Hydraulic Fracturing (or, “fracking”) is a commonly-used method for extracting oil and gas from geological formations (i.e., “hydrocarbon bearing formations”) such as shale and tight-rock formations. Fracking typically involves, among other things, drilling a wellbore into a hydrocarbon bearing formation; installing casing(s) and tubing; deploying a perforating gun including shaped explosive charges in the wellbore via a wireline or other methods; positioning the perforating gun within the wellbore at a desired area; perforating the wellbore and the hydrocarbon formation by detonating the shaped charges; pumping high hydraulic pressure fracking fluid into the wellbore to force open perforations, cracks, and imperfections in the hydrocarbon formation; delivering a proppant material (such as sand or other hard, granular materials) into the hydrocarbon formation to hold open the perforations, fractures, and cracks (giving the tight-rock formation permeability) through which hydrocarbons flow out of the hydrocarbon formation; and, collecting the liberated hydrocarbons via the wellbore.
Perforating the wellbore and the hydrocarbon formations is typically done using one or more perforating guns. For example, as shown in
Shaped charges 1140 in the perforating gun 1110 are typically detonated in a “top-fire” sequence from a topmost shaped charge 1141 to a bottommost shaped charge 1142. For purposes of this disclosure, “topmost” means furthest “upstream,” or towards the well surface, and “bottommost” means furthest “downstream,” or further from the surface within the well. The top-fire sequence is initiated by a detonator 1145 positioned nearest the topmost shaped charge 1141. The top-fire sequence may be problematic for any perforating gun or wellbore tool that is detonated while traveling at high speed, because the velocity of the tool and the wellbore fluid combined with the force from detonating a topmost explosive charge may separate and scatter different portions of the tool. This may decrease accuracy in perforating at particular locations, cause failure of explosive charges or other components, result in greater amounts of debris, and the like. In addition, it is generally more favorable for the deployment and physical conveyance for pump down operations of the wellbore tool if most of the weight of the tool (i.e., the detonator and associated control components) is at the front (downstream end) of the tool in relation to its direction of movement.
In the oil and gas industry, the wireline cable 2012, electric line or e-line are cabling technology used to lower and retrieve equipment or measurement devices into and out of the wellbore 2016 of an oil or gas well for the purpose of delivering an explosive charge, evaluation of the wellbore 2016 or other well-related tasks. Other methods include tubing conveyed (i.e., TCP for perforating) slickline or coil tubing conveyance. A speed of unwinding the wireline cable 2012 and winding the wireline cable 2012 back up is limited based on a speed of the wireline equipment 2062 and forces on the wireline cable 2012 itself (e.g., friction within the well). Because of these limitations, it typically can take several hours for a wireline cable 2012 and a toolstring 2031 to be lowered into a well and another several hours for the wireline cable 2012 to be wound back up and the expended toolstring retrieved. The wireline equipment 2062 feeds wireline 2012 through wellhead 2060. When detonating explosives, the wireline cable 2012 will be used to position the toolstring 2031 of perforating guns 2018 containing the explosives into the wellbore 2016. After the explosives are detonated, the wireline cable 2012 will have to be extracted or retrieved from the well.
Wireline cables and TCP systems have other limitations such as becoming damaged after multiple uses in the wellbore due to, among other issues, friction associated with the wireline cable rubbing against the sides of the wellbore. Location within the wellbore is a simple function of the length of wireline cable that has been sent into the well. Thus, the use of wireline may be a critical and very useful component in the oil and gas industry yet also presents significant engineering challenges and is typically quite time consuming. It would therefore be desirable to provide a system that can minimize or even eliminate the use of wireline cables for activity within a wellbore while still enabling the position of the downhole equipment, e.g., the toolstring 2031, to be monitored.
During many critical operations utilizing equipment disposed in a wellbore, it is important to know the location and depth of the equipment in the wellbore at a particular time. When utilizing a wireline cable for placement and potential retrieval of equipment, the location of the equipment within the well is known or, at least, may be estimated depending upon how much of the wireline cable has been fed into the wellbore. Similarly, the speed of the equipment within the wellbore is determined by the speed at which the wireline cable is fed into the wellbore. As is the case for a toolstring 2031 attached to a wireline, determining depth, location and orientation of a toolstring 2031 within a wellbore 2016 is typically a prerequisite for proper functioning.
One known means of locating a toolstring 2031, whether tethered or untethered, within a wellbore involves a casing collar locator (“CCL”) or similar arrangement, which utilizes a passive system of magnets and coils to detect increased thickness/mass in a wellbore casing 1580 (
Another known means of locating a toolstring 2031 within a wellbore 2016 involves tags attached at known locations along the wellbore casing 1580. The tags, e.g., radio frequency identification (“RFID”) tags, may be attached on or adjacent to casing collars but placement unrelated to casing collars is also an option. Electronics for detecting the tags are integrated with the toolstring 2031 and the onboard computer may ‘count’ the tags that have been passed. Alternatively, each tag attached to a portion of the wellbore may be uniquely identified. The detecting electronics may be configured to detect the unique tag identifier and pass this information along to the computer, which can then determine current location of the toolstring 2031 along the wellbore 2016.
Similar operations and challenges may be encountered with downhole delivery, deployment, and/or initiation of a variety of wellbore tools besides perforating guns. For example, a wellbore tool may be a puncher gun, logging tool, jet cutter, plug, frac plug, bridge plug, setting tool, self-setting bridge plug, self-setting frac plug, mapping/positioning/orientating tool, bailer/dump bailer tool, or other ballistic tool. For purposes of this disclosure, a wellbore tool is any such tool, listed or otherwise, that is delivered, deployed, or initiated in a wellbore, and the disclosed exemplary embodiments are not limited to any particular wellbore tool.
Accordingly, current wellbore operations and system(s) require substantial amounts of onsite personnel and equipment. Even with large gun strings, a substantial amount of time, equipment, and labor may be required to deploy the perforating gun or wellbore tool string, position the perforating gun or wellbore tool string at the desired location(s), and retrieve the fired perforating gun assemblies post perforating. Further, current perforating devices and systems may be made from materials that remain in the wellbore after detonation of the shaped charges and leave a large amount of debris that must either be removed from the wellbore or left within. Accordingly, devices, systems, and methods that may reduce the time, equipment, labor, and debris associated with downhole operations would be beneficial.
Knowledge of the location, depth and velocity of the toolstring in the absence of a wireline cable would be essential. The present disclosure is further associated with systems and methods of determining location along a wellbore 2016 that do not necessarily rely on the presence of casing collars or any other standardized structural element, e.g., tags, associated with the wellbore casing 1580.
In an aspect, the disclosure relates to an autonomous perforating drone for downhole delivery of one or more wellbore tools. The autonomous perforating drone may comprise a perforating assembly section including at least one aperture configured for receiving a shaped charge; a control module section positioned upstream of the perforating assembly section relative to an orientation of the drone when deployed in the wellbore, the control module section including a hollow interior portion; a ballistic channel open to and extending from the hollow interior portion to the at least one aperture in the perforating assembly section; and, a control module positioned within the hollow interior portion of the control module section. The control module may include a housing enclosing a donor charge within an inner area of the control module, the donor charge being positioned adjacent to the ballistic channel. A receiver booster may be positioned within the ballistic channel, at the portion of the ballistic channel that extends to the at least one aperture, such that the receiver booster may be configured to directly initiate a shaped charge received in the aperture.
In another aspect, the disclosure relates to a method for perforating a wellbore casing or hydrocarbon formation. The method may include arming an autonomous perforating drone according to the exemplary embodiments, e.g., including a perforating assembly section including at least one shaped charge received in an aperture, wherein at least a portion of the shaped charge and the aperture extend into a body of the drone, a control module section positioned upstream of the perforating assembly section relative to an orientation of the drone when deployed in the wellbore, the control module section including a hollow interior portion, a ballistic channel open to and extending from the hollow interior portion to the at least one aperture in the perforating assembly section, and a control module positioned within the hollow interior portion of the control module section. The control module may include a housing enclosing a detonator and a donor charge, the detonator being configured for initiating the donor charge which is positioned adjacent to the ballistic channel. A receiver booster may be positioned within the ballistic channel, at the portion of the ballistic channel that extends to the at least one aperture, and a ballistic interrupt may be positioned within the ballistic channel between the donor charge and the receiver booster in a spaced apart configuration from the donor charge and the receiver booster. The ballistic interrupt may be movable between a closed state and an open state and arming the autonomous perforating drone may include moving the ballistic interrupt from the closed state to the open state. The method may further include deploying the drone into the wellbore and detonating the at least one shaped charge.
In a further aspect, the disclosure relates to an autonomous perforating drone for downhole delivery of one or more wellbore tools, comprising: a perforating assembly section; a control module section positioned upstream of the perforating assembly section relative to an orientation of the drone when deployed in the wellbore, the control module section including a hollow interior portion; a ballistic channel open to and extending from the hollow interior portion into at least a portion of the perforating assembly section; a control module positioned within the hollow interior portion of the control module section, and a donor charge housed within the control module and substantially aligned with the ballistic channel; a receiver booster positioned at least in part within the portion of the ballistic channel within the perforating assembly section; a first plurality of shaped charges received in a first plurality of shaped charge apertures in the body portion of the drone positioned at the perforating assembly section. In the exemplary embodiment(s), the first plurality of shaped charge apertures are arranged in a first single radial plane and an initiation end of each of the first plurality of shaped charges is substantially adjacent to the receiver booster when the respective shaped charges are received in the respective shaped charge apertures, and a second plurality of shaped charges received in a second plurality of shaped charge apertures in the body portion of the drone may be positioned at the perforating assembly section, and the second plurality of shaped charge apertures are arranged in a second single radial plane. The second single radial plane is positioned upstream of the first single radial plane, and an initiation end of each of the second plurality of shaped charges is substantially adjacent to the receiver booster when the respective shaped charges are received in the respective shaped charge apertures, such that the receiver booster may be configured to directly initiate a shaped charge received in the aperture.
For purposes of this disclosure, a “drone” is a self-contained, autonomous or semi-autonomous vehicle for downhole delivery of a wellbore tool. For purposes of this disclosure and without limitation, “autonomous” means without a physical connection or manual control and “semi-autonomous” means without a physical connection. An “autonomous perforating drone” according to some embodiments is a drone in which, e.g., shaped charges carried by the drone are detonated within the wellbore; however, as the disclosure makes clear, an “autonomous perforating drone” is not limited to a drone for downhole delivery of shaped charges and may include any known or later-developed wellbore tools consistent with this disclosure. Further, the use of the word “drone” throughout this disclosure may be used interchangeably and/or for brevity with the phrase “autonomous perforating drone” without limitation, except where the specification otherwise makes clear.
A more particular description will be rendered by reference to specific embodiments thereof that are illustrated in the appended drawings. Understanding that these drawings depict only typical embodiments thereof and are not therefore to be considered to be limiting of its scope, exemplary embodiments will be described and explained with additional specificity and detail through the use of the accompanying drawings in which:
Various features, aspects, and advantages of the embodiments will become more apparent from the following detailed description, along with the accompanying figures in which like numerals represent like components throughout the figures and text. The various described features are not necessarily drawn to scale but are drawn to emphasize specific features relevant to some embodiments.
The headings used herein are for organizational purposes only and are not meant to limit the scope of the description or the claims. To facilitate understanding, reference numerals have been used, where possible, to designate like elements common to the figures.
This application incorporates by reference each of the following pending patent applications in their entireties: International Patent Application No. PCT/US2019/063966, filed May 29, 2019; U.S. patent application Ser. No. 16/423,230, filed May 28, 2019; U.S. Provisional Patent Application No. 62/841,382, filed May 1, 2019; U.S. Provisional Patent Application No. 62/720,638, filed Aug. 21, 2018; U.S. Provisional Patent Application No. 62/719,816, filed Aug. 20, 2018; and U.S. Provisional Patent Application No. 62/678,654, filed May 31, 2018.
Reference will now be made in detail to various exemplary embodiments. Each example is provided by way of explanation and is not meant as a limitation and does not constitute a definition of all possible embodiments.
Turning now to
The tail section 180 may include guiding fins 181 for providing radial stability as the autonomous perforating drone 100 is traveling through a wellbore fluid within a wellbore. In various embodiments, one or more of the tip section 195, the control module section 130, the perforating assembly section 110, and the tail section 180 may have features such as guiding fins, a curved topology, etc. for providing one or more of rotational speed, radial stability, and reduced friction to the autonomous perforating drone 100.
For purposes of this disclosure, each of the “tip section”, “control module section”, “perforating assembly section”, and “tail section” is defined with respect and reference to, and to aid in the description of, the position and configuration of certain structures and componentry of the exemplary embodiments of an autonomous perforating drone as described throughout this disclosure. None of the terms “tip section”, “control module section”, “perforating assembly section”, or “tail section” is limited to any particular assembly, configuration, or delineation points of, or along, an autonomous perforating drone according to this disclosure. For example, any or all of the “tip section”, “control module section”, “perforating assembly section”, and “tail section” may be integrally formed by injection molding, casting, 3D printing, 3D milling from bar stock, etc. For purposes of this disclosure, “integral” or “integrally formed” respectively means a single piece or formed as a single piece.
Further, for purposes of this disclosure, the term “connected” generally means joined, such as by mechanical features, adhesives, welding, friction fit, or other known techniques for joining separate components, and may also mean “integrally formed” as that term is used in this disclosure, except where otherwise indicated.
Moreover, for purposes of this disclosure, “upstream” means in a direction towards the wellbore entrance or surface and “downstream” means in a direction deeper or further into the wellbore. For example, as the autonomous perforating drone 100 travels downstream, the tip section 195 is positioned first in the wellbore fluid, the tip section 195 being positioned downstream of the tail section 180. The autonomous perforating drone 100 is deployed and conveyed through the wellbore fluid via known techniques including, but not limited to, pump down conveyance.
With continuing reference to
With reference specifically to
With reference now to
In an aspect, and with reference to
With continuing reference to
The transition region 197 is connected to each of the large diameter portion 193 and the reduced diameter portion 194 and spans a space therebetween. The presence and profile of the transition region 197 is not limited by the disclosed embodiments and may take any shape or configuration as particular applications dictate. The tapered portion 196 is positioned and spans a gap between the large-diameter portion 194 of the control module section 130 and the tip section 195, and the diameter d3 at the position 196′ on the tapered portion 196 gradually decreases in a direction v from the large-diameter portion 194 of the control module section 130 towards the tip section 195. The exemplary profile of the control module section 130 shown in, e.g.,
For purposes of this disclosure, each of the “large diameter portion 193”, “reduced diameter portion 194”, “transition region 197”, and “tapered portion 196” is defined with respect and reference to, and to aid in the description of, the profile of the exemplary control module section 130 shown in, e.g.,
With continuing reference specifically to
In some embodiments, a set of stackable pellets may be used in conjunction with, or in place of, the receiver booster 150 for initiating the detonating cord 160 by ballistic force.
The control module section 130 and the hollow interior portion 132 are sized to receive the control module 137 which is positioned within the hollow interior portion 132 of the control module section 130. The control module 137 includes a housing 138 that defines an inner area 320 of the control module 137 and encloses, for example and without limitation, a detonator 133, a donor charge 134, and a control assembly 131. The control module 137 and the control assembly 131 are further shown and described with respect to
The modular, i.e., self-contained, nature of the control module 137 allows it to be removed/removable from the autonomous perforating drone 100 during transport, e.g., to comply with regulatory requirements, and quickly loaded into the autonomous perforating drone 100 at a wellsite. The inner area 320 of the control module 137 can be completely or partially hollow, or not hollow at all, depending on the layout of the control module components and the requirements for sealing the control module 137. For example, in an exemplary embodiment the control module 137 is pressure sealed to protect the components within the control module 137 from environmental conditions both outside of and within the wellbore. In other embodiments one or more of the control module 137, control module section 130, and hollow interior portion 132 may include various known seals to protect the control module 137 and the components within the control module 137, components within the hollow interior portion 132, or other components within the control module section 130 generally.
According to a further aspect, an electrical selective sequence signal may be sent from, e.g., the programmable electronic circuit to the detonator 133 to initiate the detonator when the autonomous perforating drone 100 reaches at least one of a threshold pressure, temperature, horizontal orientation, inclination angle, depth, distance traveled, rotational speed, and position within the wellbore. The threshold conditions may be measured by any known devices consistent with this disclosure including a temperature sensor, a pressure sensor, a positioning device as a gyroscope and/or accelerometer (for horizontal orientation, inclination angle, and rotational speed), and a correlation device such as a casing collar locator (CCL) or position determining system (for depth, distance traveled, and position within the wellbore) as discussed below with respect to
With additional reference to
The exemplary autonomous perforating drone 1510 shown in
With continuing reference to
The potential exists for locating ultrasonic transceiver T11530 and ultrasonic transceiver T21532 in different portions of the autonomous perforating drone 1510 and connecting them electrically to the programmable electronic circuit. As such, it is possible to increase the axial distance Z between T11530 and T21532 almost to the limit of the total length of the autonomous perforating drone 1510. Placing T11530 and T21532 further away from one another achieves a more precise measure of velocity and retains precision more effectively as higher drone velocities are encountered, especially where sample rates for T11530 and T21532 reach an upper limit.
In an exemplary embodiment of a navigation system 1600 such as used in the ultrasonic transducer system 1500 shown in
The processing unit 1640 may include an oscillator circuit 1644 and a capacitor 1642. An oscillating signal is generated by the oscillator circuit 1644, and sent to the wire coils 1632, 1634. With the wire coils 1632, 1634 acting as inductors, a magnetic field is established around the wire coils 1632, 1634 when charge flows through the wire coils 1632, 1634. Insertion of the capacitor 1642 in the processing unit 1640 results in constant transfer of electrons between the wire coils/inductors 1632, 1634 and the capacitor 1642, i.e., in a sinusoidal flow of electricity between the wire coils 1632, 1634 and the capacitor 1642. The frequency of this sinusoidal flow will depend upon the capacitance value of the capacitor 1642 and the magnetic field generated around the wire coils 1632, 1634, i.e., the inductance value of the wire coils 1632, 1634. The peak strength of the sinusoidal magnetic field around the wire coils 1632, 1634 will depend on the materials immediately external to the wire coils 1632, 1634. With the capacitance of the capacitor 1642 being constant and the peak strength of the magnetic field around the wire coils 1632, 1634 being constant, the circuit will resonate at a particular frequency. That is, current in the circuit will flow in a sinusoidal manner having a frequency, referred to as a resonant frequency, and a constant peak current.
With reference to
As would be understood by one of ordinary skill in the art, electrical power typically supplied via the wireline cable 2012 to wellbore tools, such as a tethered drone or typical perforating gun, would not be available to an autonomous perforating drone as described herein and shown in
The on-board power supply 1792 for the autonomous perforating drone 1700 may take the form of an electrical battery; the battery may be a primary battery or a rechargeable battery. Whether the power supply 1792 is a primary or rechargeable battery, it may be inserted into the autonomous perforating drone 1700 at any point during construction of the autonomous perforating drone 1700 or immediately prior to insertion of the autonomous perforating drone 1700 into the wellbore 2016. If a rechargeable battery is used, it may be beneficial to charge the battery immediately prior to insertion of the autonomous perforating drone 1700 into the wellbore 2016. Charge times for rechargeable batteries are typically on the order of minutes to hours.
In an embodiment, another option for the power supply 1792 is the use of a capacitor or a supercapacitor. A capacitor is an electrical component that consists of a pair of conductors separated by a dielectric. When an electric potential is placed across the plates of a capacitor, electrical current enters the capacitor, the dielectric stops the flow from passing from one plate to the other plate and a charge builds up. The charge of a capacitor is stored as an electric field between the plates. Each capacitor is designed to have a particular capacitance (energy storage). In the event that the capacitance of a chosen capacitor is insufficient, a plurality of capacitors may be used. When a capacitor is connected to a circuit, a current will flow through the circuit in the same way as a battery. That is, when electrically connected to elements that draw a current the electrical charge stored in the capacitor will flow through the elements. Utilizing a DC/DC converter or similar converter, the voltage output by the capacitor will be converted to an applicable operating voltage for the circuit. Charge times for capacitors are on the order of minutes, seconds or even less.
A supercapacitor operates in a similar manner to a capacitor except there is no dielectric between the plates. Instead, there is an electrolyte and a thin insulator such as cardboard or paper between the plates. When a current is introduced to the supercapacitor, ions build up on either side of the insulator to generate a double layer of charge. Although the structure of supercapacitors allows only low voltages to be stored, this limitation is often more than outweighed by the very high capacitance of supercapacitors compared to standard capacitors. That is, supercapacitors are a very attractive option for low voltage/high capacitance applications as will be discussed in greater detail hereinbelow. Charge times for supercapacitors are only slightly greater than for capacitors, i.e., minutes or less.
A battery typically charges and discharges more slowly than a capacitor due to latency associated with the chemical reaction to transfer the chemical energy into electrical energy in a battery. A capacitor is storing electrical energy on the plates so the charging and discharging rate for capacitors are dictated primarily by the conduction capabilities of the capacitors plates. Since conduction rates are typically orders of magnitude faster than chemical reaction rates, charging and discharging a capacitor is significantly faster than charging and discharging a battery. Thus, batteries provide higher energy density for storage while capacitors have more rapid charge and discharge capabilities, i.e., higher power density, and capacitors and supercapacitors may be an alternative to batteries especially in applications where rapid charge/discharge capabilities are desired.
Thus, the on-board power supply 1792 for the autonomous perforating drone 1700 may take the form of a capacitor or a supercapacitor, particularly for rapid charge and discharge capabilities. A capacitor may also be used to provide additional flexibility regarding when the power supply is inserted into the autonomous perforating drone 1700, particularly because the capacitor will not provide power until it is charged. Thus, shipping and handling of the autonomous perforating drone 1700 containing shaped charges or other explosive materials presents low risks where an uncharged capacitor is installed as the power supply 1792. This is contrasted with shipping and handling of an autonomous perforating drone 1700 with a battery, which can be an inherently high risk activity and frequently requires a separate safety mechanism to prevent accidental detonation. Further, and as discussed previously, the act of charging a capacitor is very fast. Thus, the capacitor or supercapacitor being used as a power supply 1792 for the autonomous perforating drone 1700 can be charged immediately prior to deployment of the autonomous perforating drone 1700 into the wellbore 2016.
In an aspect, magnetic sensors such as Hall effect magnetic sensors or magnetometers may be used in combination with a super capacitor as a depth correlation sensor in the exemplary autonomous perforating drones described herein. Such a system may be used with a magnetic ring (e.g., a plastic with flexible magnetic tape or film secured thereto) between adjacent wellbore casings, for example, at a collar between casing ends, wherein the magnetic ring includes beacons or magnets for detection by the drone sensors. In another aspect, casing collars may be painted with high temperature paint or adhesives including magnetic material such as metal fillings, powder, or flakes.
While the option exists to ship the autonomous perforating drone 1700 preloaded with a rechargeable battery which has not been charged, i.e., the electrochemical potential of the rechargeable battery is zero, this option comes with some significant drawbacks. The goal must be kept in mind of assuring that no electrical charge is capable of inadvertently accessing any and all explosive materials in the autonomous perforating drone 1700. Electrochemical potential is often not a simple, convenient or failsafe thing to measure in a battery. It may be the case that the potential that a ‘charged’ battery may be mistaken for an ‘uncharged’ battery simply cannot be reduced sufficiently to allow for shipping the autonomous perforating drone 1700 with an uncharged battery. In addition, as mentioned previously, the time for charging a rechargeable battery having adequate power for the autonomous perforating drone 1700 could be on the order of an hour or more. Currently, fast recharging batteries of sufficient charge capacity are uneconomical for the ‘one-time-use’ or ‘several-time-use’ that would be typical for batteries used in the autonomous perforating drone 1700.
In an embodiment, electrical components of an exemplary autonomous perforating drone as described throughout this disclosure including the control module 137, an oscillator circuit 1644, one or more wire coils 1632, 1634, and one or more ultrasonic transceivers 1530, 1532 may be battery powered while explosive elements like the detonator for initiating detonation of the shaped charges are capacitor powered. Such an arrangement would take advantage of the possibility that some or all of the control module 137, the oscillator circuit 1644, the wire coils 1632, 1634, and the ultrasonic transceivers 1530, 1532 may benefit from a high density power supply having higher energy density, i.e., a battery, while initiating elements such as detonators typically benefit from a higher power density, i.e., capacitor/supercapacitor. A very important benefit for such an arrangement is that the battery is completely separate from the explosive materials, affording the potential to ship the autonomous perforating drone 1700 preloaded with a charged or uncharged battery. The power supply that is connected to the explosive materials, i.e., the capacitor/supercapacitor, may be very quickly charged immediately prior to dropping the autonomous perforating drone 1700 into wellbore 2016.
In an aspect, a capacitor used as a power supply in the exemplary autonomous drones described throughout this disclosure may be charged to 30-40 Amps, and/or charged for approximately 15-40 minutes per autonomous perforating drone and provide approximately 1 hour of active power.
As shown in the exemplary embodiment of
In an aspect, the donor charge 134 is positioned within a detonator channel 145 within the control module 137, and the detonator 133 is positioned adjacent to the donor charge 134 within the detonator channel 145 and substantially aligned with the donor charge 134 along the longitudinal axis x. The detonator 133 may be, for example and without limitation, an explosive charge or any other device as is well known in the art for causing a detonation, ignition, or ballistic initiation. In an aspect, the detonator 133 may be a selective detonator. For purposes of this disclosure, “selective” means that the detonator 133 is initiated only when it receives a specific initiating signal or selective sequence signal, as discussed above, from the control module 137 (i.e., the programmable electronic circuit), e.g., to cause a capacitive discharge to a fuse of the detonator 133. One benefit of a selective detonator is that it is radio-frequency (RF)-safe—i.e., it will not be initiated by stray RF signals in the proximity of the detonator 133.
The donor charge 134 is also an explosive shaped charge, but the donor charge 134 may include, for example, an explosive material within a casing (not numbered), designed to create a directed perforating jet upon detonation, as is well known in the art. According to the exemplary configuration, detonating the detonator 133 will cause the donor charge 134 to detonate. In an aspect, the donor charge 134 may be designed, for example and without limitation, to have an explosive power for contributing to breaking apart the drone upon detonation. In another aspect, the donor charge 134 may be explosive and/or explosive/liner assembly as in a typical shaped charge but may be pressed into a plastic housing instead of contained within a metal casing.
The ballistic interrupt 140 is thus an important safety and operational feature of the autonomous perforating drone 100. For example, in operation, when the donor charge 134 is detonated it produces the perforating jet that pierces the portion 139 of the control module housing 138 between the donor charge 134 and the ballistic channel 141, and travels into the ballistic channel 141. When the ballistic interrupt 140 is in the closed state 143 shown in
In some embodiments, the detonator 133 may be spaced apart from the donor charge 134. For example, a donor charge may be positioned in the ballistic channel 141 or in the through-bore 142 of the ballistic interrupt 140. In such embodiments, the detonator 133 would provide sufficient ballistic energy to reach the spaced-apart donor charge, which may include, e.g., penetrating the portion 139 of the control module housing 138 between the detonator channel 145 and the ballistic channel 141. In embodiments in which a donor charge is positioned in the through-bore 142, the ballistic energy of the detonator 133 would be insufficient to initiate the donor charge through the ballistic interrupt 140 in the closed state 143. Thus, the safety control provided by the ballistic interrupt 140 would not be compromised.
On the other hand, when the autonomous perforating drone 100 is ready for arming, e.g., after passing a safety check and a function test at a wellbore site and immediately before or while being deployed into the wellbore, the ballistic interrupt 140 is moved to the open state 144 as shown in
The pressure sealed housing 151 of the receiver booster 150 may further extend to, or a separate pressure sealed housing may be used for, the connection between the receiver booster 150 and the detonating cord 160. In an aspect, the pressure sealed housing 151 may be rated to at least 10,000 psi and, for exemplary uses, to at least between 15,000 psi and 20,000 psi to enhance waterproof capability. In another aspect, a small amount of grease may be used at a crimp connection between the receiver booster 150 and the detonating cord 160 to prevent water invasion into the connection. As fluid ingression could potentially desensitize the explosives in the detonating cord 160, other techniques for sealing the receiver booster 150 onto the detonating cord 160, and/or sealing the detonating cord 160, are contemplated and include, without limitation, housing the receiver booster 150 and/or the detonating cord 160 in a cap that may include a grommet (or the like) for passing or fitting the detonating cord 160 therethrough, and may further include additional sealing mechanisms such as internal O-rings (or the like) for preventing fluid from seeping into the explosives at certain junctions. In addition, internal contours of the autonomous perforating drone 100, e.g., the configuration of the ballistic channel 141, may be conformed closely to the contour(s) of the receiver booster 150 and the detonating cord 160, including any housings, caps, or sealing mechanisms thereon, to decrease the area through which fluid may encounter the components/connections.
In a further aspect, the receiver booster 150 may be enlarged relative to the detonating cord 160 to prevent an initial bend or curve in the detonating cord 160 which may interfere with assembly of the detonating cord 160 to the receiver booster 150 and result in nicks or crimps in the detonating cord 160. In still a further aspect, the detonating cord 160 may be energetically coupled to the receiver booster 150 by engaging a lower end of the receiver booster 150 or being placed in a side-by-side configuration with the receiver booster 150.
The ballistic interrupt 140 is movable between the closed state 143 and the open state 144 using, for example, a mechanical key as part of a control system at the surface of the wellbore. With reference to the exemplary embodiment shown in
The detonating cord 160 extends away from the receiver booster 150 in the direction v′ towards, e.g., the perforating assembly section 110 and the shaped charges 113 positioned therein. The detonating cord 160 may be any known detonating cord that is pressure and temperature resistant to downhole conditions. A conversion region 330 guides the detonating cord 160 to a connecting portion 410 (
With reference now to
With particular reference to
Continuing with reference to
With additional reference now to
With continuing reference to
The star-shaped plate 170 is defined in part by an outer ring portion 174 from which a plurality of fingers 172 extend radially inwardly between the outer ring portion 174 and respective end portions 440 of each finger 172. The end portions 440 are collectively positioned about the central aperture 171 in the star-shaped plate 170 and thereby define the central aperture 171. The central aperture 171 extends laterally (e.g., along the axis y) through the star-shaped plate 170 between an outside of the autonomous perforating drone 100 and an interior (not numbered) of the aperture 114 through the perforating assembly section 110. A plurality of gaps 173 extend radially outwardly from the central aperture 171 such that the fingers 172 and the gaps 173 are alternatingly arranged about a circumference of the central aperture 171, thus creating the so-called “star-shaped” feature.
The end portions 440 of some of the fingers 172 collectively include the plurality of teeth 450 that form a compression surface for the fixation connector 120 as described further herein with respect to an exemplary practice of the autonomous perforating drone 100. Each of the teeth 450 is a projection that is connected to, or integral with, a respective end portion 440 and extends away from the end portion 440 at about a 90-degree angle to the finger 172, in a direction away from the longitudinal axis x of the autonomous perforating drone 100. Thus, the plurality of teeth 450 will extend along at least a portion of the connecting portion 410 of the shaped charge 400 that protrudes from the central aperture 171 of the star-shaped plate 170 when the shaped charge 400 is retained in the aperture 114 through the perforating assembly section 110.
In an exemplary practice of the autonomous perforating drone 100, each shaped charge 400 may be connected to the exemplary autonomous perforating drone 100 by inserting the shaped charge 400 into the corresponding aperture 114 through the perforating assembly section 110. When the shaped charge 400 is fully received in the aperture 114 the connecting portion 410 including the external threaded portion 412 and the detonating cord slot 411 protrudes from the central aperture 171 in the star-shaped plate 170, as described. The detonating cord 160 may then be inserted into the detonating cord slot 411, down to the detonating cord seat 415, and the fixation connector 120 may be threaded onto and advanced along the connecting portion 410 until it reaches the plurality of teeth 450, against which it will compress and retain the shaped charge 400 and the detonating cord 160. The exemplary configuration of the plurality of teeth 450 shown in
The configuration also allows the detonating cord 160 to extend along the length L of the perforating assembly section 110 through spaces (not numbered) created between the plurality of teeth 450 by end portions 440 that do not include teeth 450. In addition, the shaped charge 400 may be oriented (e.g., turned) within the aperture 114 such that the detonating cord slot 411 is oriented to direct the detonating cord 160 towards a subsequent shaped charge 400 on the perforating assembly section 110. In the exemplary embodiment shown in
While the shaped charge apertures 114 (and correspondingly, the shaped charges 113, 400) are shown in a typical helical arrangement about the perforating assembly section 110 in the exemplary embodiment shown in
In the exemplary embodiments, the autonomous perforating drone 110 including the perforating assembly section body 119, the control module section body 191, the tip section 195, and the tail section 180 may be formed from a material that will substantially disintegrate upon detonation of the shaped charges 113. In an exemplary embodiment, the material may be an injection-molded plastic that will substantially dissolve into a proppant when the shaped charges 113 are detonated, and the autonomous perforating drone 100 may be an integral unit. In the same or other embodiments, one or more portions of the autonomous perforating drone 100 may be formed from a variety of techniques and/or materials including, for example and without limitation, injection molding, casting (e.g., plastic casting and resin casting), metal casting, 3D printing, and 3D milling from a solid plastic bar stock. Reference to the exemplary embodiments including injection-molded plastics is thus not limiting. Further, as noted herein, the description of particular sections and portions of an autonomous perforating drone 100 are for aiding the disclosure with respect and reference to the position of various components, and forming the autonomous perforating drone 100, for example, with one or a combination of integral and separate elements, may be done as applications dictate, without limitation based on the disclosed sections and portions of an autonomous perforating drone 100.
For example, the autonomous perforating drone 100 may be formed as an integral unit, and a portion such as the tip section 195 according to this disclosure may then be removed and adapted for re-securing to the autonomous perforating drone 100, to allow the autonomous perforating drone 100 to, e.g., be transported without a detonator assembly (such as in the control module 137) according to applicable regulations. Once on site, the control module 137 may be inserted into, e.g., the control module section 130 according to this disclosure, and the tip section 195 re-secured thereto. The tip section 195 may be adapted for re-securing to the control module section 130 by milling, turning or injection molding complementary threaded portions, click slots or a bayonet key-turn in each, or using other techniques as known. The connection between the tip section 195 and the control module section is further shown and discussed with respect to
An autonomous perforating drone 100 formed according to this disclosure leaves a relatively small amount of debris in the wellbore post perforation. In some embodiments, at least a portion of the autonomous perforating drone 100 may be formed from plastic that is substantially depleted of other components including metals. Substantially depleted may mean, for example and without limitation, lacking entirely or including only nominal or inconsequential amounts. In some embodiments, the plastic may be combined with any other materials consistent with this disclosure. For example, the materials may include metal powders, glass beads or particles, known proppant materials, and the like that may serve as a proppant material when the shaped charges 113 are detonated. In addition, the materials may include, for example, oil or hydrocarbon-based materials that may combust and generate pressure when one or more of the detonator 133, the donor charge 134, and the shaped charges 113 are detonated, synthetic materials potentially including a fuel material and an oxidizer to generate heat and pressure by an exothermic reaction, and materials that are dissolvable in a hydraulic fracturing fluid.
In some embodiments, the exemplary autonomous perforating drone 100 may be connected at the tail portion 180 to a wireline that extends to the surface of the wellbore. The wireline may be connected to the autonomous perforating drone by any known technique for connecting a wireline to a wellbore tool. The wireline may further assist in retrieving any components of the autonomous perforating drone, including, without limitation, a control module, data collection device, or other portions that remain in the wellbore post detonation/perforation. The remaining components may be retracted to the surface along with the wireline.
The exemplary drones described throughout this disclosure, for example and without limitation, with particular reference to
In an exemplary operation, one or more autonomous perforating drones 100 according to the disclosed embodiments are connected to a control system at the surface of a wellbore. The autonomous perforating drones 100 may be manually connected to the control system, or loaded into, for example and without limitation, a deployment vehicle, pressure equalization chamber, or other system for deploying the autonomous perforating drones 100 into the wellbore and including an appropriate connection to the control system. The control system may perform, among other things, a safety check and function test on each autonomous perforating drone 100. Upon a successful result from any test for safety, function, compliance, and/or otherwise, the control system or an operator may “arm” the autonomous perforating drone 100 by moving the ballistic interrupt 140 to an open state 144, as described. The control system may also record which autonomous perforating drones 100 have been armed and determine the order in which the respective autonomous perforating drones 100 will be deployed. The control system may communicate the order, and other instructions, to the autonomous perforating drone 100 via an electrical connection to the control assembly 131, e.g., the programmable electronic circuit, of each autonomous perforating drone 100 as described. Other instructions may include, without limitation, a threshold depth at which to send a detonation signal to the detonator 133, a time delay or other instructions for arming a trigger circuit, desired data to transmit to the wellbore surface, or other instructions that a control system may provide as discussed in United States Provisional Patent Application. Nos. 62/690,314 filed Jun. 26, 2018 and 62/765,185 filed Aug. 20, 2018, both of which are incorporated herein by reference in their entirety.
In the exemplary embodiments, the control assembly 131 includes, without limitation, a depth correlation device, and the programmable electronic circuit is either pre-programmed, or programmed via the control system, to receive from the depth correlation device data regarding the current depth of the autonomous perforating drone 100 within the wellbore and send a detonation signal to the detonator 133 when the autonomous perforating drone 100 reaches a predetermined depth. The depth correlation device may be, for example, an electromagnetic sensor, an ultrasonic transducer, or other known depth correlation devices consistent with this disclosure. The autonomous perforating drone 100 may also include a velocity sensor for measuring a current velocity of the autonomous perforating drone 100 within the wellbore, or the depth correlation device may include a velocity sensor or calculate a velocity based on sequential depth readings, and the programmable electronic circuit may be programmed to receive such velocity data as part of a criteria for transmitting the detonation signal.
In some embodiments, the autonomous perforating drone 100 may work with other systems, such as radio-frequency (RF) transducers, casing collar locators (CCL), or other known systems for determining a position of a wellbore tool within the wellbore.
With reference again to the exemplary embodiments, after being deployed into the wellbore the depth correlation device measures the depth of the autonomous perforating drone 100 within the wellbore. When the autonomous perforating drone 100 reaches the predetermined depth, the programmable electronic circuit sends a detonation signal to the detonator 133, which initiates detonation of the donor charge 134 and ultimately the shaped charges 113, as described. The programmable electronic circuit may be in wired, wireless, or contactable electrical communication with the detonator 133 by various known techniques, or may send the detonation signal via, or after activating, e.g., a trigger circuit or other intervening detonation component. The detonation signal may be, without limitation, a selective sequence signal, as previously discussed, that is unique to the detonator 133 of the particular autonomous perforating drone 100. The selective detonation signal may provide a safety measure against accidental firing by, for example, external RF signals.
As described, the autonomous perforating drone 100 travels through the wellbore with the tip section 195 downstream, and the detonating cord 160 is initiated by the receiver booster 150 at the downstream end 111 of the perforating assembly section 110. Accordingly, the ballistic/thermal release from the detonating cord 160 propagates along the length L of the perforating assembly section 110 in a direction from the downstream end 111 of the perforating assembly section 110 to the upstream end of the perforating assembly section 110, and the shaped charges 113 are correspondingly detonated (by the detonating cord 160) in a bottom-up, i.e., downstream to upstream, sequence. This bottom-up sequence for detonating the shaped charges 113 prevents downstream shaped charges and portions of the autonomous perforating drone 100 from being separated and blown away from the rest of the assembly, as may happen if an upstream shaped charge is detonated while a drone is traveling at high velocity in a wellbore fluid. Accordingly, the bottom-up detonation sequence may prevent downstream shaped charges from failing to detonate or detonating at an undesired location, and leaving unexploded shaped charges and extra debris in the wellbore.
With reference now to
With reference now to
In the exemplary configuration shown in
The arrangement of shaped charges within a single radial plane as shown in
With reference now to
In an aspect, one or both of the control module section body 191 (including the lip 1835) and the lip 199 of the tip section 195 may be formed from a material with sufficient flexibility and resiliency to allow engagement of the lip 1835 of the control module section 130 and the lip 199 of the tip section 195 to move under a force of pushing the tip section 195 and the control module section 130 together, thereby bringing the respective engagement structures into position, before returning the complimentary engagement portions into their set position providing engagement as described above. In an aspect, the tip section 195 may be formed from a material such as, but not limited to, a hard rubber. In a further aspect, the material is abrasion-resistant. The separable aspect of the tip section 195 and the control module section 130 may allow selective insertion of the control module 137 into the hollow interior 132 of the control module section 130. Other techniques and configurations for removably securing the tip section 195 to the control module section 130 include, without limitation, threaded engagements, dovetail arrangements, or other techniques as are known for removably securing structures.
In another aspect, the tip section 195 may be configured as a “frac ball” for sealing a corresponding “frac plug” downhole in the wellbore. For example, frac plugs are well known for isolating zones of a wellbore during perforation. One style of known frac plugs are configured as sealing elements with an open channel through the center of the plug such that the plug may be completely sealed by a frac ball that sets within the open channel. Sealing a zone currently undergoing perforation and fracking from downstream portions of the wellbore allows the fracking fluid to more efficiently achieve the pressures required for cracking hydrocarbon formations in the current zone because the fracking fluid does not lose pressure required to fill downstream portions of the wellbore. However, once the wellbore is ready for production, the frac balls must be drilled out of the frac plug openings to allow hydrocarbons to flow through the wellbore and to the surface.
In an aspect, the tip section 195 of the autonomous perforating drone may be configured dimensionally for use as a frac ball and formed from one or more materials such that the frac ball tip section will not be destroyed upon detonation of the autonomous perforating drone. The frac ball tip section may be retained to the control module section 130 by any known techniques including a threaded portion, clips, straps, friction fits, adhesives, retention in a cavity, or other techniques as described in or consistent with this disclosure. Upon detonation of the autonomous perforating drone, the frac ball tip section will release and travel downstream until it encounters and seals a frac plug. A drone for use with a frac ball tip section may be an autonomous perforating drone as described throughout this disclosure or may be a “dummy” drone, i.e., that does not carry perforating charges or other wellbore tools for performing a separate function in the wellbore. In either case, the control module 137 of the autonomous perforating (or dummy) drone may be made from standard metal and drilled out with the frac ball/plug, and the shaped charges may be formed at least in part from zinc to reduce debris. In addition, an autonomous perforating drone incorporating a tip section as a frac ball may be used in conjunction with an autonomous drone for deploying a frac plug, such that the frac plug drone is sent downhole, sets the plug, and the frac ball drone is sent in thereafter to provide the frac ball seal and potentially perforate the wellbore casing/hydrocarbon formation with shaped charges as discussed throughout this disclosure.
Continuing with reference to
In an aspect, the components of the control module 137 in the exemplary embodiment shown in
The control module section 137, as previously discussed, further includes a detonator 133 and a donor charge 134 positioned within a detonator channel 145 of the control module 137. The donor charge 134 is substantially aligned with a ballistic channel 141 in which a ballistic interrupt 140 is positioned in a spaced apart relationship between the donor charge 134 and a receiver booster 150. In the embodiment shown in
The exemplary ballistic interrupt 140 is cylindrically-shaped and functions as previously described. For example, the ballistic interrupt 140 in
With continuing reference to
In an aspect, the explosive load 1242 includes at least one of pentaerythritol tetranitrate (PETN), cyclotrimethylenetrinitramine (RDX), octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine/cyclotetramethylene-tetranitramine (HMX), 2,6-Bis(picrylamino)-3,5-dinitropyridine/picrylaminodinitropyridin (PYX), hexanitrostibane (HNS), triaminotrinitrobenzol (TATB), and PTB (mixture of PYX and TATB). According to an aspect, the explosive load 1242 includes diamino-3,5-dinitropyrazine-1-oxide (LLM-105). The explosive load may include a mixture of PYX and triaminotrinitrobenzol (TATB). The type of explosive material used may be based at least in part on the operational conditions in the wellbore and the temperature downhole to which the explosive may be exposed.
In the exemplary embodiment shown in
With continuing reference to
With reference now to
In an aspect, shaped charges arranged according to any of the exemplary embodiment(s) shown in
With reference now to the exemplary embodiment shown in
The control module section 130 in the exemplary embodiment shown in
As previously described, both the head portion 1285 and the tail section 180 of the drone 1200 may be formed with fins 181. Particularly pronounced fins 1281 may be present on one or both of the head portion 1285 and the tail section 180 and may be used, for example, to further lessen impacts against critical components of the drone 1200 and/or provide an engagement means for a mechanical implement to grip and move the drone as part of a management and/or launcher system for drones, for example as described in co-owned U.S. patent application Ser. No. 16/423,230, incorporated herein by reference.
Tail section 180/control module section 130 may further include pass-through holes 1260 in a rear area of the tail section 180/control module section 130. The pass-through holes 1260 may, without limitation, provide a channel for fluid running through fins 181 to flow through, thus reducing friction on the drone 1200, and may also be part of an engagement structure by which a mechanical implement for moving the drones, as mentioned above, may engage the drone 1200 for moving it as part of moving, making an electrical connection to, and/or launching the drone 1200, or other operations of the like. With additional reference to
As previously described with respect to other embodiments, the perforating assembly section 110 includes at least one aperture 1213 configured for receiving a shaped charge 140 at least in part within the body 1255 of the drone 1200. For purposes of the embodiment(s) shown in
The exemplary embodiment(s) shown in
The head portion 1285 of the drone 1200 is sized and shaped, as previously discussed, to help reduce impacts between the drone 1200 and the wellbore casing as the drone 1200 travels down the well. The exemplary head portion 1285 shown in
As mentioned throughout this disclosure, the head portion 1285, perforating assembly section 110, and tail section 180 may take any form consistent with this disclosure. For example, an embodiment of a head portion may be torpedo or arrow shaped, have fins including a curved profile, or any other configuration consistent with the application(s). The exemplary head portion 1285 shown in
With reference to
For example, the annular portion of the tail section 180 extending beyond the sealing access plate 1275 defines a wall 1271 around the recess 1270. The wall has an interior surface 1272 on which engagement structures may be formed. In the exemplary embodiment shown in
With reference now to
As further shown in
With continuing reference to
In an aspect, the CIU 1804 may include the PCB 1805 and a fuse for initiating the detonator 133 may be attached directly to the PCB 1805. In an aspect of those embodiments, the detonator 133 may be connected to a non-charged firing panel—for example, a selective detonator may be attached to the PCB 1805 such that upon receiving a selective detonation signal the firing sequence, controls, and power may be supplied by components of the PCB or CIU via the PCB. This can enhance safety and potentially allow shipping the fully assembled drone in compliance with transportation regulations if the ballistic interrupt is in the closed position. Connections for the detonator/detonator components on the PCB board may be, without limitation, sealed contact pins or concentric rings with o-ring/groove seals to prevent the introduction of moisture, debris, and other undesirable materials.
In an aspect, the CIU 1804 may be configured without a control module housing 138. For example, the CIU 1804 may be contained within the hollow interior portion 132 of the control module section 130 and sealed from external conditions by the drone body 1255 itself. Alternatively, the CIU 1804 may be housed within an injection molded case and sealed within the body 1255. The injection molded case may be potted on the inside to add additional stability. In addition, or alternatively, the control module housing 138 or other volume in which the CIU 1804 is positioned may be filled with a fluid to serve as a buffer. An exemplary fluid is a non-conductive oil, such as mineral insulating oil, that will not compromise the CIU components including, e.g., the detonator. The control module housing 138 may also be a plastic carrier or housing to reduce weight versus a metal casing. In any configuration including a control module housing 138 the CIU components may be potted in place within the control module housing 138, or alternatively potted in place within whatever space the CIU 1804 occupies.
With continuing reference to
The ballistic channel 141 is open to and extends from the hollow interior portion 132 of the control module section 130 towards the perforating assembly section 110. As shown in
With respect to the exemplary embodiment(s) presented in
The exemplary embodiments presented herein may be used for deploying a variety of wellbore tools downhole, as previously discussed. Thus, neither the description nor the claims necessarily excludes the use of the autonomous perforating drone described throughout this disclosure of deploying a variety of wellbore tools for activation.
The present disclosure, in various embodiments, configurations and aspects, includes components, methods, processes, systems and/or apparatus substantially developed as depicted and described herein, including various embodiments, sub-combinations, and subsets thereof. Those of skill in the art will understand how to make and use the present disclosure after understanding the present disclosure. The present disclosure, in various embodiments, configurations and aspects, includes providing devices and processes in the absence of items not depicted and/or described herein or in various embodiments, configurations, or aspects hereof, including in the absence of such items as may have been used in previous devices or processes, e.g., for improving performance, achieving ease and/or reducing cost of implementation.
The phrases “at least one”, “one or more”, and “and/or” are open-ended expressions that are both conjunctive and disjunctive in operation. For example, each of the expressions “at least one of A, B and C”, “at least one of A, B, or C”, “one or more of A, B, and C”, “one or more of A, B, or C” and “A, B, and/or C” means A alone, B alone, C alone, A and B together, A and C together, B and C together, or A, B and C together.
In this specification and the claims that follow, reference will be made to a number of terms that have the following meanings. The terms “a” (or “an”) and “the” refer to one or more of that entity, thereby including plural referents unless the context clearly dictates otherwise. As such, the terms “a” (or “an”), “one or more” and “at least one” can be used interchangeably herein. Furthermore, references to “one embodiment”, “some embodiments”, “an embodiment” and the like are not intended to be interpreted as excluding the existence of additional embodiments that also incorporate the recited features. Approximating language, as used herein throughout the specification and claims, may be applied to modify any quantitative representation that could permissibly vary without resulting in a change in the basic function to which it is related. Accordingly, a value modified by a term such as “about” is not to be limited to the precise value specified. In some instances, the approximating language may correspond to the precision of an instrument for measuring the value. Terms such as “first,” “second,” “upper,” “lower” etc. are used to identify one element from another, and unless otherwise specified are not meant to refer to a particular order or number of elements.
As used herein, the terms “may” and “may be” indicate a possibility of an occurrence within a set of circumstances; a possession of a specified property, characteristic or function; and/or qualify another verb by expressing one or more of an ability, capability, or possibility associated with the qualified verb. Accordingly, usage of “may” and “may be” indicates that a modified term is apparently appropriate, capable, or suitable for an indicated capacity, function, or usage, while taking into account that in some circumstances the modified term may sometimes not be appropriate, capable, or suitable. For example, in some circumstances an event or capacity can be expected, while in other circumstances the event or capacity cannot occur—this distinction is captured by the terms “may” and “may be.”
As used in the claims, the word “comprises” and its grammatical variants logically also subtend and include phrases of varying and differing extent such as for example, but not limited thereto, “consisting essentially of” and “consisting of.” Where necessary, ranges have been supplied, and those ranges are inclusive of all sub-ranges therebetween. It is to be expected that variations in these ranges will suggest themselves to a practitioner having ordinary skill in the art and, where not already dedicated to the public, the appended claims should cover those variations.
The terms “determine”, “calculate” and “compute,” and variations thereof, as used herein, are used interchangeably and include any type of methodology, process, mathematical operation or technique.
The foregoing discussion of the present disclosure has been presented for purposes of illustration and description. The foregoing is not intended to limit the present disclosure to the form or forms disclosed herein. In the foregoing Detailed Description for example, various features of the present disclosure are grouped together in one or more embodiments, configurations, or aspects for the purpose of streamlining the disclosure. The features of the embodiments, configurations, or aspects of the present disclosure may be combined in alternate embodiments, configurations, or aspects other than those discussed above. This method of disclosure is not to be interpreted as reflecting an intention that the present disclosure requires more features than are expressly recited in each claim. Rather, as the following claims reflect, the claimed features lie in less than all features of a single foregoing disclosed embodiment, configuration, or aspect. Thus, the following claims are hereby incorporated into this Detailed Description, with each claim standing on its own as a separate embodiment of the present disclosure.
Advances in science and technology may make equivalents and substitutions possible that are not now contemplated by reason of the imprecision of language; these variations should be covered by the appended claims. This written description uses examples to disclose the method, machine and computer-readable medium, including the best mode, and also to enable any person of ordinary skill in the art to practice these, including making and using any devices or systems and performing any incorporated methods. The patentable scope thereof is defined by the claims, and may include other examples that occur to those of ordinary skill in the art. Such other examples are intended to be within the scope of the claims if they have structural elements that do not differ from the literal language of the claims, or if they include equivalent structural elements with insubstantial differences from the literal language of the claims.
This application claims priority to U.S. patent application Ser. No. 16/537,720, filed Aug. 12, 2019, which claims the benefit of U.S. Provisional Patent Application No. 62/831,215, filed Apr. 9, 2019 and U.S. Provisional Patent Application No. 62/823,737, filed Mar. 26, 2019, to which this application also claims the benefit, and to U.S. Provisional Application No. 62/720,638, filed Aug. 21, 2018. This application claims priority to U.S. patent application Ser. No. 16/455,816, filed Jun. 28, 2019, which claims priority to U.S. patent application Ser. No. 16/272,326 filed Feb. 11, 2019, which claims the benefit of U.S. Provisional Patent Application No. 62/780,427 filed Dec. 17, 2018, to which this application also claims the benefit, and U.S. Provisional Patent Application No. 62/699,484 filed Jul. 17, 2018. This application claims priority to U.S. application Ser. No. 16/451,440, filed Jun. 25, 2019, which claims the benefit of U.S. Provisional Patent Application No. 62/842,329, filed May 2, 2019, to which this application also claims the benefit. This application claims priority to International Patent Application No. PCT/EP2019/066919, filed Jun. 25, 2019. This application claims the benefit of U.S. Provisional Patent Application No. 62/816,649, filed Mar. 11, 2019. This application claims priority to International Patent Application No. PCT/IB2019/000526, filed Apr. 12, 2019, which claims priority to International Patent Application No. PCT/IB2019/000537, filed Mar. 18, 2019, which claims the benefit of U.S. Provisional Patent Application No. 62/678,636 filed May 31, 2018. This application claims priority to International Patent Application No. PCT/IB2019/000530 filed Mar. 29, 2019, which claims the benefit of U.S. Provisional Patent Application No. 62/690,314 filed Jun. 26, 2018. This application claims the benefit of U.S. Provisional Patent Application No. 62/765,185 filed Aug. 16, 2018. This application claims priority to U.S. patent application Ser. No. 16/272,326 filed Feb. 11, 2019, which claims the benefit of U.S. Provisional Patent Application No. 62/780,427 filed Dec. 17, 2018 and U.S. Provisional Patent Application No. 62/699,484 filed Jul. 17, 2018. This application claims the benefit of U.S. Provisional Patent Application No. 62/823,737 filed Mar. 26, 2019. This application claims the benefit of U.S. Provisional Patent Application No. 62/827,468 filed Apr. 1, 2019. This application claims the benefit of U.S. Provisional Patent Application No. 62/831,215 filed Apr. 9, 2019. The entire contents of each application listed above are incorporated herein by reference.
Number | Date | Country | |
---|---|---|---|
62831215 | Apr 2019 | US | |
62823737 | Mar 2019 | US | |
62720638 | Aug 2018 | US | |
62780427 | Dec 2018 | US | |
62699484 | Jul 2018 | US | |
62842329 | May 2019 | US | |
62816649 | Mar 2019 | US | |
62678636 | May 2018 | US | |
62690314 | Jun 2018 | US | |
62765185 | Aug 2018 | US | |
62699484 | Jul 2018 | US | |
62780427 | Dec 2018 | US | |
62823737 | Mar 2019 | US | |
62827468 | Apr 2019 | US | |
62831215 | Apr 2019 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 16272326 | Feb 2019 | US |
Child | 16455816 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 16537720 | Aug 2019 | US |
Child | 16542890 | US | |
Parent | 16455816 | Jun 2019 | US |
Child | 16537720 | US | |
Parent | 16451440 | Jun 2019 | US |
Child | 16272326 | US | |
Parent | PCT/EP2019/066919 | Jun 2019 | US |
Child | 16451440 | US | |
Parent | PCT/IB2019/000526 | Apr 2019 | US |
Child | PCT/EP2019/066919 | US | |
Parent | PCT/IB2019/000537 | Mar 2019 | US |
Child | PCT/IB2019/000526 | US | |
Parent | PCT/IB2019/000530 | Mar 2019 | US |
Child | PCT/IB2019/000537 | US | |
Parent | 16272326 | Feb 2019 | US |
Child | PCT/IB2019/000530 | US |