The present invention relates to an auxiliary board joining structure, and more particularly, to an auxiliary board joining structure that is appropriate for soldering an auxiliary board, such as a power module, to the surface of a printed board, which serves as a main board.
Conventionally, as a method for mounting an auxiliary board, such as a power module, on a printed board serving as a main board, the following method has been known: in which a plurality of joint pins extending upward from the auxiliary board are extended through corresponding holes made in the printed board, and the leading ends of the joint pins extended through the holes are soldered to the printed board, thereby electrically and physically joining both the boards.
Patent Literature 1 discloses an auxiliary board joining structure in which a plurality of positioning pins of large diameter are provided on an auxiliary board independently of joint pins. In this auxiliary board joining structure, the joint pins are positioned by extending the positioning pins through the through-holes, thus facilitating the insertion of thin joint pins through a main board.
Patent Literature 1 Japanese Patent Application Laid-Open No. 2000-223621
Incidentally, the main and auxiliary boards are finally fixed together by soldering the leading ends of joint pins piercing the main board. However, in order to obtain satisfactory solder shapes (i.e., solder fillets) at this time, it is preferable that the distance that the joint pins project from the main board be identical. In the technology described in Patent Literature 1, the positioning pins facilitate the insertion of the joint pins. However, making the projecting distances of the positioning pins identical requires a jig for regulating the gap between the main board and auxiliary board. In order to enhance soldering efficiency, therefore, further improvement is required.
Accordingly, an object of the present invention is to provide an auxiliary board joining structure that enables satisfactory joining with solder, by solving the problems of the conventional technology described above, thereby regulating the projecting distances of the joint pins of an auxiliary board from a main board.
To achieve the above object, the present invention has a first feature in that an auxiliary board joining structure comprising: a main board (1), an auxiliary plate (10, 10a), a joint pin (17) extending upward from the auxiliary board (10, 10a), and a through-hole (5) for the joint pin (17) formed in the main board (1), wherein the main board (1) and auxiliary board (10, 10a) are electrically and physically joined using a through-hole mounting system in which the joint pin (17) is extended through the through-hole (5), thereby soldering the main board (1) and auxiliary board (10, 10a), the auxiliary board joining structure further comprising: a plurality of positioning holes (6, 6a) formed in one of the main board (1) and the auxiliary board (10, 10a); a plurality of positioning pins (20, 20a) formed on the other one of the main board (1) and the auxiliary board (10, 10a), wherein the plurality of positioning pins (20, 20a) extend through the corresponding positioning holes (6, 6a) so as to be oriented parallel to the axial direction of the joint pins (17), wherein each of the positioning pins (20, 20a) has a height regulating face (23, 23a) for regulating a distance that the positioning pin is extended through the corresponding positioning hole (6, 6a).
The present invention has a second feature in that each of the positioning pins (20, 20a) is formed long enough to be extended through the corresponding positioning hole (6, 6a) before the joint pins (17) are extended through the corresponding through-holes (5), when the main board (1) and the auxiliary board (10, 10a) are engaged.
The present invention has a third feature in that each of the positioning pins (20) has a large diameter portion (22, 22a) and a small-diameter portion (21, 21a) extending upward from an end face of the large-diameter portion, and wherein a step surface between the large diameter portion (22, 22a) and the small-diameter portion (21, 21a) serves as the height regulating face (23, 23a).
The present invention has a fourth feature in that the auxiliary board (10) includes a power module board (12) from which the joint pins (17) extend, and an outer frame (11) holding the power module board (12) via sealing resin (16); and wherein the positioning pin (20) is integrally formed on the outer frame (11).
According to the present invention having the first feature, a plurality of positioning holes formed in one of a main board and an auxiliary board; a plurality of positioning pins formed on the other one of the main board and the auxiliary board, wherein the plurality of positioning pins extend through the corresponding positioning holes so as to be oriented parallel to the axial direction of joint pins, wherein each of the positioning pins has a height regulating face for regulating a distance that the positioning pin is extended through the corresponding positioning hole. Therefore, the positioning pins become to be able to regulate the projecting distances of the joint pins of an auxiliary board from a main board. Accordingly, the positioning pins also regulate the projecting distances of the joint pins from the main board, eliminating the need to separately provide a member for positioning the joint pins and a member for regulating the projecting distances of the joint pins, and hence simplifying the component structure. In addition, when the joint pins are soldered, a stable fillet shape with stable quality can be obtained.
According to the present invention having the second feature, each of the positioning pins is formed long enough to be extended through the corresponding positioning hole before the joint pins are extended through the corresponding through-holes, when the main board and the auxiliary board are engaged. Accordingly, extending the positioning pins through the positioning holes before extending joint pins through the through-holes positions the joint pins before the positioning pins. This makes it easy to engage the main and auxiliary boards.
According to the present invention having the third feature, each of the positioning pins has a large diameter portion and a small-diameter portion extending upward from an end face of the large-diameter portion, and wherein a step surface between the large diameter portion and the small-diameter portion serves as the height regulating face. Accordingly, the height regulating face can be formed with the simple structure, thus improving productivity.
According to the present invention having the fourth feature, the auxiliary board includes a power module board from which the joint pins extend, and an outer frame holding the power module board via sealing resin; and wherein the positioning pin is integrally formed on the outer frame. Accordingly, the direction in which the positioning pins are oriented is identical to the direction in which the joint pins are oriented, thus making it easier to engage the main and auxiliary boards. In addition, changing only the shape of the outer frame allows a common power module board to be used with various printed boards.
Preferred embodiments of the present invention will now be described in detail with reference to the drawings.
The printed board 1 includes: a plate-like member and a conductor pattern formed on the surface of the plate-like member, the plate-like member being formed, for example, by impregnating a cloth of laminated glass fiber with epoxy resin. Various electronic components are soldered to the surface of the conductor pattern. Examples of a method for mounting electronic components include a surface mounting method and a through-hole mounting method. In the surface mounting method, solder paste is applied to a printed board in advance, a device to be thus surface mounted (hereinafter referred to as surface mount device) such as a chip is mounted on the printed board, and then the solder is heated and melted in a high temperature furnace, thereby directly soldering and fixing the electronic component to the surface of the printed board. In the through-hole mounting method, a conductor, such as a lead wire or chip leg, is extended through a through-hole in the printed board, and the leading end of the conductor extended through the hole is soldered to the printed board, thereby fixing the electronic component.
On the printed board 1, a surface mount device 2, such as a chip, is mounted using the surface mounting method. The surface mount device 2 is electrically and physically joined to the printed board 1 by a soldered leg portion 3. In addition to through-holes 4 and 5 for enabling the through-hole mounting method, a positioning hole 6 is formed in the printed board 1. Referring to the flowchart in
Disposed on the upper side of the power module board 12 for densely mounting power elements for the control of large currents are: power elements 13 connected by lead wires 14, and power elements 15 mounted on the surface. These electronic components are covered with the sealing resin 16, thereby protecting them from external factors such as light, heat, and humidity. Only a plurality of joint pins 17 for mounting the electronic components on the printed board 1 via through-holes project from the surface of the sealing resin 16. In the present embodiment, all the joint pins 17 are identical in shape and length, and also they project an identical distance from the sealing resin 16. In
The outer frame 11 of the power module 10 according to the present embodiment is provided with four positioning pins 20 for regulating the location where the power module 10 engages with the printed board 1, the positioning pins 20 being oriented parallel to the axial direction of the joint pins 17. Each positioning pin 20 has a small-diameter portion 21 extended through a corresponding positioning hole 6 formed in the printed board 1, and a large-diameter portion 22 greater than the small-diameter portion 21. The upper end of the large-diameter portion 22 has a height regulating face 23 (hatched in the drawing). In the present embodiment, all the positioning pins 20 are identical in shape and length and, additionally, their height regulating faces 23 are located in an identical plane.
To engage the power module 10 and printed board 1 as shown in
As the small-diameter portion 21 is further inserted, the back (the underside in the drawing) of the printed board 1 comes into contact with the height regulating faces 23 of the positioning pins 20, thereby regulating the location of the printed board 1. Thus, the distance that the joint pins 17 project from the surface (the upper side in the drawing) of the printed board 1 are regulated so as to be identical. The state shown in
Since the distance that the joint pins 17 project from the printed board 1 are regulated so as to be identical, as shown in
As described above, in the auxiliary board joining structure of the present invention, the main board is provided with a plurality of positioning pins extended through the positioning holes in the main board so as to be oriented parallel to the axial direction of the joint pins and, in addition, each of these positioning pins has a height regulating face for regulating the distance that the positioning pin can be inserted into the corresponding positioning hole. Accordingly, each positioning pin also regulates the projecting distance of the corresponding joint pin from the main board, eliminating the need to separately provide a member for positioning a joint pin and a member for regulating the projecting distance of the joint pin, and hence simplifying the component structure. In addition, when the joint pins are soldered, their regulated distances make it possible to obtain a stable fillet shape with stable quality.
It should be noted that the shape of the outer frame of the power module, the shapes and arrangements of the joint pins and positioning pins, the shapes, of the small-diameter portions, large-diameter portions, and height regulating faces of the positioning pins are not limited to those described in the foregoing embodiments but various modifications may be made to them. For example, the positioning pins may have a square or L-shaped cross-section instead of a circular cross-section. Additionally, the positioning holes do not have to be through-holes but may have bottomed-holes. The auxiliary board joining structure of the present invention can be used in various electronic boards in which an auxiliary board is mounted on a main board using a through-hole mounting method.
Number | Date | Country | Kind |
---|---|---|---|
2010-094935 | Apr 2010 | JP | national |