Autonomous memory architecture

Information

  • Patent Grant
  • 10769097
  • Patent Number
    10,769,097
  • Date Filed
    Monday, October 2, 2017
    7 years ago
  • Date Issued
    Tuesday, September 8, 2020
    4 years ago
Abstract
An autonomous memory device in a distributed memory sub-system can receive a database downloaded from a host controller. The autonomous memory device can pass configuration routing information and initiate instructions to disperse portions of the database to neighboring die using an interface that handles inter-die communication. Information is then extracted from the pool of autonomous memory and passed through a host interface to the host controller.
Description
BACKGROUND OF THE INVENTION

A problem for parallel, distributed systems is how to assign and manage memory resources. Memory is typically attached to a host processor using a shared bus where appropriate protocols are applied to enable coherency and consistency. In this strategy memory controller hardware on the processor core can observe the traffic on the common bus, then update or invalidate cache lines to reflect the operations performed by the other processors. A many-node multiprocessor system may also use “directory-based” coherence techniques to allow processor nodes to see memory traffic that relates to pages or cache lines on which they are working. These strategies become increasingly performance hampering and improvements in distributed systems are needed.





BRIEF DESCRIPTION OF THE DRAWINGS

The subject matter regarded as the invention is particularly pointed out and distinctly claimed in the concluding portion of the specification. The invention, however, both as to organization and method of operation, together with objects, features, and advantages thereof, may best be understood by reference to the following detailed description when read with the accompanying drawings in which:



FIG. 1 illustrates an architecture that allows a processor to communicate with multiple autonomous memory devices configured in a distributed sub-system in accordance with the present invention;



FIG. 2 is a simplified block representation of the autonomous memory device that makes possible the distributed sub-system; and



FIG. 3 illustrates one embodiment of the autonomous memory device in accordance with the present invention.





It will be appreciated that for simplicity and clarity of illustration, elements illustrated in the figures have not necessarily been drawn to scale. For example, the dimensions of some of the elements may be exaggerated relative to other elements for clarity. Further, where considered appropriate, reference numerals have been repeated among the figures to indicate corresponding or analogous elements.


DETAILED DESCRIPTION

In the following detailed description, numerous specific details are set forth in order to provide a thorough understanding of the invention. However, it will be understood by those skilled in the art that the present invention may be practiced without these specific details. In other instances, well-known methods, procedures, components and circuits have not been described in detail so as not to obscure the present invention.


Use of the terms “coupled” and “connected”, along with their derivatives, may be used. It should be understood that these terms are not intended as synonyms for each other. Rather, in particular embodiments, “connected” may be used to indicate that two or more elements are in direct physical or electrical contact with each other. “Coupled” may be used to indicated that two or more elements are in either direct or indirect (with other intervening elements between them) physical or electrical contact with each other, and/or that the two or more elements co-operate or interact with each other (e.g. as in a cause and effect relationship).


The embodiment illustrated in FIG. 1 shows an architecture that enables a processor and multiple autonomous memory devices 102 to be configured for communicating in a distributed sub-system 10 in accordance with the present invention. In order to facilitate communication between a large number of devices, each of the autonomous memory devices 102 in distributed sub-system 10 is assigned their own address. This gives each autonomous memory device 102 the ability to route messages to other devices in the sub-system. Although the figure illustrates autonomous memory devices in a 3×3 array, distributed sub-system 10 may be configured having much larger numbers of devices in the network.


In one embodiment the addressing scheme may be absolute where each autonomous memory device 102 is assigned a unique static address as determined by a route to the autonomous memory device, e.g. the memory device may be specified as being on a particular port of the device and electrically connected to a port of the root device. In an alternative embodiment the address of the autonomous memory device may be dynamically determined while operating within the system. By allowing the address to be determined dynamically, the addressing scheme may be modified for purposes of optimization during system operation.


On system startup the network may initialize by transferring routing information to allow this inter-device communication to take place. Alternatively, the system may self-organize as autonomous memory devices 102 build a routing table using a scan technique to determine neighbors. The routing table keeps track of the devices within distributed sub-system 10 and may store parameters such as, for example, the latency cost based on location of any one device talking to another device.


The message passing on the bus that connects the distributed autonomous memory devices 102 may be modeled or it may be a standard network. One such standard network may be the Transmission Control Protocol/Internet Protocol (TCP/IP) that is responsible for verifying the correct delivery of data from one device to another. TCP/IP also provides support to detect errors or lost data that triggers retransmission until the data is verified as being correct and completely received. Another type of network that distributed sub-system 10 may employ is the InfiniBand architecture that creates a fabric to allow low latency communication, high bandwidth clustering, and storage traffic. Also, communication among autonomous memory devices 102 may use Ethernet in a frame based network.


The figure shows that different memory types may be attached to autonomous memory devices 102. As an example, each node of this autonomous memory may have NAND, DRAM or other volatile/nonvolatile combinations attached for ‘offline’ storage or scratchpad space. Also illustrated in the figure is a wireless architecture embodiment that shows memory devices 102 coupled to an antenna to transfer wireless signals. The antennas may be near-field loop antennas, capacitive plates, or dipole antennas that allow the radio associated with the memory device to program the memory arrays and download algorithms and databases by communicating using over-the-air communication signals. A configuration routing table tracks the memory devices to facilitate communications between devices within distributed sub-system 10.


The figure shows a wireless connection between the control block and the dice shown as the autonomous memory devices 102 in the memory subsystem. In this embodiment the control block monitors and reacts to congestion in traffic to the various blocks. Bus traffic is one aspect of a resource that may constrain system performance. To alleviate performance constraints, the monitor block may move portions of a database to a different die to parallelize searches or fully utilize computing resources. As such, the monitor block monitors constrained resources to optimize system performance, with bus traffic being just one example of a resource that may be optimized by relocation of data among memory devices 102.


In this embodiment the die-to-die wireless communication may use antennae that are physically located to only communicate with other dice that are in the same stack. To achieve inter-die wireless communication, each autonomous memory devices 102 would have antenna on input ports to receive signals and antennae on output ports to transmit signals. The wireless communication would minimize the need for bond wires.



FIG. 2 shows a simplified block representation of the autonomous memory device 102 that contains the computing nodes and acceleration hardware to provide computation and manipulation of the contents stored within memory. Distributed sub-system 10 includes multiple autonomous memory devices 102 with each device handling communications with neighboring die using inter-die communication ports 204, 206, 208, and 210. These inter-die communication paths allow autonomous communication among a large pool of die, perhaps thousands of die in distributed sub-system 10.


Autonomous memory device 102 includes both an operating system and processing capabilities, and is aware of the meaning of its contents. Put another way, device 102 is aware of the details where certain database tables are located, the field definitions for each of those tables, and how they're interlinked. Using this information, autonomous memory device 102 independently processes data in the stored database to get results that may be returned to the host processor.



FIG. 3 shows one embodiment of functional blocks for the autonomous memory device 102 in accordance with the present invention. The autonomous memory device includes a smart memory processing engine 302 that provides control functions and processing acceleration 304 to enable usage models that involve computations and memory intensive operations within the smart memory. A general purpose control engine 306 is a microcontroller to receive downloaded end-user firmware or software to control other memory devices, among other functions. Control engine 306 may initiate instructions within the pool of autonomous memory and extract information from the pool that may be passed through a host interface 320 to a host controller. Protocols and algorithms allow for arbitration among devices, routing information to be passed among devices, and algorithms to be run to optimize the level of the pool.


A hardware accelerator 308 provides smart memory processing engine 302 with the acceleration hardware for computations and manipulations of the contents stored within memory 318. Hardware accelerator 308 is capable of handling matrix operations, simple comparisons with mask bits, memory copies and moves, etc. A code storage block 310 stores code downloaded from a host processor through host interface 320 for use by the general purpose control engine 306. An Application Programming Interface (API) management block 312 executes the stored routines and protocols provided by libraries or the operating system services in order to support the building of applications. The software API's are flexible and make use of knowledge of the underlying hardware to achieve optimal performance. A configuration routing table 314 keeps track of the other memory devices within distributed sub-system 10. The configuration of distributed sub-system 10 may be dynamically determined and the route table updated while autonomous memory device 102 operates within the system.


It is common to store data structures in a flat memory space. While there are an endless number of possible data structures, a few common structures such as, for example, matrices and linked lists can be used to illustrate how autonomous memory can be used to enhance memory functionality. Matrices cover a wide spectrum of domains including those arising from a wide variety of problems with underlying 2D or 3D geometries such as, for example, structural engineering, computational fluid dynamics, model reduction, semiconductor devices, thermodynamics, materials, acoustics, computer graphics/vision, robotics/kinematics, among others. Matrices may also cover applications that typically do not have such geometry such as optimization, circuit simulation, economic and financial modeling, theoretical and quantum chemistry, chemical process simulation, mathematics and statistics, power networks, and other networks and graphs.


In processing information stored in matrices, all or part of the matrices are read from memory 318 and computations are performed by hardware accelerator 308 on the contents of the matrices. In prior art systems large portions of the matrices were retrieved from the main memory and paged for storage in the processor cache. These matrices involve calculations that are iterative and may involve the entire matrices, so prior art systems can not store the entire contents required for processing into processor cache.


However, autonomous memory device 102 significantly improves the efficiency in executing matrix algorithms. Autonomous memory device 102 may store the matrices using a flat memory map and utilize a close coupling of memory 318 and embedded hardware accelerator 308 to greatly accelerate operations on these matrices. Matrix computations may further be enhanced by judiciously organizing matrices within distributed sub-system 10 to facilitate high performance matrix operations. As an example, commonly shared operands in an operation may be planned to advantageously reside within the same autonomous memory device 102 such that completion of these operations does not require communication with other devices.


It is common to create linked lists in a flat memory map to enable storage and manipulation of ordered sets of information. In traversing a linked list, it is generally required that each record be inspected to determine if it matches a pattern, or simply to obtain a pointer to the subsequent record. Using distributed sub-system 10, it is possible to parse linked lists with a minimum of host bus traffic. Then, each autonomous memory device 102 may inspect each record looking for specific patterns and find a pointer to the next record before repeating. Once results are found, autonomous memory device 102 uses host interface 320 to return pertinent results to the host.


Databases are commonly comprised of large data sets that are organized in groups of inter-linked tables. Index files are created and maintained, and utilized to accelerate searches for information in these tables. In prior art systems, some databases are larger than the near memory available to the processor operating on the databases and a significant portion of memory accesses may have long latency IO calls that gate system performance.


In contrast to the prior art systems, distributed sub-system 10 may have a very large number of autonomous memory devices 102 configured to communicate with each other and the host processor. The memory density found in distributed sub-system 10 may be limited primarily by the cost of the memory. Further, with control engine 306 embedded on the same die as memory 318, most operations would involve bus traffic internal to the memory die and limited traffic external to the memory die. Given the close coupling of a general purpose control engine 306 and the large density of memory 318, the bandwidth bottleneck caused by a processor accessing external memory may be eliminated. Simple hardware acceleration techniques in hardware accelerator 308 may be used to dramatically increase performance of distributed sub-system 10.


With distributed sub-system 10 designed for the specific purpose of manipulating memory content, a finite set of useful hardware primitives may be implemented. To implement a database in distributed sub-system 10, the database is transferred, all or in part, to the memory subsystem along with information about how the database is organized. Algorithms for processing information in the database are also downloaded. With the initialization process complete, the host generates very high level commands to distributed sub-system 10. Rather than reading and writing specific addresses to perform a higher level function, the host processor can issue a command like “parse table A to find all records matching a pattern, extract pointers to table B for each of these records, return fields a, b, c from table A and d and e from table B”. All operations are run within distributed sub-system 10 and a short list of results is returned to the host processor.


Autonomous memory has a profound advantage in the case where a linear search is performed on a large database. By way of example, using pipelining for one autonomous memory device 102 having 1 GB memory density containing 8 banks of 2 M pages of 64 B each, a page can be compared to a target pattern at a beat rate of about 10 nsec per page resulting in a possible search time for the 1 GB die of about 20 mS. While this is an impressive result by itself, the value is that this solution is scalable, and thus, the search time for two autonomous memory devices 102 each having 1 GB memory density would also be about 20 mS as would the search time for a peta-byte of memory, or for any sized pool of memory. Using autonomous memory devices 102 in a distributed sub-system 10 to perform linear searches would be limited by the cost of the array of memory devices 102, along with thermal management and power constraints.


System administration functions may also take advantage of autonomous memory devices 102 in a distributed sub-system 10. For example, a data center may perform a virus scan on distributed sub-system 10 and when a virus is detected, the data center would be ‘downed’ for 20 mS during which time a search and destroy algorithm would be executed on every byte to isolate and disable any occurrence of the target virus.


Autonomous memory devices 102 in distributed sub-system 10 provide an advantage over prior art systems when executing the “Scatter/Gather” operations. “Scatter/Gather” operations provide a sequence of writes at different addresses that are compiled into a single composite instruction that is executed by the memory or IO subsystem. These operations are parsed and sent out to multiple die in distributed sub-system 10 at which point they are executed autonomously. The resulting status is accumulated and reported to the host when the entire operation is complete.


Autonomous memory devices 102 in distributed sub-system 10 are ideal for some classes of applications such as image processing. These classes are well suited to parallel computing where the image may be divided into many smaller segments which are processed relatively independently. After calculations on these small segments have been completed, then further calculations may be performed on groups of these segments to form a larger segment until the image is processed at a level encompassing the entire image.


Using autonomous memory devices 102, many or all of these low level calculations may be done in parallel at the level of a bank of the autonomous memory. Calculations crossing bank boundaries may be done within the one device, and by utilizing inter-die communication, higher level calculations may be done at the subsystem level. Other parallel computing tasks follow a similar model and may involve iteration to refine accuracy of results or to step the simulation through time.


Distributed sub-system 10 provides interaction beyond the expected read and write operations that are enabled by memory storage devices. Autonomous memory device 102 interacts with the existing computing infrastructure using one or more interfaces that allow communication both with the host computer and with the network. From the host computer's perspective, the interaction may be a memory or block interface but to the autonomous memory device 102 a flexible interface is provided on top of which software APIs may be built. These APIs may be scaled to either expose functionality to the host system or provide a way of passing on the request among other autonomous memory devices.


The autonomous memory device 102 interface to other devices in distributed sub-system 10 provides a way of passing messages that may contain a command and a list of parameters. The parameters may contain actual data, addressing information that refers to data in the array, and object identifiers that reference an object located in the array. Parameters may also contain or refer by address or object identification (Object ID) to the code required to operate on a given data set. The code passed into autonomous memory device 102 may fit the paradigm established by the OpenCL standard, possibly MapReduce. Many of the existing clustering and “cloud-computing” infrastructure pieces may be reusable within distributed sub-system 10.


The memory controller or an autonomous memory device 102 in distributed sub-system 10 can perform condition monitoring to determine bus activities due to data transfers between the memory devices. Based on the monitored results, a re-allocation of resources can be dynamically executed to improve system performance. By way of example, after monitoring the traffic within distributed sub-system 10, it may be determined that high bandwidth traffic commonly occurs between two memory devices. If these memory devices are not neighboring devices the subsystem may select one of these memory devices and relocate the contents of the other memory device to allow a single autonomous memory device 102 to provide the processing that completes the algorithm. Alternatively, the memory contents of relatively distant devices may be redistributed to near-by nodes to reduce bus traffic.


Further, searches of distributed sub-system 10 for read-only content may cause a subset of the network to be constantly active. In this case, the subsystem may replicate the contents in this portion of the network so that multiple autonomous memory devices 102 can perform parallel operations on the read-only content within distributed sub-system 10.


By now it should be apparent that embodiments of the present invention allow increased memory storage efficiencies through autonomous data storage. By connecting the autonomous memory device in a distributed memory sub-system a host can download a database to the autonomous memory device. The autonomous memory device can initiate instructions to disperse portions of the database to neighboring die using an interface to handle inter-die communication within a pool of autonomous memory. The autonomous memory device can then extract information from the pool of autonomous memory that is passed through the host interface to the host controller.


While certain features of the invention have been illustrated and described herein, many modifications, substitutions, changes, and equivalents will now occur to those skilled in the art. It is, therefore, to be understood that the appended claims are intended to cover all such modifications and changes as fall within the true spirit of the invention.

Claims
  • 1. A system, comprising: a host interface to couple to a host device; anda distributed array of autonomous memory devices in communication with the host device, the distributed array of autonomous memory devices being implemented by a plurality of die, each of the autonomous memory devices being formed on a single die of the plurality of die, each single die comprising a microcontroller that is embedded on the single die to perform computations independently of the host device, each of the autonomous memory devices being configured to maintain a routing table to keep track of the other autonomous memory devices in the distributed array and to store a latency cost based on a location of the autonomous memory device in communication with the other autonomous memory devices in the distributed array, the routing table enabling the autonomous memory device to route a message to another autonomous memory device in the distributed array.
  • 2. The system of claim 1, wherein each of the autonomous memory devices includes its own operating system.
  • 3. The system of claim 1, wherein the host device is configured to assign a unique static address to each of the autonomous memory devices.
  • 4. The system of claim 1, wherein the host device is configured to dynamically determine an address of each of the autonomous memory devices during an operation of respective ones of the autonomous memory devices.
  • 5. The system of claim 1, wherein each of the autonomous memory devices is to build the routing table using a scan technique to keep track of remaining ones of the autonomous memory devices within the distributed array.
  • 6. The system of claim 1, wherein each of the autonomous memory devices is configured to store a latency cost based on a location of the autonomous memory devices in communication with another one of the autonomous memory devices.
  • 7. The system of claim 1, wherein each of the autonomous memory devices is configured to execute a search and destroy algorithm simultaneously with others of the autonomous memory devices to isolate and disable an occurrence of a target virus.
  • 8. A memory system, comprising: a distributed array of autonomous memory devices in communication with a host, the distributed array of autonomous memory devices being implemented by a plurality of die, each of the autonomous memory devices being formed on a single die of the plurality of die, each single die comprising a microcontroller that is embedded on the single die and that is configured to perform computations on a database, each of the autonomous memory devices having a first interface to communicate with the host and at least one second interface to communicate with others of the autonomous memory devices in the distributed array, each of the autonomous memory devices being configured to maintain a routing table to keep track of the other autonomous memory devices in the distributed array and to store a latency cost based on a location of the autonomous memory device in communication with the other autonomous memory devices in the distributed array, the routing table enabling the autonomous memory device to route a message to another autonomous memory device in the distributed array.
  • 9. The memory system of claim 8, further comprising a memory within each of the autonomous memory devices to store information about how the database is organized.
  • 10. The memory system of claim 8, wherein the at least one second interface is configured to transfer messages that contain a command and a list of parameters to others of the autonomous memory devices.
  • 11. The memory system of claim 10, wherein the messages include a transfer of data, address information that refers to data in the distributed array, and object identifiers that reference an object located in the distributed array.
  • 12. A system, comprising: a distributed array of autonomous memory devices, each of the autonomous memory devices having a host interface to communicate with a host controller, being formed on a single die that comprises a microcontroller embedded on the single die, being configured to perform computations on a database, and being configured to maintain a routing table to keep track of the other autonomous memory devices in the distributed array and to store a latency cost based on a location of the autonomous memory device in communication with the other autonomous memory devices in the distributed array, the routing table enabling the autonomous memory device to route a message to another autonomous memory device in the distributed array; anda memory in the autonomous memory devices, at least one of the autonomous memory devices to receive the database through the host interface from the host controller and to store the database in the memory of the at least one autonomous memory device, the microcontroller within the at least one of the autonomous memory devices to disperse portions of the database to a neighboring autonomous memory device in the distributed array through inter-die communication ports in each of the autonomous memory devices.
  • 13. The system of claim 12, wherein the memory in at least one of the autonomous memory devices is to receive software from the host controller to allow the at least one autonomous memory device to control other ones of the autonomous memory devices.
  • 14. The system of claim 12, wherein each of the autonomous memory devices is configured to parse and execute operations autonomously within selected ones of the autonomous memory devices.
  • 15. The system of claim 14, wherein the selected ones of the autonomous memory devices are further configured to accumulate and report results from the executed operations to the host controller when the operations are complete.
  • 16. The system of claim 12, wherein selected ones of the autonomous memory devices are configured to execute stored routines, provided by libraries and stored within respective ones of the memories, to build applications.
  • 17. The system of claim 12, further comprising acceleration hardware within each of the autonomous memory devices.
  • 18. The system of claim 12, wherein each of the autonomous memory devices has multiple inter-die communication ports to communicate simultaneously with each of multiple nearest-neighbor ones of remaining ones of the autonomous memory devices.
  • 19. The system of claim 12, wherein each of the autonomous memory devices has at least one autonomous memory management mechanism selected from mechanisms including a wear leveling mechanism, an error detection and correction mechanism, and a compression and decompression mechanism.
PRIORITY APPLICATION

This application is a continuation of U.S. application Ser. No. 12/557,776, filed Sep. 11, 2009, now issued as U.S. Pat. No. 9,779,057, which is incorporated herein by reference in its entirety.

US Referenced Citations (87)
Number Name Date Kind
5105425 Brewer Apr 1992 A
5134711 Asthana et al. Jul 1992 A
5590370 Asthana et al. Dec 1996 A
5671430 Gunzinger Sep 1997 A
5754948 Metze May 1998 A
6047334 Langendorf et al. Apr 2000 A
6101620 Ranganathan Aug 2000 A
6105130 Wu et al. Aug 2000 A
6131139 Kikuchi et al. Oct 2000 A
7050351 Halbert et al. May 2006 B2
7242216 Schmit et al. Jul 2007 B1
7581080 Beaumont Aug 2009 B2
7623365 Jeddeloh Nov 2009 B2
7634622 Musoll et al. Dec 2009 B1
7913033 Roohparvar Mar 2011 B2
8259506 Sommer et al. Sep 2012 B1
8427952 Pearce Apr 2013 B1
8775685 Brebner Jul 2014 B1
9015440 Eilert et al. Apr 2015 B2
9612750 Eilert et al. Apr 2017 B2
9779057 Eilert Oct 2017 B2
9779138 Curewitz Oct 2017 B2
10003675 Curewitz et al. Jun 2018 B2
20010049744 Hussey et al. Dec 2001 A1
20020009119 Matthew et al. Jan 2002 A1
20020108017 Kenchammana-hoskote et al. Aug 2002 A1
20020124137 Ulrich et al. Sep 2002 A1
20020147724 Fries et al. Oct 2002 A1
20020161848 Willman et al. Oct 2002 A1
20030013232 Towle et al. Jan 2003 A1
20040117603 Arimilli et al. Jun 2004 A1
20040186832 Jardin Sep 2004 A1
20060015652 Day et al. Jan 2006 A1
20060250965 Irwin Nov 2006 A1
20070005922 Swaminathan et al. Jan 2007 A1
20070088703 Kasiolas et al. Apr 2007 A1
20070136508 Rieke et al. Jun 2007 A1
20070150699 Schoinas Jun 2007 A1
20070204116 Wallner et al. Aug 2007 A1
20070233710 Passey et al. Oct 2007 A1
20070288587 Aguilera et al. Dec 2007 A1
20080005116 Uno Jan 2008 A1
20080043716 Toombs et al. Feb 2008 A1
20080054489 Farrar et al. Mar 2008 A1
20080065644 Pasupuleti et al. Mar 2008 A1
20080077736 Mukherjee et al. Mar 2008 A1
20080084725 Lahtinen Apr 2008 A1
20080104085 Papoutsakis May 2008 A1
20080109424 Day et al. May 2008 A1
20080162835 Wilson et al. Jul 2008 A1
20080297196 Kelem et al. Dec 2008 A1
20090006798 Bartley et al. Jan 2009 A1
20090006808 Blumrich Jan 2009 A1
20090064336 Garbow et al. Mar 2009 A1
20090164678 Hu Jun 2009 A1
20090319550 Shau et al. Dec 2009 A1
20100106890 Lasser et al. Apr 2010 A1
20100161914 Eilert et al. Jun 2010 A1
20100165991 Veal et al. Jul 2010 A1
20100180182 Trantham Jul 2010 A1
20100211721 Resnick Aug 2010 A1
20100211742 Turullols Aug 2010 A1
20100284287 Venuto Nov 2010 A1
20110040771 Gilyadov et al. Feb 2011 A1
20110066796 Eilert et al. Mar 2011 A1
20110067039 Eilert et al. Mar 2011 A1
20110093669 Davis et al. Apr 2011 A1
20110185105 Yano et al. Jul 2011 A1
20110202927 Miloushev Aug 2011 A1
20110271158 Jeddeloh Nov 2011 A1
20120011127 Kim Jan 2012 A1
20120047126 Branscome et al. Feb 2012 A1
20120054452 Kumar et al. Mar 2012 A1
20120084484 Post et al. Apr 2012 A1
20120102275 Resnick Apr 2012 A1
20120117354 Tatsumura et al. May 2012 A1
20120203761 Biran et al. Aug 2012 A1
20120203986 Strasser et al. Aug 2012 A1
20120290806 Moyer Nov 2012 A1
20130054727 Kumano et al. Feb 2013 A1
20130173655 Hoots, III III et al. Jul 2013 A1
20140136764 Li et al. May 2014 A1
20140143501 Creamer et al. May 2014 A1
20140281278 Curewitz et al. Sep 2014 A1
20150052114 Curewitz et al. Feb 2015 A1
20150153963 Curewitz et al. Jun 2015 A1
20150205530 Eilert et al. Jul 2015 A1
Foreign Referenced Citations (35)
Number Date Country
1322355 Nov 2001 CN
1496511 May 2004 CN
102025766 Apr 2011 CN
102025766 Feb 2016 CN
102014011 May 2016 CN
105612518 May 2016 CN
105874436 Aug 2016 CN
102010044529 Mar 2011 DE
102010044531 Apr 2011 DE
0482741 Apr 1992 EP
2220509 Oct 1990 GB
1132356 Feb 1992 JP
052610 Jan 1993 JP
06139200 May 1994 JP
06208501 Jul 1994 JP
07319923 Dec 1995 JP
08501403 Feb 1996 JP
11232180 Aug 1999 JP
2007193811 Aug 2007 JP
2007529833 Oct 2007 JP
2011060278 Mar 2011 JP
2011060279 Mar 2011 JP
2012103926 May 2012 JP
20060132856 Dec 2006 KR
20110028211 Mar 2011 KR
1020130000083 Jan 2013 KR
20130073991 Jul 2013 KR
10-1747966 Jun 2017 KR
10-1793890 Oct 2017 KR
10-2028252 Sep 2019 KR
201518968 May 2015 TW
WO-2009051716 Apr 2009 WO
WO-2012054159 Apr 2012 WO
WO-2015023625 Feb 2015 WO
WO-2015084728 Jun 2015 WO
Non-Patent Literature Citations (47)
Entry
“Korean Application Serial No. 10-2017-0143204, Notice of Preliminary Rejection dated May 2, 2018”, W/English Translation, 10 pgs.
“Chinese Application Serial No. 201010225267.2 Response filed Jan. 28, 2015 to Office Action dated Nov. 15, 2014”, w/English Claims, 15 pgs.
“Chinese Application Serial No. 201010225267.2, Amendment filed Aug. 5, 2015”, w/English Claims, 14 pgs.
“Chinese Application Serial No. 201010225267.2, Office Action dated. Feb. 26, 2014”, w/English Translation, 26 pgs.
“Chinese Application Serial No. 201010225267.2, Office Action dated May 11, 2015”, w/English Translation, 20 pgs.
“Chinese Application Serial No. 201010225267.2, Office Action dated Nov. 15, 2014”, w/English Translation, 32 pgs.
“Chinese Application Serial No. 201010225267.2, Response filed Jul. 9, 2014 to Office Action dated Feb. 26, 2014”, w/English Claims, 18 pgs.
“Chinese Application Serial No. 201010225267.2, Response filed Jul. 27, 2015 to Office Action dated May 11, 2017”, w/English Translation, 19 pgs.
“Chinese Application Serial No. 201010226463.1 Response filed Feb. 12, 2015 to Office Action dated Nov. 27, 2014”, w/English Claims, 13 pgs.
“Chinese Application Serial No. 201010226463.1, Office Action dated Jan. 24, 2013”, w/English Translation, 21 pgs.
“Chinese Application Serial No. 201010226463.1, Office Action dated Jun. 16, 2015”, w/English Claims, 19 pgs.
“Chinese Application Serial No. 201010226463.1, Office Action dated Nov. 27, 2014”, w/English Translation, 24 pgs.
“Chinese Application Serial No. 201010226463.1, Response Filed Aug. 7, 2014 to Office Action dated Jan. 24, 2013”, w/English Claims, 12 pgs.
“Chinese Application Serial No. 201010226463.1, Response filed Oct. 30, 2015 to Office Action dated Jun. 16, 2015”, w/English Claims, 13 pgs.
“European Application Serial No. 14836383.1, Extended European Search Report dated Mar. 2, 2017”, 10 pgs.
“European Application Serial No. 14868099.4, Extended European Search Report dated Jul. 5, 2017”, 8 pgs.
“German Application Serial No. 10 2010 044 529.0-53, Office Action dated Aug. 19, 2011”, w/English Translation, 7 pgs.
“German Application Serial No. 10 2010 044 531.2-53, Office Action dated Sep. 8, 2011”, w/English Translation, 15 pgs.
“German Application Serial No. 102010044529.0-53, Response filed Dec. 23, 2011 to Office Action dated Aug. 19, 2011”, w/English Claims, 14 pgs.
“German Application Serial No. 102010044531.2-53, Office Action Response filed Jan. 12, 2012”, w/English Claims, 25 pgs.
“International Application Serial No. PCT/US2014/050624, International Preliminary Report on Patentability dated Feb. 25, 2016”, 7 pgs.
“International Application Serial No. PCT/US2014/050624, International Search Report dated Nov. 28, 2014”, 3 pgs.
“International Application Serial No. PCT/US2014/050624, Written Opinion dated Nov. 28, 2014”, 5 pgs.
“International Application Serial No. PCT/US2014/067927, International Preliminary Report on Patentability dated Jun. 16, 2016”, 9 pgs.
“International Application Serial No. PCT/US2014/067927, International Search Report dated Mar. 25, 2015”, 6 pgs.
“International Application Serial No. PCT/US2014/067927, Written Opinion dated Mar. 25, 2015”, 7 pgs.
“Japanese Application Serial No. 2010-183449 Response filed Feb. 13, 2015 to Office Action dated Aug. 25, 2014”, w/English Claims, 12 pgs.
“Japanese Application Serial No. 2010-183449 Response filed Jul. 9, 2015 to Office Action dated Apr. 22, 2015”, w/English Claims, 6 pgs.
“Japanese Application Serial No. 2010-183449, Notice of Reasons for Refusal dated Apr. 13, 2015”, w/English Translation, 3 pgs.
“Japanese Application Serial No. 2010-183449, Office Action dated Aug. 25, 2014”, w/English Translation, 10 pgs.
“Japanese Application Serial No. 2010-183450, Office Action dated Mar. 24, 2014”, w/English Translation, 8 pgs.
“Japanese Application Serial No. 201010225267.2, Response filed Jun. 24, 2014 to Office Action dated Mar. 24, 2014”, w/English Claims, 8 pgs.
“Japanese Application Serial No. 2016-535174, Office Action dated May 30, 2017”, w/English Translation, 10 pgs.
“Japanese Application Serial No. 2016-535174, Response filed Jun. 26, 2017 to Office Action dated May 30, 2017”, w/English Claims, 16 pgs.
“Japanese Application Serial No. 2016-535174, Voluntary Amendment dated Jun. 30, 2016”, w/English Translation, 3 pgs.
“Korean Application No. 10-2016-7006563, Notice of Preliminary Rejection dated Aug. 31, 2017”, W/ English Translation, 8 pgs.
“Korean Application Serial No. 10-2010-0068824, Office Action dated Apr. 11, 2016”, w/English Translation, 8 pgs.
“Korean Application Serial No. 10-2016-7006563, Office Action dated Dec. 21, 2016”, w/English Translation, 9 pgs.
“Korean Application Serial No. 10-2016-7006563, Response filed Apr. 19, 2017 to Office Action dated Dec. 21, 2016”, w/English Claims, 29 pgs.
“Korean Application Serial No. 10-2016-7017509, Office Action dated Dec. 21, 2016”, W/ English Translation, 14 pgs.
“Korean Application Serial No. 10-2016-7017509, Response filed May 22, 2017 to Office Action dated Dec. 21, 2016”, w/ English Claims, 26 pgs.
“Korean Application Serial No. 2010-0066779, Office Action dated Jan. 21, 2016”, w/English Translation, 13 pgs.
“Korean Application Serial No. 2010-0066779, Office Action dated Jul. 27, 2016”, w/English Translation, 18 pgs.
“Korean Application Serial No. 2010-0066779, Response filed Mar. 21, 2016 to Office Action dated Jan. 21, 2016”, w/English Translation, 23 pgs.
Noumsi, Auguste, et al., “Acceleration of a Content-Based Image-Retrieval Application on the RDISK Cluster”, IEEE Parallel and Distributed Processing, (2006), 10 pgs.
Rahm, Erhard, “A Framework for Workload Allocation in Distributed Transaction Processing Systems”, Journal of Systems and Software, vol. 18 (2) S, (1992), 171-190.
Stoumpos, Vassilis, et al., “Fragment and Replicate Algoriths for Non-Equi-Join evaluation of Smart Disks”, ISADS, (Mar. 2009), 471-478.
Related Publications (1)
Number Date Country
20180024966 A1 Jan 2018 US
Continuations (1)
Number Date Country
Parent 12557776 Sep 2009 US
Child 15722624 US