be Checked










[Return Packet Format]
















TABLE 118





D0
D1
D2
D3
D4
D5
D6
D7



















SID
Serial
Error Code
rlen
Reserved



No.

(8)







crl


. . .


crl




















TABLE 119







Field Name
Data Length
Meaning









Error Code
2
Error Code



rlen
2
Nullified List Length



crl
rlen-8
Nullified List










▪ 5.3 Quasi Present Chip API Command Definitions


The API commands described below have formats similar to the present chip API commands. Nevertheless, the following commands are not always issued by the present chip-incorporated service client but also issued by other entities. These commands are mainly centered on management and operation depending on the hardware, and interfaces for supporting lower layer of communication. These commands may be issued by a chip reader/writer unit or issued by a computer in the event of fabrication.

















Polling a chip



Poll CHIP



[Feature outline]



The status of the present chip is read out (implementation



dependency, operation dependency).









[Function expression]



ERR epol_car (ETRONID* destId, ETRONID srcId, TIME t);










destId
the chip ID which is returned upon









polling










srcId
the present chip ID of the present









chip-incorporated service client calling the command










t
time









[Return value (example)]



<= 0  Error code



[Packet format]






















TABLE 120







D0
D1
D2
D3









Reserved
Serial
Com. ID
Reserved



(0x00)
(0x00)
(0x41)





















TABLE 121







Field Name
Data Length
Meaning









Command ID
1(0x41)
Command Code










[Return Packet Format]
















TABLE 122





D0
D1
D2
D3
D4
D5
D6
D7




















SID
Serial
Error
rlen
cardVersion
Reserved


(0x00)
(0x00)
Code
(0x08)




















TABLE 123







Field Name
Data Length
Meaning









Error Code
1
Error Code



cardVersion
2
Card Version



rlen
1
Data Packet Length (=0x08)







* Both eared and clientId are attached to a chip header and therefore are not included in the main body.






[Access Control]


This API is always usable.


It does not have to be during the session.


[Detailed Feature]


The present chip ID of the chip is stored and returned to a srcID portion in a routing header portion of the return packet of “epol_car”. Accordingly, anybody can use this API for obtaining the present chip ID in the beginning.


Anybody can issue this command even if it is not during the session.

















Inititalization of the chip



Inititalizate CHIP



[Feature outline]



A chip management portion is created to initialize the









present chip.









[Function expression (example)]



ERR eini_car (ETRONID dstId, ETRONID srcId, TIME t,











UB initKey1[8], UB initKey2[8],




UB initPasswd[8], UB fileNum,




UB keyObjLen, UB swapLen, CACL cacl,




UB rsaSecretKey[128], UH len,




UH*rlen);



destId
the chip ID of the present chip being









an object of a command











(Destination present chip ID)



srcId
all “1”



t
time



initKey1
a common key (1) for authentication



initKey2
a common key (2) for authentication



initPasswd
an initial password



fileNum
an upper limit of the number of files









creatable in the chip










keyObjNum
an upper limit of the number of key









entities










swapLen
the size of a swap area in the









nonvolatile memory










cacl
the access control list of the chip



rsaSecretKey
a secret key for authentication (RSA)









of an own card










len
an outbound packet length (an octet









number)










rlen
a return packet length (an octet









number)









[Return value]



<= 0  Error code



[Packet format]
























TABLE 124





D0
D1
D2
D3
D4
D5
D6
D7



















SID
Serial
Command ID
len
Reserved



No.
(0x51)
(176)








t
Reserved







Common Key (1) for Authentication


Common Key (2) for Authentication


Password












cacl
file
keyObj
swap
Reserved
version



Num
Num
Len







Own (RSA) Secret Key (1)


. . .


Own (RSA) Secret Key (16)


















TABLE 125





Field Name
Data Length
Meaning







Command ID
 2(0x51)
Command Code


len
 2(176)
Packet Length


t
 4
Time


initKey1
 8
Common Key (1) for Authentication


initKey2
 8
Common Key (2) for Authentication


initPasswd
 8
Authentication Password


fileNum
 1
File Number Upper Limit (50)


keyObjNum
 1
Key Entity Number Upper Limit (10)


swapLen
 1
Swap Area


cacl
 1
Initial Card Access Control List


rsaSecretKey
128
Own Authentication RSA Key (1024




bits)









[Return Packet Format]
















TABLE 126





D0
D1
D2
D3
D4
D5
D6
D7



















SID
Serial
Error Code
rlen
Reserved



No.

(8)




















TABLE 127







Field Name
Data Length
Meaning









Error Code
2
Error Code



rlen
2
Return Packet Length










[Detailed Feature]


A system control block is initialized in accordance with a given argument.


All other memory areas are cleared and set to “0”.


[Access Control]


This command is accepted only when the source present chip ID of the present chip=0xff . . . ff (all “1”).

















Switching the own authentication public key certificate



Update My Certificate



[Feature outline]



The own certificate of the present chip is updated.



[Function expression]



ERR eupd_cer (ETRONID destId, ETRONID srcId, TIME t,











UB*certificate, UH len, UH*rlen);



sid
the session ID



destId
the chip ID of the present chip being









an object of a command











(Destination present chip ID)



srcId
the present chip ID of the present









chip-incorporated service client calling the command











(Source present chip ID)



t
time



certificate
the certificate



len
an outbound packet length (an octet









number)










rlen
a return packet length (an octet









number)









[Return value]



<=  0 Error code



[Packet format]
























TABLE 128





D0
D1
D2
D3
D4
D5
D6
D7



















SID
Serial
Command ID
len
Reserved



No.
(0x52)
(320)








t
Reserved







Certificate (1)


. . .


Certificate (38)




















TABLE 129







Field Name
Data Length
Meaning









Command ID
 2(0x52)
Command Code



len
 2(304)
Packet Length



t
 4
Time



certificate
304
Certificate










[Return Packet Format]
















TABLE 130





D0
D1
D2
D3
D4
D5
D6
D7



















SID
Serial
Error Code
rlen
Reserved



No.

(8)









[Return Packet Format (Example)]













TABLE 131







Field Name
Data Length
Meaning









Error Code
2
Error Code, Session ID



rlen
2
Return Packet Length (octet





number)

























Switching a CA station public key



Update CA Public Key



[Function expression]



ERR eupd_cpk (ETRONID destId, ETRONID srcId, TIME t,











UB*caPublicKey, UH len, UH*rlen);



sid
the session ID



destId
the chip ID of the present chip being









an object of a command











(Destination present chip ID)



srcId
the present chip ID of the present









chip-incorporated service client calling the command











(Source present chip ID)



t
time



caPubicKey
the public key of the CA station



len
an outbound packet length (an octet









number)










rlen
a return packet length (an octet









number)









[Return value]



<= 0 Error code



[Packet format]
























TABLE 132





D0
D1
D2
D3
D4
D5
D6
D7



















SID
Serial
Command ID
len
Reserved



No.
(0x53)
(144)








t
Reserved







CA Station Public Key (1)


. . .


CA Station Public Key (16)




















TABLE 133







Field Name
Data Length
Meaning









Command ID
 2(0x53)
Command Code



len
 2(144)
Packet Length



t
 4
Time



certificate
128
RSA Certificate (1024 bits)










[Return Packet Format]
















TABLE 134





D0
D1
D2
D3
D4
D5
D6
D7



















SID
Serial
Error Code
rlen
Reserved



No.

(8)









[Return Packet Format (Example)]













TABLE 135







Field Name
Data Length
Meaning









Error Code
2
Error Code, Session ID



rlen
2
Return Packet Length (octet





number)










SPECIFICATIONS OF ENCRYPTION IMPLEMENTATION

▪ DES


Method of Creating a 56-bit DES Key Out of a 64-bit Secret Key


The lowest bit of each octet is assigned as a parity bit as shown below (a chip just ignores the parity bit but does not check it). The 56 bits obtained by adding the upper 7 bits of 8 octets are used as the DES.














KEY (1)







embedded image







KEY (2)







embedded image














Data format of an RSA key



The key is expressed as follows.



d = 1024 bits (128 octets)



n = 1024 bits (128 octets)



e = fixed to 0x0003 (1 octet)



Secret key sk = d (128 octets)



Public Key pk = length of e (1 octet) | e (1 octet) |







n (128 octets)









As described above, according to the present invention, the autonomous IC card of the present invention autonomously identifies a communication device to be connected via an IC card terminal and communicates directly with the communication device. Therefore, it is possible to guarantee safe communication of accurate information. Moreover, when the autonomous IC card of the present invention includes an encryption processing unit for performing authentication processing mutually with the communication device and for encrypting and decrypting information concerning communication with the communication device, then it is possible to judge propriety of the communication device and to sufficiently reduce a risk of theft of the data contents or falsification of the data via the intermediate device. The significance of such reduction of the risk is particularly high when the data are related to value information such as an electronic ticket. Furthermore, when the encryption processing unit selects and performs appropriate authentication processing and encryption processing out of a plurality of authentication processing and a plurality of encryption processing depending on the type of the identified communication device, it is possible to perform the processing suitable for the identified communication device.


It should be understood that many modifications and adaptations of the invention will become apparent to those skilled in the art and it is intended to encompass such obvious modifications and changes in the scope of the claims appended hereto.

Claims
  • 1. An autonomous integrated circuit card comprising: a host interface configured to connect to a physical layer of an integrated circuit card terminal;a logical external communication interface configured to communicate with a communication device; andan integrated circuit chip including a unique identifier representing a physical identity of the chip and an application program interface (API) module therein, the integrated circuit chip recognizing a connection with the communication device via an authentication procedure employing the unique identifier of the integrated circuit chip and a unique identifier of the communication device, said integrated circuit chip configured to autonomously provide peer to peer communications with the communication device via the logical external communication interface using the unique identifier of the integrated circuit chip to establish a communication path, independent of the integrated circuit card terminal, to the communication device.
  • 2. The autonomous integrated circuit card according to claim 1, wherein the application program interface (API) module includes:a session management command group which establishes a session communication path for the communication device; anda transaction management command group which establishes a transaction session for the communication device.
  • 3. The autonomous integrated circuit card according to claim 1, wherein the integrated circuit chip includes an encryption processing unit which performs mutual authentication processing with the communication device and encrypts and decrypts information concerning communication with the communication device.
  • 4. The autonomous integrated circuit card according to claim 3, wherein the integrated circuit chip identifies the communication device and performs the mutual authentication processing based on the unique identifier of the integrated circuit chip and the unique identifier of the communication device.
  • 5. The autonomous integrated circuit card according to claim 3, wherein the encryption processing unit selects an appropriate authentication process and an appropriate encryption process out of a plurality of authentication processes and a plurality of encryption processes respectively to perform those processes, depending on a type of the communication device identified by the integrated circuit chip.
  • 6. The autonomous integrated circuit card according to claim 1, wherein the integrated circuit chip includes a storage unit which stores value information, and communicates with the communication device concerning the value information.
  • 7. The autonomous integrated circuit card according to claim 6, wherein the value information includes electronic ticket information and electronic money information.
  • 8. The autonomous integrated circuit card according to claim 1, wherein the integrated circuit chip includes an authentication processing unit which performs mutual authentication processing with the communication device.
  • 9. The autonomous integrated circuit card according to claim 1, wherein the integrated circuit chip includes an encryption/decryption processing unit which encrypts and decrypts information concerning communication with the communication device.
  • 10. The autonomous integrated circuit card according to claim 1, wherein the integrated circuit chip includes a hybrid system for distributing and retaining information.
  • 11. The autonomous integrated circuit card according to claim 1, wherein the application program interface (API) module is configured to communicate with service clients to modify access control with respect to the integrated circuit card.
  • 12. An autonomous integrated circuit card comprising: a host interface which is configured to provide access to a physical layer of the integrated circuit card;a logical external communication interface configured to communicate with an operably linked communication device, the integrated circuit card including a unique identifier representing a physical identity of the card which functions as a node ID to enable communication between the integrated circuit card and the communication device;an integrated circuit chip configured to recognize a connection with the communication device via an authentication procedure employing the unique identifier of the integrated circuit chip and a unique identifier of the communication device, and to autonomously provide peer to peer communications with the communication device via the logical external communication interface using the unique identifier of the integrated circuit card to establish a communication path, independent of an integrated circuit (IC) card terminal, to the communication device; andan application program interface (API) module stored on the integrated circuit chip and configured to provide the peer to peer communications independent of the integrated circuit (IC) card terminal.
  • 13. The autonomous integrated circuit card according to claim 12, wherein the application program interface (API) module is configured to communicate with service clients to modify access control with respect to the integrated circuit card.
  • 14. An autonomous integrated circuit card comprising: means for connecting an integrated circuit card terminal to said integrated circuit card;means for connecting a communication device to said integrated circuit card;means for managing peer to peer communications to and from said integrated circuit card, said means for managing peer to peer communications including the integrated circuit card including a unique identifier representing a physical identity of the card, said unique identifier functions as a node ID to enable communication between the integrated circuit card and the communication device, the integrated circuit card recognizing a connection with the communication device via an authentication procedure employing the unique identifier of the integrated circuit card and a unique identifier of the communication device; andsaid means for managing peer to peer communications is stored on said integrated circuit card, and autonomously provides peer to peer communications with the communication device using the unique identifier of the integrated circuit card to establish a communication path, independent of the integrated circuit card terminal, to the communication device.
  • 15. The autonomous integrated circuit card according to claim 14, wherein the application program interface (API) module is configured to communicate with service clients to modify access control with respect to the integrated circuit card.
Priority Claims (1)
Number Date Country Kind
P2002-169315 Jun 2002 JP national
US Referenced Citations (33)
Number Name Date Kind
4907270 Hazard Mar 1990 A
5204512 Ieki et al. Apr 1993 A
5434395 Storck et al. Jul 1995 A
5491692 Gunner et al. Feb 1996 A
5532689 Bueno Jul 1996 A
5668875 Brown et al. Sep 1997 A
5710421 Kokubu Jan 1998 A
5771227 Benayoun et al. Jun 1998 A
5778071 Caputo et al. Jul 1998 A
5867577 Patarin Feb 1999 A
5889272 Lafon et al. Mar 1999 A
5901303 Chew May 1999 A
5905245 Tanaka May 1999 A
5923884 Peyret et al. Jul 1999 A
6073198 Meyer et al. Jun 2000 A
6073236 Kusakabe et al. Jun 2000 A
6157966 Montgomery et al. Dec 2000 A
6182215 Tatebayashi et al. Jan 2001 B1
6185681 Zizzi Feb 2001 B1
6212649 Yalowitz et al. Apr 2001 B1
6247644 Horne et al. Jun 2001 B1
6516997 Tanazawa et al. Feb 2003 B1
6644554 Shiro et al. Nov 2003 B1
6704872 Okada Mar 2004 B1
6708878 Eguchi et al. Mar 2004 B2
6751671 Urien Jun 2004 B1
6769609 Ono et al. Aug 2004 B2
6810521 Gelgon et al. Oct 2004 B1
7149816 Port et al. Dec 2006 B1
20010050989 Zakiya Dec 2001 A1
20020082847 Vandewalle et al. Jun 2002 A1
20020083317 Ohta et al. Jun 2002 A1
20030037191 Baranowski et al. Feb 2003 A1
Foreign Referenced Citations (2)
Number Date Country
1 158 750 Nov 2001 EP
09-190515 Jul 1997 JP
Related Publications (1)
Number Date Country
20040034766 A1 Feb 2004 US