The invention relates to an autothermic reformer for producing a hydrogen-rich gas mixture for use in a fuel cell.
As a rule, pure hydrogen is regularly required for operating polymer electrolyte membrane (PEM) fuel cells. Hydrogen-rich product gas is generally produced from hydrocarbons using reformers. There the so-called reformate is produced catalytically or even non-catalytically from a fuel, as a rule from alcohols (e.g. methanol or ethanol) or hydrocarbons (e.g. methane, natural gas, propane, diesel, kerosene) with water, with an oxidizing agent, or with water and an oxidizing agent. Once it has been purified in a multi-stage gas purification unit, which as a rule comprises a two-stage shift reactor and subsequent preferential oxidizing, this reformate is then supplied to the polymer electrolyte membrane fuel cell. The residual anode gas from the polymer electrolyte membrane fuel cell is converted in a burner using an oxidizing agent.
As a rule, the individual chemical reactions run at different temperatures, for instance the reformation at 250 to 900° C. and the subsequent purification of the reformate at 200-400° C. in the shift reactor and at 50-200° C. in the reactor for preferential oxidation. In addition, some heat is produced in the individual reactions or in some cases additional heat is even needed.
The object of the invention is to provide an autothermic reformer for producing hydrogen for a fuel cell, which reformer can be operated with as little externally supplied heat as possible. In particular the autothermic reformer should provide the vapor required for the reformation process and should use the heat from the exhaust gas of the burner.
The underlying idea of the invention is to thermically couple the reformation and the post-combustion of the anode exhaust gas so that such a unit can also be operated nearly autonomously during stationary operation.
The inventive reformer/burner system advantageously solves the problem of evaporating the water that is required for the autothermic reformation in that the heat from the burner exhaust gas and from the reformate is used. In addition, using the heat discharge from the reformate, the reformate temperature is simultaneously lowered to the temperature level of the subsequent purification stage, desulfurization, or high temperature shift stage.
For this purpose, the inventive apparatus has a reformer part and a combustion part. Arranged in the reformer part is a first mixing chamber that has a first inlet that is able to feed in fuel and oxidizing agent via a nozzle, and a second inlet that is able to feed in a water vapor/carrier gas mixture via a supply line. When the autothermic reformer is operating, the oxidizing agent mixes with the fuel, water vapor, and carrier gas, and the liquid fuels (e.g. diesel, kerosene) are evaporated. This mixture is then conducted across a catalytically active surface in a reaction chamber so that it is converted to a hydrogen-rich mixture (reformate). The heat that is released during this process is absorbed by a first heat exchanger and furthermore by a second heat exchanger. Thus the reformate cools off so that it can be conducted out of the inventive apparatus. The reformate then advantageously has a temperature that is necessary for any downstream gas purification steps.
At the same time, residual anode gas from a fuel cell, in particular a PEM, is supplied to the inventive apparatus in the combustion part. This residual gas, together with the required quantity of an oxidizing agent, is also supplied to a catalytic surface, where it reacts exothermically. The heat released during this process is absorbed by a third heat exchanger. The cooled exhaust gas is then removed from the apparatus. As a rule it is low in harmful substances due to the catalytic conversion.
The water/carrier gas mixture that is required for the chemical transformation in the reformer part is added to the apparatus via a feed line and conducted via a first and a second heat exchanger. Heating is performed such that the water is completely evaporated and the mixture is superheated. The water vapor/carrier gas mixture is then supplied in the reformer part via a feed line to the vaporized fuel/oxidizing agent mixture.
The inventive method thermically couples the chemical conversion of the reformer to that of the post-combustion in such a manner that in the optimum case all of the water vapor required for the reformation can be produced without the addition of further external heat. Furthermore, the method reduces the reformate temperature to that required for the subsequent gas purification, and also advantageously cools the residual anode gas of the fuel cell that is converted to exhaust gas in the burner.
The method can be implemented in a suitable manner using the inventive apparatus. It has a reformer part with an inlet for a fuel/oxidizing agent mixture, an inlet for a water/carrier gas mixture, a catalytic surface, and a first heat exchanger having a first passage for the reformate and a second passage for a water/carrier gas mixture.
The apparatus furthermore has a combustion part with an inlet for the residual anode gas from a fuel cell, an inlet for an oxidizing agent, a catalytic surface, and a third heat exchanger, a first passage for the converted residual anode gas, and a second passage for a water/carrier gas mixture.
The combustion part and the reformer part are structurally coupled to one another via at least one supply line for a water vapor/carrier gas mixture.
In the following the subject-matter of the invention is explained in greater detail using two figures, without this limiting the subject-matter of the invention.
In the figures:
The reaction chamber RR of the autothermic reformer and the burner chamber BR of the burner can be seen in
On the right-hand side, the residual anode gas enters the second mixing chamber with the required quantity of oxidizing agent for burning the residual node gas. The gas mixture is conducted to the burner chamber. Here, as well, a catalyst leads to the conversion of the residual anode gas by means of total oxidation. The hot gas thus purified is cooled via the second and third heat exchangers and removed.
The added water/carrier gas mixture is first conducted via the first and second heat exchangers, where it absorbs the heat given off by the reformate and burner exhaust gas and can be conducted into the mixing chamber 1 as water vapor/carrier gas mixture.
Number | Date | Country | Kind |
---|---|---|---|
10 2005 026 780.7 | Jun 2005 | DE | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/DE2006/000946 | 5/31/2006 | WO | 00 | 12/3/2007 |