This application claims the priority, under 35 U.S.C. §119, of European application EP 131 94 735.0, filed Nov. 27, 2013; the prior application is herewith incorporated by reference in its entirety.
The invention relates to an auxiliary device for a hazard alarm constructed as a point type detector for function monitoring of the hazard alarm. The hazard alarm is in particular a smoke alarm or smoke gas alarm.
The invention also relates to an arrangement containing a hazard alarm constructed as a point type detector and containing an auxiliary device matched thereto in terms of construction and/or connections and attached to the hazard alarm.
Finally the invention relates to a use of an auxiliary device of this kind for monitoring the vicinity of the hazard alarm for current-shielding objects, for monitoring at least one inlet opening of the hazard alarm for contamination and optionally for monitoring the function of an acoustic alarm signaling device of the hazard alarm.
The hazard alarms being considered are preferably smoke alarms, smoke gas alarms or smoke detectors. Hazard alarms of this kind typically have an optical detector unit that operates according to the scattered light principle for the detection of smoke particles. Alternatively or additionally they can have a detector unit that operates according to the acousto-optic principle or a gas sensor for the detection of gases typically involved in a fire. Hazard alarms of this kind can also have a temperature sensor for the detection of inadmissibly high temperatures in the vicinity of the hazard alarm.
The hazard alarms being considered can also be connected in terms of signaling and/or data by a shared detector cable or detector line, in particular by a two-wire cable, to a hazard receiving station. Alternatively or additionally they can have an autonomous power supply, such as a battery. Hazard alarms of this kind can also have a radio module for the transmission of an alarm signal, a warning signal or status information to a neighboring hazard alarm or to a hazard receiving station. They can also be adapted to pass an alarm signal, warning signal or status information transmitted by a neighboring hazard alarm by radio to a neighboring hazard alarm or to a hazard receiving station within the sense of a routing.
According to standard DIN 14676 “Smoke alarm devices for use in residential buildings, apartments and rooms with similar purposes—installation, use and maintenance” should be checked at least once a year by way of a mandatory visual and functional testing. On the one hand the object of the check is that there are no disruptive objects in the vicinity of the smoke alarm, such as in an area of half a meter around the hazard alarm, which could cause current shielding for the smoke to be detected in the event of a fire. If, on the other hand, there are inlet openings in the housing of such a hazard alarm then the permeability of these inlet openings to smoke or smoke gas should be regularly checked. The checking of such smoke alarms can also occur automatically.
Starting from the prior art mentioned in the introduction it is an object of the invention to disclose a device which simplifies automated regular checking of hazard alarms of this kind. It is also an object of the invention to disclose a device which enables easy subsequent function monitoring of a hazard alarm, in particular a smoke alarm, compliant with relevant standards. Finally it is an object of the invention to disclose a suitable arrangement with a device of this kind and a suitable use of a device of this kind.
The object of the invention is achieved by an auxiliary device for a hazard alarm constructed as a point type detector. According to the invention the auxiliary device is a separate unit which can be attached to the hazard alarm and provided for function monitoring of the hazard alarm. The device has at least one transmitting unit and/or receiving unit for the detection of objects in the vicinity of the hazard alarm.
The crux of the invention is that a conventional hazard alarm, in particular a smoke alarm, which does not have automatic function monitoring for current-shielding objects in its vicinity, can be subsequently retrofitted with this function. A first alarm can then be output in the event of a detected object in the vicinity of the hazard alarm. This can occur for example by controlling an optical and/or acoustic display unit on the auxiliary device itself and/or via radio to a higher-order hazard receiving station.
According to one embodiment the device can have a central receptacle, in particular a base, for receiving the hazard alarm. The hazard alarms constructed as point type detectors are typically constructed for in particular detachable assembly on a base or detector base. This simplifies assembly complexity significantly.
It is particularly advantageous if the auxiliary device forms a detector base that is compatible in terms of construction and optionally in terms of connections.
“In terms of connections” is taken to mean that an electrical contact is made with alarm contacts of the received hazard alarm. Hazard alarms for smoke detection, which are used in the commercial sector, are typically not adapted to output an acoustic alarm. Instead they are adapted for operation on a shared detector cable or detector line, in particular on a two-wire cable. An alarm ascertained by the hazard alarm or a warning is then transmitted via this detector cable in terms of signaling and/or data to a connected higher-order hazard receiving station. The electrical power supply of the connected hazard alarm is also provided via this detector cable, which is also called a detector bus. Hazard alarms of this kind are conventionally also called smoke alarms, in contrast to smoke detectors with acoustic alarm output in the non-commercial sector to standard DIN 14676.
Electrical contacting of the received hazard alarm on the inventive auxiliary device or attaching the inventive auxiliary device to a hazard alarm of this kind makes data communication with the received hazard alarm possible. The inventive auxiliary device can exhibit the function of a hazard receiving station or act like a hazard receiving station. Alternatively or additionally an electrical power supply of the received hazard alarm may also be provided by the contacted auxiliary device.
Alternatively or additionally the auxiliary device can have a base receptacle compatible in terms of construction and optionally in terms of connections to secure the auxiliary device to a detector base for simplified assembly.
If the auxiliary device has a base or detector base for a hazard alarm to be received, and a preferably opposing base receptacle for assembly of the auxiliary device on a base, then an auxiliary device of this kind can also be called a “base”.
The inventive auxiliary device is preferably annular or ring segment-shaped or polygonal. An auxiliary device of this kind can therefore also be called an auxiliary ring. The auxiliary device preferably projects slightly “beyond” in the lateral direction, such as in a range of 1 cm to 5 cm. “Lateral” designates directions away from a constructional main axis of the received hazard alarm. Since most of the known hazard alarm is substantially rotationally symmetrical, the auxiliary device preferably also extends in the radial direction beyond the outer lateral dimensions of the hazard alarm, such as in a range of 1 cm to 5 cm. In this case hazard alarm and auxiliary device have a shared constructional main axis or axis of symmetry.
According to one embodiment that is an alternative to the previous embodiment the device is constructed for lateral bordering of the hazard alarm. The device can consequently be placed on the hazard alarm, which has already been assembled, without covering it. The internal contour of the auxiliary device is preferably matched to the lateral external contour of the hazard alarm that is to be laterally bordered.
According to a further embodiment the device has a plurality of transmitting units and/or receiving units distributed around the hazard alarm in the circumferential direction in an outer region at a lateral distance from the hazard alarm. Complete or at least virtually complete monitoring of the vicinity of the hazard alarm for current-shielding objects is possible as a result. The transmitting units and/or receiving units are preferably uniformly distributed in the circumferential direction.
According to a further embodiment the device has a plurality of distributed transmitting and receiving units and an evaluation unit connected thereto. The evaluation unit is adapted to control the respective transmitting units for emitting a signal in the vicinity of the hazard alarm. It is also adapted to evaluate in terms of time a respective signal originating from the receiving units that is reflected at objects in the vicinity of the hazard alarm. The evaluation unit is adapted, moreover, to output a first alarm signal if a detected object is located within a predefined distance of the hazard alarm and if the reflected signal exceeds a predefined minimum level. It is possible to ascertain the distance of an object from the hazard alarm in accordance with the echo principle by way of an evaluation in terms of time.
The evaluation unit can also be adapted to weight the respective received reflected signals. Reflected signals from objects which are located closer to the hazard alarm can be weighted higher than objects at the margins of the monitored vicinity. The evaluation unit is preferably adapted to output the first alarm signal only if an object is permanently detected within the monitored vicinity. “Permanently” is taken to mean a minimum period of being present, lasting several minutes, hours or days.
According to one embodiment the at least one transmitting unit is an optical transmitting unit, such as an LED, in particular an infrared light emitting LED, and the at least one receiving unit is an optical receiving unit, in particular a photodiode spectrally sensitive thereto. Both units may be combined to form one unit.
Alternatively or additionally the at least one transmitting unit can be an acoustic transmitting unit, such as an ultrasonic transmitter, and the at least one receiving unit can be an acoustic receiving unit, in particular an ultrasonic receiver. Both units may also be combined to form one unit as an ultrasonic transceiver.
Alternatively or additionally the at least one transmitting unit can be a microwave transmitter and the at least one receiving unit can be a microwave receiver. Both units can also be combined to form a radar unit.
According to a further embodiment the device has an optical scanning device for one or more inlet opening(s) of a received or bordered hazard alarm. It also has an evaluation unit connected thereto, i.e. connected thereto in terms of data or signaling. The evaluation unit is adapted to output a second alarm signal in the event of detected inadmissible contamination. Scanning preferably occurs optically and in particular with infrared light. Optical scanning of the inlet opening occurs outside of the received hazard alarm, i.e. from the outside.
In particular the optical scanning device has a light transmitter, in particular an infrared LED, for emitting a highly bundled light beam. The light transmitter is oriented in such a way that its light beam passes the at least one inlet opening at a slight distance. “Slight” is preferably taken to mean a distance value from the inlet opening in the range of 1 mm to 10 mm. The optical scanning device also has a light receiver, in particular a photodiode for infrared light. It is provided and oriented to receive scattered light from contamination from the region of the at least one inlet opening. The evaluation unit connected to the light transmitter and light receiver is adapted to output a second alarm signal if a received signal originating from the light receiver exceeds a predefined minimum level. In other words, the second alarm signal is output if sufficient scattered light from the contamination can be detected in front of the inlet opening.
As an alternative to the preceding embodiment the optical scanning device can have a plurality of light transmitters, in particular infrared LEDs, each for emitting a highly bundled light beam. The respective light transmitter is oriented in such a way that its light beam passes at least one inlet opening at a slight distance. “Slight” is preferably again taken to mean a distance value from the inlet opening in the range of 1 mm to 10 mm. The optical scanning device has a plurality of light receivers, in particular for infrared light sensitive photodiodes, for receiving scattered light from contamination from the region of the at least one inlet opening. The evaluation unit connected to the light transmitters and light receivers is adapted to evaluate the received signals originating from the respective light receivers and to output a second alarm signal if the result of evaluation exceeds a predefined reference value. Emitting of the second alarm signal is advantageously avoided thereby if only one received signal exceeds a minimum level. The second alarm signal is preferably only output if half or most of the available received signals exceeds the minimum level.
According to a particular embodiment the device has a contact-based and/or wireless communications interface for data communication between a control unit of the received hazard alarm and an evaluation unit of the auxiliary device.
The contact-based communications interface can simultaneously be an existing interface of a hazard alarm which is provided for contacting the hazard alarm via its detector contacts on a detector cable or on a detector bus. The contact-based interface can also be a separate interface which makes contact with corresponding counter contacts on the auxiliary device once the hazard alarm has been attached to the auxiliary device.
The wireless communications interface can be e.g. what is referred to as a near field communication (NFC) interface which enables an inductively coupled data transfer to and from a further NFC interface in the received hazard alarm in the range of a few centimeters. Electrical power transmission from the auxiliary device to the hazard alarm in order to supply the hazard alarm with electric power is also possible in this way.
In principle the two communications interfaces enable the evaluation unit of the auxiliary device to access the data of the control unit of the received hazard alarm. Direct access to the output and input units of the hazard alarm is therefore possible with appropriate configuration of the hazard alarm.
According to a further embodiment the device has a plurality of distributed light transmitters for emitting one light bundle in each case. The respective light bundle is directed toward the at least one inlet opening of a received or bordered hazard alarm. The light bundle preferably originates from an infrared LED. The evaluation unit is connected thereto to control the light transmitter and adapted to output a second alarm signal if a light receiving signal, transmitted from the hazard alarm via the communications interface and which originates from a light receiver inside the hazard alarm, falls below a predefined value. The light receiver inside the hazard alarm is preferably simultaneously a light receiver provided for scattered light detection. It is thereby advantageously possible to check the permeability of the at least one inlet opening in the hazard alarm.
According to an advantageous embodiment the device has an acoustic alarm signaling device and/or an alarm flash. The evaluation unit is adapted to receive via the communications interface an alarm signal output in the event of an alarm by the received or bordered hazard alarm in order to control the acoustic alarm signaling device and/or alarm flash in the event of an alarm. The communications interface can be e.g. an existing interface of a hazard alarm which is provided for making contact with the hazard alarm via its detector contacts on a detector cable or on a detector bus.
The auxiliary device also has a device for the acoustic or electrical checking of the acoustic alarm signaling device and/or a device for the visual checking of the alarm flash. In the acoustic case the device can then be a microphone whose output microphone signal is checked by the evaluation unit for the presence of a predefined audio frequency and volume level. Alternatively the device can be an electrical signal detector which checks the presence of electrical excitation signals for the acoustic alarm signaling device. In the visual case the device can be one of the optical receiving units for monitoring the vicinity or one of the light receivers for monitoring contamination.
The device is also adapted to repeatedly monitor the functionality of the acoustic alarm signaling device and/or the alarm flash, e.g. weekly, monthly, quarterly, etc. The evaluation unit is adapted to output a third alarm signal if the acoustic alarm signaling device and/or the alarm flash fails the functional test.
According to a further embodiment the auxiliary device has a radio module, a motion detector, a smoke gas sensor, a temperature sensor, a loudspeaker, an acoustic alarm signaling device, an alarm flash, an emergency light and/or a battery. The range of functions of the inventive auxiliary device can advantageously be expanded by further safety and comfort functions as a result.
The object of the invention is also achieved by an arrangement containing a hazard alarm constructed as a point type detector and an inventive auxiliary device matched thereto in terms of construction and/or connections and attached to the hazard alarm.
The use of an inventive auxiliary device is particularly advantageous for monitoring the vicinity of the hazard alarm for current-shielding objects, for monitoring at least one inlet opening of the hazard alarm for contamination and optionally for monitoring the function of an acoustic alarm signaling device and/or alarm flash of the hazard alarm. The hazard alarm is then a smoke alarm in particular.
Other features which are considered as characteristic for the invention are set forth in the appended claims.
Although the invention is illustrated and described herein as embodied in an auxiliary device for a hazard alarm constructed as a point type detector for function monitoring of the hazard alarm, and an arrangement and method of monitoring using a device of this kind, it is nevertheless not intended to be limited to the details shown, since various modifications and structural changes may be made therein without departing from the spirit of the invention and within the scope and range of equivalents of the claims.
The construction and method of operation of the invention, however, together with additional objects and advantages thereof will be best understood from the following description of specific embodiments when read in connection with the accompanying drawings.
Referring now to the figures of the drawings in detail and first, particularly to
According to the invention the auxiliary device R1, R2 is a separate unit that can be attached to the hazard alarm M and is provided for functional monitoring of the hazard alarm M. The illustrated auxiliary device R1, R2 has by way of example five transmitting units S and five receiving units E (see
In the present example the transmitting units S and receiving units E are ultrasonic transmitters and ultrasonic receivers. Transmitters and receivers can also be combined to form a unit as an ultrasonic transceiver.
In
In the present example the device has a plurality of distributed light transmitters SV for emitting one light bundle respectively which is directed toward the at least one inlet opening OF. The evaluation unit is connected to the light transmitters SV to control the light transmitters SV and, moreover, adapted to output a second alarm signal M2 if a light receiving signal, which originates from a light receiver EV inside the hazard alarm M, transmitted from the hazard alarm M via the communications interface falls below a predefined value. As can be seen in the left-hand part of
The second alarm signal is preferably suppressed if half or most of the provided received signals on the light receivers EV exceeds the minimum level.
In this case the optical scanning device SEV has a plurality of light transmitters SV each for emitting a highly bundled light beam, with the respective light transmitter SV being oriented in such a way that its light beam passes at least one inlet opening OF at a slight distance. The light transmitter SV is preferably an infrared LED or an infrared laser diode. The optical scanning device SEV also has a plurality of light receivers EV for receiving scattered light from contamination V from the region of the at least one inlet opening OF. The evaluation unit is connected to the light transmitters SV and light receivers EV in terms of signaling. It is, moreover, adapted to evaluate the received signals originating from the respective light receivers EV and to output a second alarm signal M2 if the result of the evaluation exceeds a predefined reference value.
It can be seen in the left-hand part of
The inventive auxiliary device R1-R3 typically has a microcontroller as an evaluation unit SER. It typically also has a number of digital and analogue input and output channels.
The auxiliary device R1-R3 can have e.g. a radio module FM which is connected by a communications bus to the evaluation unit. The first to third alarm signals M1-M3 can be output via this bus, e.g. to a higher-order hazard receiving station. Changes can be made to the firmware of the evaluation unit SER or operating parameters adjusted for example by reversing the procedure.
The auxiliary device R1-R3 can have a manual button on the outer side for testing the auxiliary device R1-R3 or the connected hazard alarm M.
The auxiliary device R1-R3 can also have a motion detector to detect e.g. the presence of people. An alarm signal can optionally be transmitted via the radio module FM if the auxiliary device R1-R3 is switched into a mode for monitoring for burglars, such as by the manual button.
The auxiliary device R1-R3 can also have a microphone for monitoring an acoustic alarm signaling device. The microphone can also be used for room monitoring within the sense of a baby monitor.
The auxiliary device R1-R3 can also have a camera. This can be used as a receiving unit for the detection of current-shielding objects in the vicinity of the hazard alarm, such as by comparing previous images.
The auxiliary device R1-R3 can also have a CO gas detector. An alarm or warning signal can then be output when elevated CO values are detected.
The auxiliary device R1-R3 can also have a temperature sensor. An alarm signal can likewise be output in the case of a detected high temperature.
The auxiliary device R1-R3 can have a loudspeaker for emitting stored voice alarm signals in the event of an alarm. Depending on the alarm signals M1-M3 an alarm signal “Please remove objects in the vicinity of the hazard alarm”, “Please remove contamination from hazard alarm” or “Please check hazard alarm” can be output for example.
The inventive auxiliary device R1-R3 can also have an emergency light. This can have a plurality of white LEDs. The emergency light can be switched on for orientation e.g. at night in the event of a fire.
The right-hand part of
If the hazard alarm M is a smoke alarm for operation on a detector line typically in the commercial sector, then there is no acoustic alarm signaling device, symbolized as a loudspeaker, or button for testing the smoke alarm.
A smoke alarm provided for fire detection in the commercial sector and for operation on a detector line or a detector bus can advantageously be expanded by the inventive auxiliary device R1-R3 by the functionality of automated vicinity monitoring for current-shielding objects and for contamination monitoring of the inlet openings of the smoke alarm.
The following is a summary list of reference numerals and the corresponding structure used in the above description of the invention:
Number | Date | Country | Kind |
---|---|---|---|
13194735.0 | Nov 2013 | EP | regional |