This application is a national stage application under 35 U.S.C. 371 of international application number PCT/DE2011/002081 filed Dec. 5, 2011 (WO 2012/076002) and also claims priority to German application number 10 2010 053 686.5 filed Dec. 8, 2010, all of which are hereby incorporated by reference in their entirety.
The invention relates to an apparatus and to a method for operating a safety system for the users of vehicle simulators.
In order to shorten the learning process involved in learning to use different vehicles and, in practice, to minimize risks both in the initial phase of such a process and in relation to training, increasing use is being made in recent times of appropriate simulators.
For this purpose, DE 10 2008 023 955 B4 describes a method for simulating events and processes associated with aircraft, land-based vehicles or watercraft and a corresponding simulation system, for example. It is the underlying object of this invention to activate a simulation device in real time even though the data required for activation are supplied only by a simulation program which is not real-time, with the intention being that a latency caused by a data manager should be compensated.
Here, the term “real time” is taken to mean the time actually required by processes in the real world. The term “real time” does not refer to a particular speed or processing power of the program or of the controller but merely defines the timeframe within which the system must respond. The term “latency” refers to a period of time between an action and the occurrence of the reaction that is to be expected, i.e. a delay.
The essential feature protected in this patent is that, if data do not arrive on time, the data gap which arises is filled by data from empirical values or by data from previous simulation programs, and these data are then sent to the motion controller of the real-time simulation device. No indications on the operation of a safety system for the user of a vehicle simulator can be found here.
DE 600 20 466 T2 furthermore discloses a “parallel robot” with four degrees of freedom which achieves the object of moving a mobile plate with four degrees of freedom at high speed and with a high acceleration and of positioning the mobile plate with a high rigidity and accuracy. Here, the term “parallel robot” is used to refer to a robot in which a multiplicity of actuators is arranged in parallel, it being possible to use a robot of this kind in a driving simulator for a motor vehicle, for example.
In this publication, parallel robots with six degrees of freedom are mentioned in connection with the prior art, these being used in flight simulators of the kind disclosed in U.S. Pat. Nos. 5,333,514 and 5,715,729, for example.
To achieve the object stated in DE 600 20 466 T2, a parallel robot is described which consists essentially of a special arrangement of a parallel linkage (3), a moving platform (4), coupling components (42) and kinematic elements (33). This publication does not deal with safety systems for the users of vehicle simulators.
It is therefore the underlying object of the apparatus according to the invention and of the corresponding method to propose an apparatus and a method where the primary concern is not only obtaining operational knowledge of vehicles but also the safety of the user of a vehicle simulator in the event of a technical fault or an accident.
The object is achieved by an apparatus as claimed in claim 1 and by a method as claimed in claim 7.
The apparatus according to the invention is described in greater detail below. More particularly:
In one particular embodiment, special sensors (not shown specially here) are provided in one or more of the treads to measure the weight or mass of the respective persons climbing onto the vehicle simulator. In this way, the controller of the overall system obtains additional information for the purpose of estimating the force that has to be applied by the robot to accelerate and move the cockpit 3. This increases the operational safety of the vehicle simulator since it is possible to make a realistic estimate of the load peaks induced by the simulation program and imposed on the person and the machine.
It is furthermore important for the control program to be informed by means of a plurality of sensors on each seat and at each seat belt in the cockpit 3 whether the seat is occupied and the user concerned is also belted up. The boarding process and correct closure of the cockpit must also be monitored by sensors.
The working zone of the vehicle simulator is indicated in the form of the angular range 8 depicted in dashed lines. In the plan view, it is possible to see here the robot arm 1 and the connection thereof to the vehicle cockpit 3 in the region of the boarding stair 6. In
The slewing ring 17 can be seen concentrically around the pedestal 12, together with the running rail 14 of the rescue unit 13 in the position forming the extension of the robot arm 1. A side view relating to the use of the rescue unit 13 can be found in
The safety perimeter 9, which is interrupted only by two entry doors 10, is shown around the entire access zone and working zone in this figure. Monitoring sensors 11 are installed at all the corners of the safety perimeter 9. These monitoring sensors 11 can be designed as optical sensors which, in interaction with respective light-emitting units, have the function of a light barrier for each section to be monitored. Here, the range of the light wavelength used can extend from visible light to infrared light.
In the lower area of
In addition to the sketched robot arm 1, the vehicle cockpit 3, the damping layer 4, the boarding apparatus 5 and the boarding stair 6, shown in front view, the left-hand entry door 10 and part of the safety perimeter 9 are specially indicated in this view. Moreover one of the monitoring sensors 11 mounted at each corner is specially indicated.
In addition to the pedestal 12 of the robot and the slewing ring 18 of the robot arm 1, a first revolute joint denoted by 19, a second revolute joint denoted by 20, a third revolute joint denoted by 21, a fourth revolute joint denoted by 22 and a fifth revolute joint denoted by 23 and the direct attachment of the cockpit 3 thereby can be seen here in sequence. The slewing ring 17 of the rescue unit 13, which was shown from above in
The rescue unit 13 is based on a carriage 15, which can be moved to the location of use thereof along a running rail 14. The drive required for this purpose is omitted here for reasons of clarity. The same applies to the slewing ring 17 of the rescue unit 17. The rescue unit 17 furthermore consists of a lifting unit 27 for lifting a rescue platform 25, which is secured all the way around by a railing 24. Descent from the rescue platform 25 can be accomplished by lowering the lifting unit 27 or, in urgent cases, by means of the rescue slides 26. In this
In the right-hand area of
Acoustic detection and evaluation of characteristic machine noises can be used as a special embodiment of the means of ensuring protection from damage to machine components that could lead to the unforeseeable failure of a robot and hence to a risky situation for users of the vehicle simulator according to the invention. The spectrum of normal noises that occur during the operation of industrial robots is recorded by acoustic sensors and used as a reference. Both airborne noise signals and structure-borne noise signals are suitable here. If noises outside the bandwidth of the normal frequency and/or of the noise level occur during the operation of such a robot, this is detected by an electronic analysis circuit and reported to the controller for the entire system. Depending on the extent of the deviation detected in this way, it may be necessary to switch off the entire system at the next acceptable time or to perform appropriate additional checks during the next service.
As another embodiment, provision can be made, in the case of drives using belt-like transmission elements, where premature failure can be detected acoustically only with very great difficulty, to employ optical sensors. With such sensors, it is possible to detect and record unusual flapping or impermissible vibration of components. If unusual measured values occur, the same measures must be taken as in the case of acoustically detected faults.
Damage to electrical components of a vehicle simulator can also lead to unwanted and, in particular, unforeseeable failures of the entire system. Since such damage is often revealed by the formation of smoke, sensors for detecting noticeable smoke formation are provided as a special embodiment in the relevant parts of the system. Moreover, emergency generating sets and/or buffer batteries are provided to counter failure of the electric power supply.
A typical operating sequence is shown below in 19 steps:
Method steps for the operation of the simulator according to the invention while taking account of safety lights for users
1. Standby
2. Personal ID
3. Parking, ready for operation
4. Boarding access, gate unlocking, gate closure
5. Open canopy, boarding
6. Put on belts
7. Close canopy
8. Working position, adjustment
9. Start simulation
10. End simulation
11. Return to parking position
12. Parking position
13. Unlock canopy, open
14. Undo belts, get out
15. Close canopy
16. Exit via boarding zone, open gate, close door,
17. Leave boarding zone, close gate
18. Standby
19. Switch off, charge batteries of emergency systems
One significant component of a vehicle simulator is the projection surface which simulates for the user the reality to which he must match his motor responses. Conventional projection methods often use curved projection surfaces which not only require complex controllers for the respective partial areas and expensive projectors but are also dependent on a heavy and expensive holding apparatus for such a curved overall surface. A large-area holding structure of this kind itself already represents a risk since the necessary stability is often skimped here. The autonomous safety system according to the invention therefore uses a projection surface which consists of flat but flexurally rigid, lightweight projection surfaces. In the simplest case, these can be two vertical projection surfaces abutting at a suitable angle which are covered by another surface, as it were as a “lid”, to simulate the sky. The abutting edges, formed in this case, of the adjoining surface components are precisely defined and can therefore be managed relatively easily in terms of programming. Moreover, the illumination points representing these abutting edges are very small and the corresponding transition zones therefore do not appear in the overall image. The relatively light holding apparatus for a projection surface configured in this way represents an additional safety aspect.
Control of the complex motion processes and signal processing of the sensors used require a special control program.
As a person skilled in the art will readily appreciate, the above description is meant as an illustration of implementation of the principles this application. This description is not intended to limit the scope of this application in that the invention is susceptible to modification, variation and change, without departing from the spirit of this application, as defined in the following claims.
Number | Date | Country | Kind |
---|---|---|---|
10 2010 053 686 | Dec 2010 | DE | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/DE2011/002081 | 12/5/2011 | WO | 00 | 5/23/2013 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2012/076002 | 6/14/2012 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
5021954 | Fox et al. | Jun 1991 | A |
5333514 | Toyama et al. | Aug 1994 | A |
5584697 | Trumbull | Dec 1996 | A |
5715729 | Toyama et al. | Feb 1998 | A |
5752834 | Ling | May 1998 | A |
5857917 | Francis et al. | Jan 1999 | A |
6516681 | Pierrot et al. | Feb 2003 | B1 |
7959513 | Ochi | Jun 2011 | B2 |
20040195457 | Baker | Oct 2004 | A1 |
20050091018 | Craft | Apr 2005 | A1 |
20090008186 | Taylor et al. | Jan 2009 | A1 |
20100279255 | Williams, II | Nov 2010 | A1 |
20110039235 | Margreiter | Feb 2011 | A1 |
20130252209 | Guehring et al. | Sep 2013 | A1 |
Number | Date | Country |
---|---|---|
689 10 137 | Mar 1994 | DE |
600 20 466 | Apr 2006 | DE |
10 2008 023 955 | Nov 2009 | DE |
0 324 567 | Jul 1989 | EP |
61-068074 | Oct 1987 | JP |
04-027950 | Feb 1992 | JP |
03-238278 | Mar 1993 | JP |
2001-060772 | Mar 2001 | JP |
2001-091634 | Apr 2001 | JP |
2002-123166 | Apr 2002 | JP |
2004503308 | Feb 2004 | JP |
2004-252618 | Sep 2004 | JP |
2006-087937 | Apr 2006 | JP |
2006-323167 | Nov 2006 | JP |
2008-067741 | Mar 2008 | JP |
2010-134525 | Jun 2010 | JP |
WO 2012076002 | Jun 2012 | WO |
Entry |
---|
Japanese Office Action for Application No. 2013-542371, Dated Jun. 10, 2014 and English Translation. |
German Office Action dated Jun. 15, 2011, Serial No. 10 2010 053 686.5 and English Translation. |
International Search Report Dated Apr. 25, 2012, Serial No. PCT/DE2011/002081. |
Canadian Office Action, Serial No. 2,815,884, Dated Jun. 30, 2016. |
Number | Date | Country | |
---|---|---|---|
20130252209 A1 | Sep 2013 | US |