Autonomous parking of vehicles inperpendicular parking spots

Abstract
Method and apparatus are disclosed for autonomous parking of vehicles in perpendicular parking spots. An example vehicle includes a front corner, a camera, and an autonomous vehicle parker. The autonomous vehicle parker is to detect, via the camera, a perpendicular parking spot and an outer boundary of the perpendicular parking spot, determine a linear parking path located within the perpendicular parking spot and based on the outer boundary, and autonomously turn into the perpendicular parking spot such that the front corner travels along the linear parking path.
Description
TECHNICAL FIELD

The present disclosure generally relates to autonomous parking and, more specifically, autonomous parking of vehicles in perpendicular parking spots.


BACKGROUND

Oftentimes, vehicles include autonomous or semi-autonomous driving systems that enable the vehicles to be driven with reduced driver input. Typically, a vehicle with an autonomous or semi-autonomous driving system includes sensors that collect information of a surrounding environment of the vehicle. In such instances, the autonomous or semi-autonomous driving system performs motive functions (e.g., steering, accelerating, braking, etc.) based on the collected information. Some driving systems utilize information collected from sensors to autonomously or semi-autonomously park (e.g., parallel park) a vehicle in an available parking spot.


SUMMARY

The appended claims define this application. The present disclosure summarizes aspects of the embodiments and should not be used to limit the claims. Other implementations are contemplated in accordance with the techniques described herein, as will be apparent to one having ordinary skill in the art upon examination of the following drawings and detailed description, and these implementations are intended to be within the scope of this application.


Example embodiments are shown for autonomous parking of vehicles in perpendicular parking spots. An example disclosed vehicle includes a front corner, a camera, and an autonomous vehicle parker. The autonomous vehicle parker is to detect, via the camera, a perpendicular parking spot and an outer boundary of the perpendicular parking spot, determine a linear parking path located within the perpendicular parking spot and based on the outer boundary, and autonomously turn into the perpendicular parking spot such that the front corner travels along the linear parking path.


An example disclosed method for autonomously parking a vehicle into a perpendicular parking spot includes detecting, via a sensor, a perpendicular parking spot and an outer boundary of the perpendicular parking spot and determining, via a processor, a linear parking path located within the perpendicular parking spot and based on the outer boundary. The example disclosed method also includes autonomously turning into the perpendicular parking spot such that a front corner of a vehicle travels along the linear parking path.


An example disclosed tangible computer readable medium including instructions which, when executed, cause a vehicle to detect, via a camera, a perpendicular parking spot and an outer boundary of the perpendicular parking spot and determine, via a processor, a linear parking path located within the perpendicular parking spot and based on the outer boundary. The instructions which, when executed, also cause the vehicle to autonomously turn into the perpendicular parking spot such that a front corner travels along the linear parking path.





BRIEF DESCRIPTION OF THE DRAWINGS

For a better understanding of the invention, reference may be made to embodiments shown in the following drawings. The components in the drawings are not necessarily to scale and related elements may be omitted, or in some instances proportions may have been exaggerated, so as to emphasize and clearly illustrate the novel features described herein. In addition, system components can be variously arranged, as known in the art. Further, in the drawings, like reference numerals designate corresponding parts throughout the several views.



FIG. 1 illustrates an example vehicle approaching a perpendicular parking spot.



FIG. 2 depicts the vehicle of FIG. 1 traveling along a linear parking path to park in the perpendicular parking spot of FIG. 1 in accordance with the teachings herein.



FIG. 3 also depicts the vehicle of FIG. 1 traveling along the linear parking path of FIG. 2.



FIG. 4 depicts the vehicle of FIG. 1 traveling along a linear parking path to park in another perpendicular parking in accordance with the teachings herein.



FIG. 5 is a block diagram of electronic components of the vehicle of FIG. 1.



FIG. 6 is a flowchart of an example method for autonomously parking a vehicle in a perpendicular parking spot by traveling along a linear path in accordance with the teachings herein.





DETAILED DESCRIPTION OF EXAMPLE EMBODIMENTS

While the invention may be embodied in various forms, there are shown in the drawings, and will hereinafter be described, some exemplary and non-limiting embodiments, with the understanding that the present disclosure is to be considered an exemplification of the invention and is not intended to limit the invention to the specific embodiments illustrated.


Oftentimes, vehicles include autonomous or semi-autonomous driving systems that enable the vehicles to be driven with reduced driver input. Generally, a vehicle with such a driving system includes sensors that collect information of a surrounding environment of the vehicle. In such instances, the driving system performs motive functions (e.g., steering, accelerating, braking, etc.) based on the collected information. For example, the vehicle may include a sensor to detect nearby objects to enable the driving system to avoid such objects.


Some driving systems also utilize the collected information to autonomously or semi-autonomously park a vehicle in an available parking spot. For example, such driving systems are utilized to park a vehicle in a parallel parking spot, a diagonal parking spot, a perpendicular parking spot, etc. In some instances in which an autonomous or semi-autonomous driving system is utilized to park in a perpendicular parking spot, the driving system potentially requires a readjustment maneuver (e.g., readjusting the position of the vehicle by reversing the vehicle and subsequently returning to a forward motion) to be performed and/or an increased passing distance between the vehicle and the perpendicular parking spot to enable the vehicle to be parked in the perpendicular parking spot.


Example methods, apparatus, and computer readable media autonomously turn a vehicle into a perpendicular parking spot such that a front corner of the vehicle travels along a linear parking path within perpendicular parking spot to reduce a passing distance between the vehicle and the perpendicular parking path and/or to reduces a width of the perpendicular parking spot in which the vehicle is able to be parked in a single forward motion.


Example vehicles disclosed herein include an autonomous vehicle parker and a camera and/or a sensor. The autonomous vehicle parker autonomous parks the vehicle in a parking spot. As used herein, “autonomous parking” refers to a form of autonomous driving in which motive actions of a vehicle (e.g., steering, turning, accelerating, decelerating, etc.) are controlled by the vehicle without direct driver input to park the vehicle in a parking spot. As used herein, “autonomous driving” refers to a vehicle-maneuvering system in which motive actions of a vehicle (e.g., steering, accelerating, decelerating, etc.) are controlled by the vehicle without direct driver input. As used herein, “semi-autonomous driving” refers to a vehicle-maneuvering system in which some routine motive actions of a vehicle are controlled by the vehicle without direct driver input. As used herein, “autonomous turning” refers to a sequence of autonomous parking, autonomous driving, and/or semi-autonomous driving in which turning of a vehicle is controlled by the vehicle without direct driver input.


The autonomous vehicle parker of the examples disclosed herein detect, via the camera and/or the sensor, a perpendicular parking spot and an outer boundary of the perpendicular parking spot. As used herein, a “perpendicular parking spot” refers to a parking spot for a vehicle of which an outer boundary is perpendicular to an adjacent designated direction of travel of the vehicle.


Further, the autonomous vehicle parker determines, based on the outer boundary, a linear parking path located within the perpendicular parking spot and autonomously turns the vehicle into the perpendicular parking spot such that a front corner of the vehicle travels along the linear parking path. In some examples, the autonomous vehicle parker determines the linear parking path to be offset and parallel to the outer boundary of the perpendicular parking spot. As used herein, a “linear parking path” refers to a linear path along which a portion of a vehicle (e.g., a front corner) travels as the vehicle enters a parking spot. As used herein, a “front corner” of a vehicle refers to a portion of the vehicle at which a front surface and a side surface of the vehicle converge. For example, a vehicle includes a left, front corner and a right, front corner. In some examples, a front corner of a vehicle includes a curved surface that connects the front surface and the side surface of the vehicle. By autonomously turning the vehicle so that the front corner travels along the linear parking path in a single forward motion, the autonomous vehicle parker reduces a passing distance between the vehicle and the perpendicular parking path and/or reduces a width of the perpendicular parking spot in which the autonomous vehicle parker is able to park the vehicle. As used herein, a “passing distance” refers to a distance between a vehicle and a row of perpendicular parking spots before the vehicle turns into an available one of the perpendicular parking spots.


In some examples, the autonomous vehicle parker identifies a target parking position located within the perpendicular parking spot. In such examples, the autonomous vehicle parker determines the linear parking path based on the outer boundary of the perpendicular parking spot and the target parking position. As used herein, a “target parking position” refers to a position located at which an autonomous vehicle parker intends to park within a parking spot.


Further, when determining the linear parking path, the autonomous vehicle parker identifies a first end and a second end opposite the first end of the linear parking path. In some examples, the autonomous vehicle parker determines the first end of the linear parking path based on the target parking position and a minimum turning radius of the vehicle. For example, the autonomous vehicle parker autonomously turns the vehicle at the minimum turning radius between the first end of the linear parking path and the target parking position. As used herein, a “minimum turning radius” refers to a smallest turning radius that a vehicle is physically capable of making.


Additionally or alternatively, the autonomous vehicle parker determines the second end of the linear parking path based on the outer boundary of the perpendicular parking spot. For example, the autonomous vehicle parker determines an orientation at which the vehicle is to be positioned at the second end of the linear parking path based on the target parking position, the minimum turning radius, and a length of the linear parking path. Further, in some such examples, the autonomous vehicle parker determines whether to park in the perpendicular parking spot based on the vehicle orientation at the second end of the linear parking path, the minimum turning radius of the vehicle, and the passing distance between the vehicle and the perpendicular parking spot.


The autonomous vehicle parker of the examples disclosed herein also determines turning radii of the vehicle that cause the front corner of the vehicle to travel along the linear parking path. For example, the autonomous vehicle parker determines the turning radii based on physical characteristics of the vehicle (e.g., a distance between a front axle and a rear axle, a vehicle width, and/or a distance between the front axle and the front corner). For example, the turning radii vary to enable the front corner to travel along the linear parking path as the autonomous vehicle parker autonomously turns the vehicle into the perpendicular parking spot.


Turning to the figures, FIG. 1 illustrates an example vehicle 100 approaching a perpendicular parking spot 102 that is unoccupied. As illustrated in FIG. 1, the perpendicular parking spot 102 is positioned between other perpendicular parking spots 104 that are occupied by other respective vehicles 106.


The vehicle 100 may be a standard gasoline powered vehicle, a hybrid vehicle, an electric vehicle, a fuel cell vehicle, and/or any other mobility implement type of vehicle. The vehicle 100 includes parts related to mobility, such as a powertrain with an engine, a transmission, a suspension, a driveshaft, and/or wheels, etc. The vehicle 100 may be semi-autonomous (e.g., some routine motive functions controlled by the vehicle 100) or autonomous (e.g., motive functions are controlled by the vehicle 100 without direct driver input).


In the illustrated example, the vehicle 100 is spaced apart from the perpendicular parking spots 102, 104 by a passing distance 108. Further, as illustrated in FIG. 1, a front axle 110 and a rear axle 112 of the vehicle 100 are spaced apart by a distance 114 (e.g., a first distance). The front axle 110 and a front side 116 of the vehicle (e.g., including a front corner 208 of FIGS. 2-4) are spaced apart by a distance 118 (e.g., a second distance). Additionally, the vehicle 100 has a width 120. For example, the distance 114 between the front axle 110 and the rear axle 112, the distance 118 between the front axle 110 and the front corner, the width 120 of the vehicle 100, and/or a road wheel angle of the vehicle 100 defines a minimum turning radius of the vehicle 100. The road wheel angle or camber angle is an angle formed between vertical axes of wheels of the vehicle 100 and a surface on which the vehicle 100 is positioned.


As illustrated in FIG. 1, the vehicle 100 includes a camera 122, a sensor 124, a magnetometer 126, and a global positioning system (GPS) receiver 128. For example, the camera 122 is positioned toward the front side 116 of the vehicle 100 to monitor and/or collect information on the perpendicular parking spots 102, 104 that the vehicle 100 is approaching. Additionally or alternatively, the vehicle 100 utilizes the sensor 124 to monitor and/or collect information (e.g., positions, outer boundaries, etc.) on the perpendicular parking spots 102, 104. For example, the sensor 124 may include lidar sensor (e.g., a lidar sensor 516 of FIG. 5), a radar sensor (e.g., a radar sensor 518 of FIG. 5), an ultrasonic sensor (e.g., an ultrasonic sensor 520 of FIG. 5), and/or any other sensor capable of monitoring and/or collecting information on the perpendicular parking spots 102, 104. The magnetometer 126 measures a magnetic orientation of the vehicle 100 and/or a direction in which the vehicle 100 is moving. Further, the GPS receiver 128 communicates with (e.g., transmits signal to, receives signals from) a global positioning system to monitor a location of the vehicle 100.


The vehicle 100 also includes an autonomous vehicle parker 130 that autonomously parks the vehicle in unoccupied parking spots such as the perpendicular parking spot 102. For example, the autonomous vehicle parker 130 can be implemented in a full-active park-assist system in which braking, accelerating, and steering are autonomously operated and/or in a semi-active park-assist system in which steering is autonomously operated and accelerating and braking are user operated. The autonomous vehicle parker 130 autonomously parks the vehicle 100 in the perpendicular parking spot 102 in a single forward motion that reduces a passing distance (e.g., the passing distance 108) from which the vehicle 100 is able to park in the perpendicular parking spot 102 and/or reduces a width of a perpendicular parking spot in which the vehicle 100 is able to park.



FIG. 2 depicts the vehicle 100 traveling along a linear parking path 202 to park at a target parking position 204 within the perpendicular parking spot 102 in accordance with the teachings herein.


Prior to turning along the linear parking path 202, the autonomous vehicle parker 130 detects the perpendicular parking spot 102 and determines that the perpendicular parking spot 102 is unoccupied based on the information collected via the camera 122 and/or the sensor 124 of the vehicle 100. Additionally, the autonomous vehicle parker 130 detects an outer boundary 206 of the perpendicular parking spot 102 and identifies the target parking position 204 within the perpendicular parking spot 102 based on the information collected via the camera 122 and/or the sensor 124. For example, the vehicle 100 is positioned completely within the perpendicular parking spot 102 when the vehicle 100 is at the target parking position 204.


Further, based on the target parking position 204 and the outer boundary 206 of the perpendicular parking spot 102, the autonomous vehicle parker 130 determines the linear parking path 202 along which the front corner 208 of the vehicle 100 is to travel. In the illustrated example, the autonomous vehicle parker 130 determines the linear parking path 202 to be offset from and parallel to the outer boundary 206 such that the linear parking path 202 is located within the perpendicular parking spot 102. For example, the linear parking path 202 is spaced apart from the outer boundary 206 by a buffer distance 210 to deter the vehicle 100 from encroaching the other perpendicular parking spot 104 that is adjacent to the outer boundary 206.


When determining the linear parking path 202, the autonomous vehicle parker 130 determines a length 212, a first end 214, and a second end 216 opposite the first end 214 of the linear parking path 202. In some examples, the autonomous vehicle parker 130 is to autonomously turn the vehicle 100 at its minimum turning radius as the vehicle 100 travels from the first end 214 of the linear parking path 202 to the target parking position 204. In such examples, the autonomous vehicle parker 130 determines a location of the first end 214 of the linear parking path 202 based on the target parking position 204 and the minimum turning radius of the vehicle 100.


Additionally, the autonomous vehicle parker 130 determines a location of the second end 216 of the linear parking path 202 that enables the front corner 208 of the vehicle 100 to travel along the linear parking path 202 as the vehicle 100 approaches the target parking position 204. In such examples, the autonomous vehicle parker 130 determines the location of the second end 216 based on the outer boundary 206 (e.g., a length of the outer boundary 206) of the perpendicular parking spot 102, the target parking position 204, and/or the minimum turning radius of the vehicle 100. Based on the location of the first end 214 and the location of the second end, the autonomous vehicle parker 130 determines the length 212 of the linear parking path 202.


Further, the autonomous vehicle parker 130 determine orientations at which the vehicle 100 is to be positioned at respective locations along the linear parking path 202 that enable the front corner 208 of the vehicle 100 to travel along the linear parking path 202 as the vehicle 100 approaches the target parking position 204. For example, the autonomous vehicle parker 130 determines a first orientation for a first intermediate position 218 of the vehicle 100 when the front corner 208 is at the first end 214, a second orientation for a second intermediate position 220 of the vehicle 100 when the front corner 208 is at the second end 216, and orientations for other intermediate positions of the vehicle 100 between the first intermediate position 218 and the second intermediate position 220.


In some examples, the autonomous vehicle parker 130 determines the orientations at which the vehicle 100 is to be positioned along the linear parking path 202 based on the target parking position 204, the minimum turning radius of the vehicle 100, and/or the length 212 of the linear parking path 202. For example, the autonomous vehicle parker 130 determines the first orientation at the first intermediate position 218 based on the target parking position 204 and the minimum turning radius at which the vehicle 100 turns between the target parking position 204 and the first intermediate position 218. Subsequently, the autonomous vehicle parker 130 determines an orientation of an adjacent intermediate position along the linear parking path 202 based on the first orientation at the first intermediate position 218, the minimum turning radius, and a distance between the first intermediate position 218 and the adjacent intermediate position. In a similar manner, the autonomous vehicle parker 130 determines an orientation for each position along the linear parking path 202 to the second intermediate position 220. In other examples, the autonomous vehicle parker 130 queries a lookup table for the orientations at which the vehicle 100 is to be positioned along the linear parking path 202. In such examples, the autonomous vehicle parker 130 queries the lookup table based on the target parking position 204, the minimum turning radius of the vehicle 100, and/or the length 212 of the linear parking path 202 determined by the autonomous vehicle parker 130.


Based on the orientations at which the vehicle 100 is to be positioned along the linear parking path 202, the autonomous vehicle parker 130 determines turning radii of the vehicle 100 that enable the front corner 208 of the vehicle 100 to travel along the linear parking path 202. For example, the autonomous vehicle parker 130 determines the turning radii of the vehicle 100 that enable the vehicle 100 to transition from one orientation at one position along the linear parking path 202 to another orientation at another position along the linear parking path 202. The autonomous vehicle parker 130 may determine the turning radius associated with a particular position along the linear parking path 202 based on physical characteristics of the vehicle 100 such as the distance 114 between the front axle 110 and the rear axle 112, the width 120 of the vehicle 100, and/or the distance 118 between the front axle 110 and the front side 116 (e.g., the front corner 208). For example, the turning radius of the vehicle 100 varies to enable the front corner 208 to travel along the linear parking path 202 as the autonomous vehicle parker 130 autonomously turns the vehicle 100 into the perpendicular parking spot 102.


Further, the autonomous vehicle parker 130 also determines whether the autonomous vehicle parker 130 is able to park the vehicle 100 at the target parking position 204 within the perpendicular parking spot 102 in a single forward motion. For example, the autonomous vehicle parker 130 determines whether the passing distance 108 of the vehicle 100 enables the vehicle 100 to reach the linear parking path 202 at an orientation relative to the linear parking path 202 that enables the front corner 208 to travel along the linear parking path 202 to the target parking position 204. In such examples, the autonomous vehicle parker 130 determines whether the vehicle 100 is able to park in the perpendicular parking spot 102 based on the passing distance 108 the minimum turning radius of the vehicle 100, and/or the orientation at which the vehicle 100 is to be positioned at the second end 216 of the linear parking path 202. In response to determining that the autonomous vehicle parker 130 is able to park the vehicle 100 in a single forward motion, the autonomous vehicle parker 130 autonomously turns the vehicle 100 into the perpendicular parking spot 102 and toward the target parking position so that a front corner 208 (e.g., a front, left corner in FIG. 2) of the vehicle 100 travels along the linear parking path 202.



FIG. 3 also depicts the vehicle 100 traveling along the linear parking path 202 and into the perpendicular parking spot 102 located between the other perpendicular parking spots 104. In FIG. 3, the vehicle 100 is positioned at a third intermediate position 302 along the linear parking path 202 that is between the first intermediate position 218 at the first end 214 and the second intermediate position 220 at the second end 216. At the third intermediate position 302, the vehicle 100 is oriented at an angle 304 relative to the linear parking path 202.


Further, the autonomous vehicle parker 130 utilizes Equation 1 provided below to determine the turning radius of the vehicle 100 at the third intermediate position 302 and the turning radii of the vehicle 100 at other positions (e.g., the first intermediate position 218, the second intermediate position 220) that enables the front corner 208 of the vehicle 100 to travel along the linear parking path 202 as the vehicle enters the perpendicular parking spot 102.










R


(
x
)


=


WB
+

L
f

-

tan







ω


(
x
)


·

VW
2





tan






w


(
x
)








Equation





1







In Equation 1 provided above, x represents a position along the linear parking path 202 (e.g., the first intermediate position 218, the second intermediate position 220, the third intermediate position 302), R represents the turning radius at which the vehicle 100 is to turn at x, WB represents the distance 114 between the front axle 110 and the rear axle 112, Lf represents the distance 118 between the front axle 110 and the front side 116, VW represents the width 120 of the vehicle 100, and ω represents an orientation of the vehicle relative to the linear parking path 202 at x (e.g., the angle 304 at the third intermediate position 302). For example, the autonomous vehicle parker 130 utilizes Equation 1 to determine the turning radius of the vehicle 100 at each position along the linear parking path 202 that enables the vehicle 100 to park within the perpendicular parking spot 102 in single forward motion. In other examples, Equation 1 is utilized to generate data in a lookup table that the autonomous vehicle parker 130 queries to determine the turning radius of the vehicle 100 at each position along the linear parking path 202.



FIG. 4 depicts the vehicle 100 traveling along another example linear parking path 400 to park in another perpendicular parking spot 402 in accordance with the teachings herein. As illustrated in FIG. 4, the perpendicular parking spot 402 is positioned between other perpendicular parking spots occupied by other respective vehicles 404. Further, the perpendicular parking spot 402 of FIG. 4 has a width that is less than that of the perpendicular parking spot 102 of FIGS. 1-3. By determining and autonomously turning the vehicle 100 so that the front corner 208 travels along a linear parking path (e.g., the linear parking path 400), the autonomous vehicle parker 130 is capable of reducing a width of a perpendicular parking spot (e.g., the perpendicular parking spot 402) in which the vehicle 100 is able to park in a single forward motion.


To park in the perpendicular parking spot 402, the vehicle 100 initially is positioned at a passing distance 408. Subsequently, the autonomous vehicle parker 130 autonomously turns the vehicle 100 to travel along a first parking path portion 410. In the illustrated example, the autonomous vehicle parker 130 autonomously turns the vehicle 100 at the minimum turning radius of the vehicle 100 to reduce the passing distance 408 from which the vehicle 100 is able to park in the perpendicular parking spot 402 in a single forward motion. The autonomous vehicle parker 130 then autonomously turns the vehicle 100 to travel along a second parking path portion 412. During the second parking path portion 412, the vehicle 100 the turning radius at which the vehicle 100 turns may vary over time and/or be greater than the minimum turning radius of the vehicle. As the vehicle 100 reaches the perpendicular parking spot 402, the autonomous vehicle parker 130 autonomously turns the vehicle 100 so that the front corner 208 of the vehicle 100 travels along the linear parking path 400. By traveling along the linear parking path 400, the autonomous vehicle parker 130 reduces the passing distance 408 from which the vehicle 100 is able to park in the perpendicular parking spot 402 in a single forward motion. Further, after the vehicle 100 travels along the linear parking path 400, the autonomous vehicle parker 130 autonomously turns the vehicle 100 to travel along a fourth parking path portion 416 to arrive at a target parking position 418. For example, the autonomous vehicle parker 130 autonomously turns the vehicle 100 at the minimum turning radius of the vehicle along the fourth parking path portion 416.



FIG. 5 is a block diagram of electronic components 500 of the vehicle 100. As illustrated in FIG. 5, the electronic components 500 include an on-board computing platform 502, the camera 122, the GPS receiver 128, sensors 504, electronic control units (ECUs) 506, and a vehicle data bus 508.


The on-board computing platform 502 includes a microcontroller unit, controller or processor 510, memory 512, and a database 514. In some examples, the processor 510 of the on-board computing platform 502 is structured to include the autonomous vehicle parker 130. Alternatively, in some examples, the autonomous vehicle parker 130 is incorporated into another electronic control unit (ECU) with its own processor 510 and memory 512. The processor 510 may be any suitable processing device or set of processing devices such as, but not limited to, a microprocessor, a microcontroller-based platform, an integrated circuit, one or more field programmable gate arrays (FPGAs), and/or one or more application-specific integrated circuits (ASICs). The memory 512 may be volatile memory (e.g., RAM including non-volatile RAM, magnetic RAM, ferroelectric RAM, etc.), non-volatile memory (e.g., disk memory, FLASH memory, EPROMs, EEPROMs, memristor-based non-volatile solid-state memory, etc.), unalterable memory (e.g., EPROMs), read-only memory, and/or high-capacity storage devices (e.g., hard drives, solid state drives, etc). In some examples, the memory 512 includes multiple kinds of memory, particularly volatile memory and non-volatile memory.


The memory 512 is computer readable media on which one or more sets of instructions, such as the software for operating the methods of the present disclosure, can be embedded. The instructions may embody one or more of the methods or logic as described herein. For example, the instructions reside completely, or at least partially, within any one or more of the memory 512, the computer readable medium, and/or within the processor 510 during execution of the instructions.


The terms “non-transitory computer-readable medium” and “computer-readable medium” include a single medium or multiple media, such as a centralized or distributed database, and/or associated caches and servers that store one or more sets of instructions. Further, the terms “non-transitory computer-readable medium” and “computer-readable medium” include any tangible medium that is capable of storing, encoding or carrying a set of instructions for execution by a processor or that cause a system to perform any one or more of the methods or operations disclosed herein. As used herein, the term “computer readable medium” is expressly defined to include any type of computer readable storage device and/or storage disk and to exclude propagating signals.


In some examples, the autonomous vehicle parker 130 and/or the processor 510 calculates orientations at which the vehicle 100 is to be positioned at respective locations as the vehicle 100 approaches the target parking position 204 (e.g., as the front corner 208 of the vehicle 100 travels along the linear parking path 202). Additionally or alternatively, the autonomous vehicle parker 130 and/or the processor 510 queries a lookup table of the database 514 to identify orientations at which the vehicle 100 is to be positioned at respective locations as the vehicle 100 approaches the target parking position 204. For example, the lookup table of the database 514 may enable the autonomous vehicle parker 130 and/or the processor 510 to identify an orientation of the vehicle 100 at a particular location along the linear parking path 202 based on the length 212 of the linear parking path 202, the target parking position 204 within the perpendicular parking spot 102, and the minimum turning radius of the vehicle 100.


The sensors 504 are arranged in and around the vehicle 100 to monitor properties of the vehicle 100 and/or an environment in which the vehicle 100 is located. One or more of the sensors 504 may be mounted to measure properties around an exterior of the vehicle 100. Additionally or alternatively, one or more of the sensors 504 may be mounted inside a cabin of the vehicle 100 or in a body of the vehicle 100 (e.g., an engine compartment, wheel wells, etc.) to measure properties in an interior of the vehicle 100. For example, the sensors 504 include accelerometers, odometers, tachometers, pitch and yaw sensors, wheel speed sensors, microphones, tire pressure sensors, biometric sensors and/or sensors of any other suitable type.


In the illustrated example, the sensors 504 include a lidar sensor 516, a radar sensor 518, an ultrasonic sensor 520, and the magnetometer 126. For example, the sensor 124 of the vehicle 100 that may be utilized to detect the perpendicular parking spot 102, the outer boundary 206 of the perpendicular parking spot 102, and/or the target parking position 204 within the perpendicular parking spot 102 includes the lidar sensor 516, the radar sensor 518, and/or the ultrasonic sensor 520. The lidar sensor 516 detects and locates an object (e.g., the perpendicular parking spot 102) via lasers, the radar sensor 518 detects and locates the object via radio waves, and the ultrasonic sensor 520 detects and locates the object via ultrasound waves. Further, the magnetometer 126 measures the magnetic orientation of the vehicle 100 as the turns into the perpendicular parking spot 102.


The ECUs 506 monitor and control the subsystems of the vehicle 100. For example, the ECUs 506 are discrete sets of electronics that include their own circuit(s) (e.g., integrated circuits, microprocessors, memory, storage, etc.) and firmware, sensors, actuators, and/or mounting hardware. The ECUs 506 communicate and exchange information via a vehicle data bus (e.g., the vehicle data bus 508). Additionally, the ECUs 506 may communicate properties (e.g., status of the ECUs 506, sensor readings, control state, error and diagnostic codes, etc.) to and/or receive requests from each other. For example, the vehicle 100 may have seventy or more of the ECUs 506 that are positioned in various locations around the vehicle 100 and are communicatively coupled by the vehicle data bus 508. In the illustrated example, the ECUs 506 include a brake control module 522, a speed control unit 524, and a telematic control unit 526. For example, the brake control module 522 autonomously operate brakes of the vehicle 100, and the speed control unit 524 autonomously controls a speed at which the vehicle 100 travels. In some examples, the brake control module 522 and the speed control unit 524 receive signals from the processor 510 of the on-board computing platform 502 to control the brakes and the speed, respectively, of the vehicle 100. Further, the telematic control unit 526 controls tracking of the vehicle 100, for example, utilizing data received by the GPS receiver 128 of the vehicle 100.


The vehicle data bus 508 communicatively couples the camera 122, the GPS receiver 128, the on-board computing platform 502, the sensors 504, and the ECUs 506. In some examples, the vehicle data bus 508 includes one or more data buses. The vehicle data bus 508 may be implemented in accordance with a controller area network (CAN) bus protocol as defined by International Standards Organization (ISO) 11898-1, a Media Oriented Systems Transport (MOST) bus protocol, a CAN flexible data (CAN-FD) bus protocol (ISO 11898-7) and/a K-line bus protocol (ISO 9141 and ISO 14230-1), and/or an Ethernet™bus protocol IEEE 802.3 (2002 onwards), etc.



FIG. 6 is a flowchart of an example method 600 to autonomously parking a vehicle in a perpendicular parking spot by traveling along a linear path. The flowchart of FIG. 6 is representative of machine readable instructions that are stored in memory (such as the memory 512 of FIG. 5) and include one or more programs which, when executed by a processor (such as the processor 510 of FIG. 5), cause the vehicle 100 to implement the example autonomous vehicle parker 130 of FIGS. 1 and 5. While the example program is described with reference to the flowchart illustrated in FIG. 6, many other methods of implementing the example autonomous vehicle parker 130 may alternatively be used. For example, the order of execution of the blocks may be rearranged, changed, eliminated, and/or combined to perform the method 600. Further, because the method 600 is disclosed in connection with the components of FIGS. 1-5, some functions of those components will not be described in detail below.


Initially, at block 602, the autonomous vehicle parker 130 determines a characteristic of the vehicle 100. For example, the autonomous vehicle parker 130 determines the distance 114 between the front axle 110 and the rear axle 112. At block 604, the autonomous vehicle parker 130 identifies whether there is another characteristic of the vehicle 100 to determine. In response to determining that there is another characteristic to determine, the autonomous vehicle parker 130 repeats blocks 602, 604 until no other characteristics are identified. For example, the autonomous vehicle parker 130 repeats blocks 602, 604 to determine the distance 118 between the front axle 110 and the front side 116 (e.g., the front corner 208), the width 120 of the vehicle 100 and/or the minimum turning radius.


At block 606, the autonomous vehicle parker 130 determines, via the camera 122 and/or the sensor 124, whether an available or open perpendicular parking spot is detected. In response to the autonomous vehicle parker 130 not detecting an available perpendicular parking spot, block 606 is repeated. In response to the autonomous vehicle parker 130 detecting an available perpendicular parking spot (e.g., the perpendicular parking spot 102), the method 600 proceeds to block 608 at which the autonomous vehicle parker 130 determines the outer boundary 206 of the perpendicular parking spot 102 via the camera 122 and/or the sensor 124. At block 610, the autonomous vehicle parker 130 identifies, via the camera 122 and/or the sensor 124, the passing distance 108 of the vehicle 100 to the perpendicular parking spot 102. Further, at block 612, the autonomous vehicle parker 130 determines the target parking position 204 within the perpendicular parking spot 102 at which the vehicle 100 is to be parked.


At block 614, the autonomous vehicle parker 130 determines the linear parking path 202 along which the front corner 208 of the vehicle 100 is to travel as the vehicle 100 approaches the target parking position 204 in a single forward motion. For example, the autonomous vehicle parker 130 determines the linear parking path 202 based on the outer boundary 206 of the perpendicular parking position 102 and the target parking position 204 locate within the perpendicular parking position 102. At block 616, the autonomous vehicle parker 130 determines orientations at which the vehicle 100 is to be positioned along the linear parking path 202. For example, autonomous vehicle parker 130 determines an orientation of the vehicle 100 at a corresponding position based on the target parking position 204, the minimum turning radius of the vehicle 100, and/or the length 212 of the linear parking path 202.


At block 618, the autonomous vehicle parker 130 determines turning radii that enable the front corner 208 of the vehicle 100 to travel along the linear parking path 202. That is, the turning radii determined by the autonomous vehicle parker 130 enable the vehicle 100 to transition from one orientation at one position along the linear parking path 202 to another orientation at another position along the linear parking path 202 as the front corner 208 travels along the linear parking path 202. For example the autonomous vehicle parker 130 determines the turning radii based on the target parking position 204, the outer boundary 206 of the perpendicular parking spot 102, and/or characteristics of the vehicle 100. Additionally or alternatively, the autonomous vehicle parker 130 determines the turning radii by querying the lookup table of the database 514 based on the target parking position 204, the outer boundary 206 of the perpendicular parking spot 102, and/or characteristics of the vehicle 100.


At block 620, the autonomous vehicle parker 130 determines whether the vehicle 100 is able to be parked in the perpendicular parking spot 102. For example, the autonomous vehicle parker 130 determines whether the vehicle 100 is able to approach the linear parking path 202 in such a manner that enables the front corner 208 of the vehicle 100 to travel along linear parking path 202. In response to the autonomous vehicle parker 130 determining that the vehicle 100 is unable to be parked in the perpendicular parking spot 102, the method 600 returns to block 606. In response to determining that the vehicle 100 is able to be parked in the perpendicular parking spot 102, the autonomous vehicle parker 130 autonomously turns the vehicle 100 into the perpendicular parking spot 102 such that the front corner 208 travels along the linear parking path 202 and the vehicle 100 reaches the target parking position 204.


In this application, the use of the disjunctive is intended to include the conjunctive. The use of definite or indefinite articles is not intended to indicate cardinality. In particular, a reference to “the” object or “a” and “an” object is intended to denote also one of a possible plurality of such objects. Further, the conjunction “or” may be used to convey features that are simultaneously present instead of mutually exclusive alternatives. In other words, the conjunction “or” should be understood to include “and/or”. The terms “includes,” “including,” and “include” are inclusive and have the same scope as “comprises,” “comprising,” and “comprise” respectively.


The above-described embodiments, and particularly any “preferred” embodiments, are possible examples of implementations and merely set forth for a clear understanding of the principles of the invention. Many variations and modifications may be made to the above-described embodiment(s) without substantially departing from the spirit and principles of the techniques described herein. All modifications are intended to be included herein within the scope of this disclosure and protected by the following claims.

Claims
  • 1. A vehicle comprising: a front corner;a camera; andan autonomous vehicle parker to: detect, via the camera, a perpendicular parking spot and an outer boundary of the perpendicular parking spot;determine a linear parking path located within the perpendicular parking spot and based on the outer boundary, wherein the linear parking path extends in a first direction and is spaced apart from the outer boundary in a second direction crossing the first direction; andautonomously turn into the perpendicular parking spot such that the front corner travels along the linear parking path.
  • 2. The vehicle of claim 1, wherein the autonomous vehicle parker identifies a target parking position located within the perpendicular parking spot and determines the linear parking path further based on the target parking position.
  • 3. The vehicle of claim 1, wherein the autonomous vehicle parker determines the linear parking path to be parallel to the outer boundary of the perpendicular parking spot.
  • 4. The vehicle of claim 1, wherein the autonomous vehicle parker identifies a first end and a second end opposite the first end of the linear parking path.
  • 5. The vehicle of claim 4, wherein the autonomous vehicle parker determines the first end based on a target parking position and a minimum turning radius.
  • 6. The vehicle of claim 5, wherein the autonomous vehicle parker autonomously turns at the minimum turning radius between the first end of the linear parking path and the target parking position.
  • 7. The vehicle of claim 4, wherein the autonomous vehicle parker determines the second end based on the outer boundary of the perpendicular parking spot.
  • 8. The vehicle of claim 7, wherein the autonomous vehicle parker determines a vehicle orientation at which the vehicle is to be positioned at the second end of the linear parking path based on a target parking position, a minimum turning radius, and a length of the linear parking path.
  • 9. The vehicle of claim 8, wherein the autonomous vehicle parker determines whether to park in the perpendicular parking spot based on a passing distance to the perpendicular parking spot, the vehicle orientation at the second end of the linear parking path, and the minimum turning radius.
  • 10. The vehicle of claim 1, wherein the autonomous vehicle parker determines turning radii that cause the front corner to travel along the linear parking path based on a first distance between a front axle and a rear axle, a vehicle width, and a second distance between the front axle and the front corner.
  • 11. The vehicle of claim 10, wherein the turning radii vary as the autonomous vehicle parker autonomously turns along the linear parking path.
  • 12. The vehicle of claim 1, wherein the autonomous vehicle parker autonomously turns along the linear parking path in a single forward motion to at least one of reduce a passing distance between the vehicle and the linear parking path and reduce a width of the perpendicular parking spot in which the autonomous vehicle parker is able to park.
  • 13. The vehicle of claim 1, including at least one of a radar sensor, a lidar sensor, and an ultrasonic sensor to further detect the perpendicular parking spot and the outer boundary of the perpendicular parking spot.
  • 14. A method for autonomously parking a vehicle into a perpendicular parking spot, the method comprising: detecting, via a sensor, the perpendicular parking spot and an outer boundary of the perpendicular parking spot;determining, via a processor, a linear parking path located within the perpendicular parking spot and based on the outer boundary, wherein the linear parking path extends in a first direction and is spaced apart from the outer boundary in a second direction crossing the first direction; andautonomously turning into the perpendicular parking spot such that a front corner of the vehicle travels along the linear parking path.
  • 15. The method of claim 14, further including identifying a target parking position located within the perpendicular parking spot, wherein determining the linear parking path is further based on the target parking position.
  • 16. The method of claim 14, further including identifying a first end and a second end opposite the first end of the linear parking path based on the outer boundary of the perpendicular parking spot, a target parking position, and a minimum turning radius of the vehicle.
  • 17. The method of claim 16, further including autonomously turning at the minimum turning radius between the first end of the linear parking path and the target parking position.
  • 18. The method of claim 16, further including: determining a vehicle orientation at which the vehicle is to be positioned at the second end of the linear parking path based on a target parking position, the minimum turning radius, and a length of the linear parking path; anddetermining whether to park in the perpendicular parking spot based on a passing distance between the vehicle and the perpendicular parking spot, the vehicle orientation of the vehicle at the second end of the linear parking path, and the minimum turning radius of the vehicle.
  • 19. The method of claim 14, further including determining turning radii that cause the front corner to travel along the linear parking path based on a first distance between a front axle and a rear axle of the vehicle, a vehicle width of the vehicle, and a second distance between the front axle and the front corner of the vehicle.
  • 20. A tangible computer readable medium including instructions which, when executed, cause a vehicle to: detect, via a camera, a perpendicular parking spot and an outer boundary of the perpendicular parking spot;determine, via a processor, a linear parking path located within the perpendicular parking spot and based on the outer boundary, wherein the linear parking path extends in a first direction and is spaced apart from the outer boundary in a second direction crossing the first direction; andautonomously turn into the perpendicular parking spot such that a front corner travels along the linear parking path.
US Referenced Citations (257)
Number Name Date Kind
6356828 Shimizu Mar 2002 B1
6476730 Kakinami Nov 2002 B2
6657555 Shimizu Dec 2003 B2
6683539 Trajkovic Jan 2004 B2
6724322 Tang Apr 2004 B2
6744364 Wathen Jun 2004 B2
6768420 McCarthy Jul 2004 B2
6801855 Walters Oct 2004 B1
6850148 Masudaya Feb 2005 B2
6927685 Wathen Aug 2005 B2
6850844 Walters Oct 2005 B1
7042332 Takamura May 2006 B2
7123167 Staniszewski Oct 2006 B2
7663508 Teshima Feb 2010 B2
7737866 Wu Jun 2010 B2
7813844 Gensler Oct 2010 B2
7825828 Watanabe Nov 2010 B2
7834778 Browne Nov 2010 B2
7847709 McCall Dec 2010 B2
7850078 Christenson Dec 2010 B2
8035503 Partin Oct 2011 B2
8054169 Bettecken Nov 2011 B2
8126450 Howarter Feb 2012 B2
8164628 Stein Apr 2012 B2
8180524 Eguchi May 2012 B2
8180547 Prasad May 2012 B2
8224313 Howarter Jul 2012 B2
8229645 Lee Jul 2012 B2
8242884 Holcomb Aug 2012 B2
8335598 Dickerhoof Dec 2012 B2
8401235 Lee Mar 2013 B2
8493236 Boehme Jul 2013 B2
8538408 Howarter Sep 2013 B2
8542130 Lavoie Sep 2013 B2
8587681 Guidash Nov 2013 B2
8594616 Gusikhin Nov 2013 B2
8599043 Kadowaki Dec 2013 B2
8645015 Oetiker Feb 2014 B2
8655551 Danz Feb 2014 B2
8692773 You Apr 2014 B2
8706350 Talty Apr 2014 B2
8725315 Talty May 2014 B2
8742947 Nakazono Jun 2014 B2
8744684 Hong Jun 2014 B2
8780257 Gidon Jul 2014 B2
8825262 Lee Sep 2014 B2
8933778 Birkel Jan 2015 B2
8957786 Stempnik Feb 2015 B2
8994548 Gaboury Mar 2015 B2
8995914 Nishidai Mar 2015 B2
9008860 Waldock Apr 2015 B2
9014920 Torres Apr 2015 B1
9078200 Wuergler Jul 2015 B2
9086879 Gautama Jul 2015 B2
9141503 Chen Sep 2015 B1
9147065 Lauer Sep 2015 B2
9154920 O'Brien Oct 2015 B2
9168955 Noh Oct 2015 B2
9193387 Auer Nov 2015 B2
9225531 Hachey Dec 2015 B2
9233710 Lavoie Jan 2016 B2
9273966 Bartels Mar 2016 B2
9283960 Lavoie Mar 2016 B1
9286803 Tippelhofer Mar 2016 B2
9302675 Schilling Apr 2016 B2
9318022 Barth Apr 2016 B2
9379567 Kracker Jun 2016 B2
9381859 Nagata Jul 2016 B2
9429657 Sidhu Aug 2016 B2
9429947 Wengreen Aug 2016 B1
9469247 Juneja Oct 2016 B2
9493187 Pilutti Nov 2016 B2
9506774 Shutko Nov 2016 B2
9522675 You Dec 2016 B1
9529519 Blumenberg Dec 2016 B2
9557741 Elie Jan 2017 B1
9563990 Khan Feb 2017 B2
9595145 Avery Mar 2017 B2
9598051 Okada Mar 2017 B2
9606241 Varoglu Mar 2017 B2
9616923 Lavoie Apr 2017 B2
9637117 Gusikhin May 2017 B1
9651655 Feldman May 2017 B2
9656690 Shen May 2017 B2
9666040 Flaherty May 2017 B2
9688306 McClain Jun 2017 B2
9701280 Schussmann Jul 2017 B2
9712977 Tu Jul 2017 B2
9715816 Adler Jul 2017 B1
9725069 Krishnan Aug 2017 B2
9731714 Kiriya Aug 2017 B2
9731764 Baek Aug 2017 B2
9754173 Kim Sep 2017 B2
9809218 Elie Nov 2017 B2
9842444 Van Wiemeersch Dec 2017 B2
9845070 Petel Dec 2017 B2
9846431 Petel Dec 2017 B2
9914333 Shank Mar 2018 B2
9921743 Bryant Mar 2018 B2
9946255 Matters Apr 2018 B2
9959763 Miller May 2018 B2
9975504 Dalke May 2018 B2
10131347 Kim Nov 2018 B2
20030060972 Kakinami Mar 2003 A1
20030098792 Edwards May 2003 A1
20050030156 Alfonso Feb 2005 A1
20050099275 Kamdar May 2005 A1
20060227010 Berstis Oct 2006 A1
20060235590 Bolourchi Oct 2006 A1
20070230944 Georgiev Oct 2007 A1
20080027591 Lenser Jan 2008 A1
20080154464 Sasajima Jun 2008 A1
20080154613 Haulick Jun 2008 A1
20080238643 Malen Oct 2008 A1
20080306683 Ando Dec 2008 A1
20090096753 Lim Apr 2009 A1
20090098907 Huntzicker Apr 2009 A1
20090115639 Proefke May 2009 A1
20090125181 Luke May 2009 A1
20090125311 Haulick May 2009 A1
20090128315 Griesser May 2009 A1
20090146813 Nuno Jun 2009 A1
20090289813 Kwiecinski Nov 2009 A1
20090313095 Hurpin Dec 2009 A1
20100025942 Von Rehyer Feb 2010 A1
20100114471 Sugiyama May 2010 A1
20100114488 Khamharn May 2010 A1
20100152972 Attard Jun 2010 A1
20100156672 Yoo Jun 2010 A1
20100259420 Von Reyher Oct 2010 A1
20110071725 Kleve Mar 2011 A1
20110082613 Oetiker Apr 2011 A1
20120007741 Laffey Jan 2012 A1
20120072067 Jecker Mar 2012 A1
20120083960 Zhu Apr 2012 A1
20120173080 Cluff Jul 2012 A1
20120303258 Pampus Nov 2012 A1
20120323643 Volz Dec 2012 A1
20120323700 Aleksandrovich Dec 2012 A1
20130021171 Hsu Jan 2013 A1
20130024202 Harris Jan 2013 A1
20130073119 Huger Mar 2013 A1
20130110342 Wuttke May 2013 A1
20130113936 Cohen May 2013 A1
20130124061 Khanafer May 2013 A1
20130145441 Mujumdar Jun 2013 A1
20130231824 Wilson Sep 2013 A1
20130289825 Noh Oct 2013 A1
20130314502 Urbach Nov 2013 A1
20130317944 Huang Nov 2013 A1
20140096051 Boblett Apr 2014 A1
20140121930 Allexi May 2014 A1
20140147032 Yous May 2014 A1
20140188339 Moon Jul 2014 A1
20140222252 Matters Aug 2014 A1
20140240502 Strauss Aug 2014 A1
20140300504 Shaffer Oct 2014 A1
20140303839 Filev Oct 2014 A1
20140320318 Victor Oct 2014 A1
20140327736 DeJohn Nov 2014 A1
20140350804 Park Nov 2014 A1
20140350855 Vishnuvajhala Nov 2014 A1
20140365108 You Dec 2014 A1
20140365126 Vulcano Dec 2014 A1
20150022468 Cha Jan 2015 A1
20150039173 Beaurepaire Feb 2015 A1
20150039224 Tuukkanen Feb 2015 A1
20150066545 Kotecha Mar 2015 A1
20150077522 Suzuki Mar 2015 A1
20150088360 Bonnet Mar 2015 A1
20150091741 Stefik Apr 2015 A1
20150123818 Sellschopp May 2015 A1
20150127208 Jecker May 2015 A1
20150149265 Huntzicker May 2015 A1
20150151789 Lee et al. Jun 2015 A1
20150153178 Koo Jun 2015 A1
20150161890 Huntzicker Jun 2015 A1
20150163649 Chen Jun 2015 A1
20150203111 Bonnet Jul 2015 A1
20150219464 Beaurepaire Aug 2015 A1
20150220791 Wu Aug 2015 A1
20150226146 Elwart Aug 2015 A1
20150274016 Kinoshita Oct 2015 A1
20150286340 Send Oct 2015 A1
20150329110 Stefan Nov 2015 A1
20150344028 Gieseke Dec 2015 A1
20150346727 Ramanujam Dec 2015 A1
20150360720 Li Dec 2015 A1
20150371541 Korman Dec 2015 A1
20150375741 Kiriya Dec 2015 A1
20150375742 Gebert et al. Dec 2015 A1
20160012726 Wang Jan 2016 A1
20160055749 Nicoll Feb 2016 A1
20160062354 Li Mar 2016 A1
20160068187 Hata Mar 2016 A1
20160075369 Lavoie Mar 2016 A1
20160090055 Breed Mar 2016 A1
20160107689 Lee Apr 2016 A1
20160112846 Siswick Apr 2016 A1
20160114726 Nagata Apr 2016 A1
20160117926 Akavaram Apr 2016 A1
20160127664 Bruder May 2016 A1
20160139244 Holtman May 2016 A1
20160144857 Ohshima May 2016 A1
20160153778 Singh Jun 2016 A1
20160170494 Bonnet Jun 2016 A1
20160185389 Ishijima Jun 2016 A1
20160189435 Beaurepaire Jun 2016 A1
20160207528 Stefan Jul 2016 A1
20160236680 Lavoie Aug 2016 A1
20160257304 Lavoie Sep 2016 A1
20160272244 Imai Sep 2016 A1
20160282442 O'Mahony Sep 2016 A1
20160284217 Lee Sep 2016 A1
20160288657 Tokura Oct 2016 A1
20160304087 Noh Oct 2016 A1
20160304088 Barth Oct 2016 A1
20160349362 Rohr Oct 2016 A1
20160321445 Turgeman Nov 2016 A1
20160321926 Mayer Nov 2016 A1
20160334797 Ross Nov 2016 A1
20160355125 Herbert Dec 2016 A1
20160358474 Uppal Dec 2016 A1
20160368489 Aich Dec 2016 A1
20160371607 Rosen Dec 2016 A1
20160371691 Kang Dec 2016 A1
20170001650 Park Jan 2017 A1
20170008563 Popken Jan 2017 A1
20170026198 Ochiai Jan 2017 A1
20170028985 Kiyokawa Feb 2017 A1
20170030722 Kojo Feb 2017 A1
20170032593 Patel Feb 2017 A1
20170072947 Lavoie Mar 2017 A1
20170073004 Shepard Mar 2017 A1
20170076603 Bostick Mar 2017 A1
20170116790 Kusens Apr 2017 A1
20170123423 Sako May 2017 A1
20170129537 Kim May 2017 A1
20170129538 Stefan May 2017 A1
20170132482 Kim May 2017 A1
20170144654 Sham May 2017 A1
20170144656 Kim May 2017 A1
20170147995 Kalimi May 2017 A1
20170168479 Dang Jun 2017 A1
20170192428 Vogt Jul 2017 A1
20170200369 Miller Jul 2017 A1
20170208438 Dickow Jul 2017 A1
20170297385 Kim Oct 2017 A1
20170301241 Urhahne Oct 2017 A1
20170308075 Whitaker Oct 2017 A1
20180024559 Seo Jan 2018 A1
20180029591 Lavoie Feb 2018 A1
20180039264 Messner Feb 2018 A1
20180043884 Johnson Feb 2018 A1
20180056939 van Roermund Mar 2018 A1
20180194344 Wang Jul 2018 A1
20180236957 Min Aug 2018 A1
Foreign Referenced Citations (86)
Number Date Country
106945662 Jul 1917 CN
101929921 Dec 2010 CN
103818204 May 2014 CN
104485013 Apr 2015 CN
104691544 Jun 2015 CN
103049159 Jul 2015 CN
105513412 Apr 2016 CN
105588563 May 2016 CN
105599703 May 2016 CN
105774691 Jul 2016 CN
106027749 Oct 2016 CN
205719000 Nov 2016 CN
106598630 Apr 2017 CN
104290751 Jan 2018 CN
3844340 Jul 1990 DE
19817142 Oct 1999 DE
19821163 Nov 1999 DE
102005006966 Sep 2005 DE
102006058213 Jul 2008 DE
102009051055 Jul 2010 DE
102012008858 Nov 2012 DE
102011122421 Jun 2013 DE
102012200725 Jul 2013 DE
102013004214 Sep 2013 DE
102010034129 Oct 2013 DE
102012215218 Jun 2014 DE
102012222972 Jun 2014 DE
102013213064 Jan 2015 DE
102014009077 Feb 2015 DE
102013016342 Apr 2015 DE
102013019771 May 2015 DE
102013019904 May 2015 DE
102014007915 Dec 2015 DE
102014011802 Feb 2016 DE
102014111570 Feb 2016 DE
102014015655 Apr 2016 DE
102015209976 Dec 2016 DE
102015221224 May 2017 DE
102016011916 Jun 2017 DE
102016125282 Jul 2017 DE
102016211021 Dec 2017 DE
2289768 Mar 2011 EP
2295281 Mar 2011 EP
2653367 Oct 2013 EP
2768718 Mar 2016 EP
2620351 Jun 2016 EP
2135788 Jun 2017 EP
2344481 Jun 2000 GB
2481324 Jun 2011 GB
2491720 Dec 2012 GB
2497836 Dec 2012 GB
2517835 Mar 2015 GB
2000293797 Oct 2000 JP
2004142543 May 2004 JP
2004287884 Oct 2004 JP
2005193742 Jul 2005 JP
2009090850 Apr 2009 JP
2014125196 Jul 2014 JP
2014134082 Jul 2014 JP
5586450 Sep 2014 JP
5918683 May 2016 JP
2016119032 Jun 2016 JP
20090040024 Apr 2009 KR
20100006714 Jan 2010 KR
20130106005 Sep 2013 KR
20160039460 Apr 2016 KR
20160051993 May 2016 KR
WO 2006064544 Jun 2006 WO
WO 2008055567 May 2008 WO
WO 2010006981 Jan 2010 WO
WO 2011141096 Nov 2011 WO
WO 2013056959 Apr 2013 WO
WO 2013123813 Aug 2013 WO
WO 2014103492 Jul 2014 WO
WO 2015068032 May 2015 WO
WO 2015193058 Dec 2015 WO
WO 2016046269 Mar 2016 WO
WO 2016128200 Aug 2016 WO
WO 2016134822 Sep 2016 WO
WO 2017062448 Apr 2017 WO
WO 2017073159 May 2017 WO
WO 2017096307 Jun 2017 WO
WO 2017096728 Jun 2017 WO
WO 2017097942 Jun 2017 WO
WO 2017118510 Jul 2017 WO
WO 2017125514 Jul 2017 WO
Non-Patent Literature Citations (17)
Entry
US 9,772,406 B2, 09/2017, Liu (withdrawn)
Perpendicular Parking—https://prezi.com/toqmfyxriksl/perpendicular-parking/.
Automatically Into the Parking Space—https://www.mercedes-benz.com/en/mercedes-benz/next/automation/automatically-into-the-parking-space/; Oct. 27, 2014.
Search Report dated May 21, 2018 for Great Britain Patent Application No. GB 1800277.4 (5 Pages).
Tesla Model S Owner's Manual v2018.44. Oct. 29, 2018.
Search Report dated Oct. 10, 2018 for GB Patent Application No. 1806499.8 (4 pages).
Alberto Broggi and Elena Cardarelli, Vehicle Detection for Autonomous Parking Using a Soft-Cascade ADA Boost Classifier, Jun. 8, 2014.
Al-Sherbaz, Ali et al., Hybridisation of GNSS with other wireless/sensors technologies on board smartphones to offer seamless outdoors-indoors positioning for LBS applications, Apr. 2016, 3 pages.
Bill Howard, Bosch's View of the Future Car: Truly Keyless Entry, Haptic Feedback, Smart Parking, Cybersecurity, Jan. 9, 2017, 8 Pages.
Core System Requirements Specification (SyRS), Jun. 30, 2011, Research and Innovative Technology Administration.
Daimler AG, Remote Parking Pilot, Mar. 2016 (3 Pages).
Jingbin Liu, (Parking: An Intelligent Indoor Location-Based Smartphone Parking Service, Oct. 31, 2012, 15 pages.
Land Rover develops a smartphone remote control for its SUVs, James Vincent, Jun. 18, 2015.
Search Report dated Jan. 19, 2018 for GB Patent Application No. 1711988.4 (3 pages).
Search Report dated Jul. 11, 2017 for GB Patent Application No. Enter 15/583,524, Pages (3).
Search Report dated Nov. 28, 2017, for GB Patent Application No. GB 1710916.6 (4 Pages).
Vehicle'S Orientation Measurement Method by Single-Camera Image Using Known-Shaped Planar Object, Nozomu Araki, Takao Sato, Yasuo Konishi and Hiroyuki Ishigaki, 2010.
Related Publications (1)
Number Date Country
20180201256 A1 Jul 2018 US