This invention relates to air-conditioning apparatuses and methods and, in particular, to air-conditioning apparatuses and methods for vehicles having auxiliary power units.
Larger vehicles, for example large diesel tractors used for pulling large trailers on highways, are frequently provided with auxiliary power units. These units, which include an auxiliary diesel engine, much smaller than the vehicle engine, and an electrical generating unit, are utilized to provide auxiliary power when the vehicle engine is shut off. The use of such auxiliary power units reduces fuel wastage as well as vehicle emissions.
One highly desirable characteristic of auxiliary power units is the ability to operate an auxiliary air-conditioning system for use when the vehicle is parked. Conventionally most trucks are manufactured without auxiliary power units. These are typically sold as a dealer installed option. However, with conventional auxiliary air-conditioning systems it is not feasible to utilize the ducts for the main air-conditioning system which are installed in the cab during original assembly of the vehicle. Adequate cab cooling is not achieved if cooled air from the auxiliary air-conditioning system is simply discharged at the floor of the cab. Accordingly it has been necessary in many cases to install new ducts in the cab for the auxiliary air-conditioning system. This means removing significant portions of the cab interior, both at considerable expense and with the risk of disturbing the integrity and appearance of the original interior. Accordingly, truck owners often find the entire procedure of installing conventional auxiliary air-conditioning units to be unsatisfactory.
According to one aspect of the invention, there is provided a method for providing for the installation of an auxiliary air-conditioning system for a vehicle having a vehicle engine for powering the vehicle and a main air-conditioning system powered by the vehicle engine. The main air-conditioning system includes a main compressor powered by the vehicle engine, an evaporator apparatus and a main condenser, the evaporator apparatus and the main condenser being connected to the main compressor by refrigerant conduits suitable for carrying a refrigerant. The method comprises installing independent first and second evaporator conduits in the evaporator apparatus for the main air-conditioning system, the first of the evaporator conduits being connected to the main compressor and to the main condenser. The second evaporator conduit has at least one fitting capable of connecting to an auxiliary compressor of an auxiliary air-conditioning system. The main air-conditioning system is installed in the vehicle at the time of original assembly of the vehicle.
There is provided, according to a second aspect of the invention, a method for installing an auxiliary air-conditioning system for a vehicle having a vehicle engine for powering the vehicle and a main air-conditioning system powered by the vehicle engine. The main air-conditioning system includes a main compressor powered by the vehicle engine, an evaporator apparatus and a main condenser. The evaporator apparatus and the main condenser are connected to the main compressor by refrigerant conduits suitable for carrying a refrigerant. The method comprises installing two independent evaporator conduits in the evaporator apparatus, a first of said evaporator conduits being connected to the main compressor and to the condenser. A second of said evaporator conduits has at least one fitting capable of connecting to an auxiliary compressor of an auxiliary air-conditioning system. The main air-conditioning system is installed in the vehicle at the time of original assembly of the vehicle. The auxiliary air-conditioning system is installed subsequent to original assembly of the vehicle. The auxiliary air-conditioning system is powered independently of the vehicle engine and has an auxiliary compressor, the auxiliary compressor is connected to said at least one fitting on the second evaporator conduit.
According to a third aspect of the invention, there is provided an air-conditioning apparatus for a vehicle having an engine, the apparatus comprises a main compressor powered by the engine, a main condenser connected to the main compressor, a first refrigerant conduit connecting the main condenser to the main compressor and an evaporator apparatus having two independent evaporator conduits. A second refrigerant conduit connects a first of the evaporator conduits to the main compressor. A third refrigerant conduit connects the first of the evaporator conduits to the main condenser. A second of the conduits of the evaporator has at least one fitting for connecting to an auxiliary compressor which is powered independently of the engine.
According to a fourth aspect of the invention, there is provided a vehicle having a vehicle engine and an air-conditioning apparatus. The air-conditioning apparatus comprises a main compressor powered by the engine, a main condenser connected to the main compressor, a first refrigerant conduit connecting the condenser to the main compressor and an evaporator apparatus having two independent evaporator conduits. A second refrigerant conduit connects a first of the evaporator conduits to the main compressor. A third refrigerant conduit connects the first of the evaporator conduits to the condenser. A second of the evaporator conduits has at least one fitting for connecting to an auxiliary compressor which is powered independently of the engine.
According to a fifth aspect of the invention, there is provided a vehicle having a vehicle engine, a cab and an air-conditioning apparatus. The air-conditioning apparatus comprises a main compressor powered by the engine, a main condenser connected to the main compressor, a first refrigerant conduit connecting the main condenser to the main compressor and an evaporator apparatus having two independent evaporator conduits. A second refrigerant conduit connects a first of the evaporator conduits to the main compressor. A third refrigerant conduit connects the first of the evaporator conduits to the condenser. A second of the evaporator conduits has at least one fitting for connecting to an auxiliary compressor which is powered independently of the engine. A common duct in the cab delivers cooled air when the main compressor is operational and when the auxiliary compressor is operational.
According to a sixth aspect of the invention, there is provided a vehicle having a vehicle engine, a cab and a main air-conditioning apparatus including a main compressor powered by the engine, a main condenser connected to the main compressor, and an evaporator apparatus connected to the main compressor and to the condenser. An auxiliary air-conditioning apparatus includes an auxiliary compressor powered independently of the vehicle engine. A common duct in the cab is used to deliver cooled air for both the main air-conditioning apparatus and the auxiliary air-conditioning apparatus.
According to a seventh aspect of the invention, there is provided a vehicle having a vehicle engine, a cab having an interior and a main air-conditioning apparatus including a main compressor powered by the engine, a main condenser connected to the main compressor, and an evaporator apparatus connected to the main compressor and to the main condenser. An auxiliary air-conditioning apparatus includes an auxiliary compressor powered independently of the vehicle engine, the auxiliary air-conditioning apparatus utilizing said evaporator apparatus; and ducts in the cab to deliver cooled air to the interior of the cab.
The invention offers significant advantages compared to the prior art. Mainly it allows an auxiliary air-conditioning system, powered by an auxiliary power unit, to be installed in the cab of a vehicle subsequent to the original assembly of the vehicle, but without requiring disassembly or alterations of the vehicle interior. This is accomplished because the subsequently installed auxiliary air-conditioning system can utilize the original ductwork installed for the main air-conditioning system. All this can be done without requiring alterations or replumbing of the main air-conditioning system.
Embodiments of the invention can utilize the original evaporator apparatus installed with the main air-conditioning system. Therefore they can utilize the original ductwork. This can be done by having the truck manufacturer install an evaporator apparatus with an additional conduit or coil. Refrigerant conduits for the auxiliary air-conditioning system can be connected to the additional coil without disturbing connections to the coil utilized for the main air-conditioning system.
One of the main advantages achieved is lower overall costs. The cost of an evaporator apparatus according to the invention is slightly more than a conventional evaporator, but much greater savings are made in simplified installation of the auxiliary air-conditioning system. No separate ductwork is required, no or little disassembly of the vehicle interior is necessary, and the cost of an additional evaporator is eliminated. This results in significant saving of space occupied by the auxiliary air-conditioning system.
In the drawings:
Referring to the drawings, and first to
There is also an auxiliary power unit 25 which, in this example, is installed after assembly of the vehicle. Typically it may be included as a dealer installed accessory when the vehicle is new or added later, some time after the vehicle has been first used. An auxiliary air-conditioning compressor 27 is driven by the auxiliary power unit and may comprise part of the auxiliary power unit or may be separate.
Referring to
The main air-conditioning apparatus 8 includes a main compressor 10 powered, in this example, by continuous belt 11 connected to the vehicle engine 12. The air-conditioning apparatus includes an evaporator apparatus 16 and a condenser 18 which, in this example, is associated with a condenser fan 44 driven by an electric motor 46. In this example, as may be seen in
The system departs from the conventional by having two conduits 15 and 23 in the evaporator apparatus 16. For illustrative purposes these conduits are shown as being entirely separate, but they may be intertwined in an actual evaporator apparatus. The conduits 15 and 23 have first ends 50 and 52 respectively and second ends 54 and 56 respectively. In this example the conduits 15 and 23 are tubular coils, but could be other types of conduits, typically convoluted conduits which carry the refrigerant.
The embodiment of
There is a refrigerant conduit 35 which connects second end 56 of the second evaporator coil 23 with the second end 66 of second condenser coil 33. All of the components described thus far would normally be provided by the vehicle manufacturer and would be installed in the factory during original assembly of the vehicle. Both the evaporator apparatus and the condenser in this example have second coils which are interconnected by the conduit 35, the latter preferably also provided by the vehicle manufacturer and installed at the time of original vehicle assembly. However the second coils are not usually operational in the vehicle as originally assembled.
The auxiliary power unit 25 is conventionally installed subsequent to original assembly of the vehicle, often by the vehicle dealer. These units are well known and accordingly are not described in detail. They normally include a small diesel engine which is connected to the vehicle fuel supply. The small diesel engine is connected to an electrical generator or alternator for producing electricity to power the vehicle when engine 12 is stopped. In this particular example an auxiliary air-conditioning compressor 27 is incorporated into the auxiliary power unit. However the compressor may also be installed as a separate unit, but powered by electricity from the generator of the auxiliary power unit. The compressor 27 has an input port 70 receiving refrigerant through conduit 29 which is connected to first end 52 of the second coil 23 of the evaporator apparatus. The compressor has an output port 71 which is connected to first port 62 of second coil 33 of the condenser by conduit 31.
In brief, the dealer or other person installing the auxiliary power unit and accompanying auxiliary air-conditioning system, installs, besides the auxiliary power unit 25 itself, the compressor 27 which may be part of the auxiliary power unit or separate. Also installed at the same time are the conduits 29 and 31. The rest of the auxiliary air-conditioning apparatus 42 comprises pre-existing components installed by the vehicle manufacturer including the condenser 18 with its second coil 33, evaporator apparatus 16 with its second coil 23 and the conduit 35 which connects the second coils of the evaporator and condenser.
A variation of the invention is shown in
This embodiment includes a separate auxiliary condenser 43 having a fan 45 powered by an electric motor 47 which receives power from the auxiliary power unit. The condenser has a single conduit or coil 79 with a first end 80 and a second end 81. First end 80 of the coil is connected to first end 52.1 of second coil 23.1 of the evaporator apparatus by a conduit 90. A conduit 91 connects second end 81 of the coil of the auxiliary condenser to port 70.1 on compressor 27.1 of the auxiliary power unit. Port 71.1 of the compressor is connected to second end 56.1 of the second evaporator coil by conduit 94. This embodiment works in a manner similar to the previous embodiment, but requires the installation of the separate auxiliary condenser 43 along with its motor 47 and fan 45. Only the evaporator apparatus is shared by the main air-conditioning apparatus 8.1 and the auxiliary air-conditioning apparatus 42.1.
It may be understood with reference to
A further embodiment is illustrated in the fragmentary view of
It will be understood by someone skilled in the art that many of the details described above are given by way of example only and can be deleted or altered within the scope of the invention as set out in the following claims.