This application is a 35 USC 371 application of PCT/EP 2007/057148 filed Jul. 12, 2007.
1. Field of the Invention
The invention is based on an auxiliary handle device.
2. Description of the Prior Art
The invention is based on an auxiliary handle device, in particular for hand-held power tools, with an attaching device that has at least one fastening mechanism.
The invention is based on an auxiliary handle device, in particular for hand-held power tools, with an attaching device that has at least one fastening means.
According to one proposal, the fastening mechanism is provided for producing a form-locked connection in an axial direction of a fastening axis, thus achieving an efficient securing of an auxiliary handle in the axial direction. This advantageously prevents the auxiliary handle from slipping in the axial direction, for example in the event that a tool jams during operation of the hand-held power tool. The auxiliary handle device is particularly provided for the fastening of the auxiliary handle to a hand-held power tool such as a drilling and/or hammering hand-held power tool, e.g. an impact drill, so that the fastening axis of the fastening device corresponds to a tool axis of the hand-held power tool, in particular a drilling axis. In this context, an “axial direction of a fastening axis” is understood to be a direction along the fastening axis.
According to another proposal, the fastening device has at least one additional fastening mechanism for producing a form-locked connection in a circumference direction of the fastening axis, thus making it possible, in addition to a securing of an auxiliary handle to a hand-held power tool in the axial direction of the fastening axis, to also achieve a securing of the auxiliary handle in the circumference direction of the fastening axis. The fastening mechanism for producing the form-locked connection in the circumference direction of the fastening axis is situated and/or embodied in a location or way that differs from that of the fastening mechanism for producing the form-locked connection in the axial direction of the fastening axis. A “circumference direction of the fastening axis” is understood here to be a direction that is oriented around the fastening axis.
According to another proposal, the fastening mechanism for producing a form-locked connection in the axial direction of the fastening axis has a rib-shaped fastening element that makes it possible to achieve a rugged fastening mechanism and an efficient securing of an auxiliary handle in the axial direction. Preferably, a main extension direction of the rib-shaped fastening element is oriented perpendicular to the fastening axis so that it is possible to achieve a maximal securing and/or fastening area for the securing in the axial direction. In this instance, the rib-shaped fastening element can be situated in a receiving region of the auxiliary handle or can be coupled to a component of the hand-held power tool provided for the fastening of the auxiliary handle. In addition, the rib-shaped fastening element can be constituted by a pin-shaped or rod-shaped component, a stamped sheet metal component, or other components deemed suitable by those skilled in the art.
According to another proposal, the rib-shaped fastening element is situated inside an auxiliary handle, thus making it possible to achieve a convenient mounting of the auxiliary handle, in particular a play-free mounting. In addition, it is advantageously possible to save on additional components, space, assembly complexity, and costs if the rib-shaped fastening element is embodied as integrally joined to the auxiliary handle. The rib-shaped fastening element in this instance can be press-fitted into the auxiliary handle, injection-molded into it, or fastened to the auxiliary handle in another way deemed suitable by those skilled in the art.
For producing a form-locked connection in the axial direction of the fastening axis, the fastening mechanism advantageously has a groove-shaped recess that makes it possible to achieve a simple and in particular tool-free detent engagement of a fastening mechanism that corresponds to it. Preferably, a main extension direction of the groove-shaped recess is oriented perpendicular to the fastening axis. In particular, the groove-shaped recess can extend in the circumference direction of the fastening axis.
In addition, a particularly compact embodiment of a hand-held power tool can be achieved if the groove-shaped recess is situated in a spindle neck of the hand-held power tool. By means of a fastening mechanism that corresponds to the groove-shaped recess and is situated on the auxiliary handle, e.g. a rib-shaped fastening element, it is also possible, through the addition of a detent mechanism of the fastening mechanism, to produce a haptic feeling of safety for an operator of the hand-held power tool.
It is possible to achieve a rugged securing if the fastening mechanism for producing a form-locked connection in the circumference direction of the fastening axis has at least one raised area. The raised area can be situated on an auxiliary handle or on a component of a hand-held power tool that is provided for the fastening of the auxiliary handle.
An attachment of the auxiliary handle that is particularly convenient and easy for an operator of the hand-held power tool can be achieved if the raised area is situated on a spindle neck of the hand-held power tool. In this case, the raised area is suitably embodied as integrally joined to the spindle neck of the hand-held power tool, thus enabling savings on additional components, space, assembly complexity, and costs. In a particularly advantageous embodiment, the raised area is bar-shaped and is coupled to a housing of the hand-held power tool.
The fastening mechanism for producing a form-locked connection in the circumference direction of the fastening axis advantageously has at least one recess, thus making it possible to achieve a simple, form-locked securing to corresponding fastening mechanism, e.g. raised areas, in the circumference direction. In this case, the fastening mechanism with the recesses can be situated on a component of a hand-held power tool that is provided for the fastening of the auxiliary handle and in a particularly advantageous embodiment, can be situated on an auxiliary handle.
According to a proposal in another embodiment of the invention, the auxiliary handle device has a receiving device of an auxiliary handle that is composed of at least two parts, thus making it possible to achieve a particularly convenient, structurally simple attachment of the auxiliary handle to a hand-held power tool, in particular to a spindle neck of an impact drill. In addition, a particularly advantageous play-free insertion of the spindle neck into the receiving device can be achieved in that one part of the receiving device is provided for the axial securing and another part of the receiving device is provided for the insertion. In this context, a “receiving device” is understood to be a device of an auxiliary handle that is provided for receiving a subregion of a hand-held power tool, in particular a spindle neck.
According to another proposal, the auxiliary handle device includes a first and second component of the auxiliary handle, which engage with each other in the assembled state. This makes it possible to achieve a particularly stable receiving device of the auxiliary handle and to achieve a stable, secure attachment to the hand-held power tool.
According to a particularly advantageous embodiment, this can be achieved in a structurally simple fashion if at least one subregion of one of the components of the auxiliary handle is embodied as slot-like. Preferably, a slot-like embodiment of one of the components is oriented perpendicular to the fastening axis.
A structurally simple, form-locked reciprocal engagement of the two components of the receiving region of the auxiliary handle can be achieved if at least one subregion of a component of the auxiliary handle has a cavity. In this context, a “cavity” is understood to be a hollow space that is situated on the interior of the component and is open to the outside at a maximum of two sides.
Other advantages ensue from the following description taken in conjunction with the drawings, in which:
The fastening means 26 for producing the form-locked connection in the axial direction 28 of the fastening axis has a groove shaped recess 42 that extends in the circumference direction 20 around the spindle neck 44 of the hand-held power tool 12. The groove-shaped recess 42 extends in an annular fashion around the entire spindle neck 44. It is also essentially conceivable, though, for the groove-shaped recess 42 to extend over a limited partial region in the circumference direction 20 on the spindle neck 44. In the direction toward the tool holder 52 along the fastening axis, the groove-shaped recess 42 is situated after the four bar-shaped raised areas 46. The groove-shaped recess 42 is also spaced apart from the four bar-shaped raised areas 46 on the spindle neck 44.
A first component 34 of the auxiliary handle 32 includes a handle element 64 and a semicircular receiving element 66 of the receiving device 30 for receiving the spindle neck 44 of the drilling and/or impact drilling machine (
The receiving element 66 of the first component 34 is equipped with the fastening means 18 in order to secure the auxiliary handle 32 to the spindle neck 44 of the drilling and/or impact drilling machine in the circumference direction 20 of the fastening axis. The fastening means 18 is composed of recesses 48 spaced uniformly apart from one another, which are arranged in the circumference direction 20 on a side of the receiving element 66 oriented toward the receiving region 70. The recesses 48 here extend along the fastening axis on a subregion of the semicircular receiving element 66. In order to secure the auxiliary handle 32 in the axial direction 28 of the fastening axis, the receiving element 66 is equipped with the fastening means 24 for producing a form-locked connection in the axial direction 28 of the fastening axis, which fastening means 24 is constituted by a rib-shaped fastening element 50 and is press-fitted into the receiving element 66. In this case, the rib-shaped fastening element 50, which is embodied in the form of a pin, protrudes into the semicircular receiving region 70 of the receiving element 66. A main extension direction 72 of the rib-shaped fastening element 50 is oriented perpendicular to the fastening axis (
As shown in
On the lateral molded region 60, 61 of the first component 34 and of the second component 36, respectively, the auxiliary handle 32 also has a receiving region 62 for a measuring device that is not shown in detail, which is provided for measuring and/or detecting a drilling hole depth in a drilling procedure carried out with the drilling and/or impact drilling machine (
The second component 36 has the fastening means 18 for producing a form-locked connection in the circumference direction 20. The recesses 48 extend along a subregion 56 of the receiving element 76 of the second component 36 in the circumference direction 20; in the assembled state, the subregion 56 with the recesses 48 transitions into the recesses 48 of the first component 34. In addition, the rib-shaped fastening element 50 of the first component 34 is composed of a stamped sheet metal part.
The auxiliary handle 32 in
It is also essentially conceivable for the rib-shaped fastening element 50 to be spring-loaded so that when the auxiliary handle 32 is mounted in place, the rib-shaped fastening element 50 engages in detent fashion in the groove-shaped recess 42 of the spindle neck 44 as soon as the auxiliary handle 32 is connected in form-locked fashion to the spindle neck 44 in the circumference direction 20.
The foregoing relates to the preferred exemplary embodiments of the invention, it being understood that other variants and embodiments thereof are possible within the spirit and scope of the invention, the latter being defined by the appended claims.
Number | Date | Country | Kind |
---|---|---|---|
10 2006 041 069 | Sep 2006 | DE | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/EP2007/057148 | 7/12/2007 | WO | 00 | 2/27/2009 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2008/025605 | 3/6/2008 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
2843413 | Martin | Jul 1958 | A |
3537336 | Schmuck | Nov 1970 | A |
4276675 | Pioch | Jul 1981 | A |
4460296 | Sivertson, Jr. | Jul 1984 | A |
4504087 | Pennington | Mar 1985 | A |
4820090 | Chen | Apr 1989 | A |
4881294 | Riedl | Nov 1989 | A |
4891915 | Yasuda | Jan 1990 | A |
5288116 | Donofrio | Feb 1994 | A |
6241594 | Lepold | Jun 2001 | B1 |
6499219 | Wightman | Dec 2002 | B1 |
20020125022 | Dieterle et al. | Sep 2002 | A1 |
20020131834 | Lui et al. | Sep 2002 | A1 |
20020132570 | Berg et al. | Sep 2002 | A1 |
20040163214 | Cheng | Aug 2004 | A1 |
20050034276 | Badiali | Feb 2005 | A1 |
20050081364 | Kopras et al. | Apr 2005 | A1 |
20050082072 | Nicolantonio et al. | Apr 2005 | A1 |
20050262707 | Wu | Dec 2005 | A1 |
20060067801 | Van Bergen | Mar 2006 | A1 |
20070022595 | Kopras et al. | Feb 2007 | A1 |
20070209162 | McRoberts et al. | Sep 2007 | A1 |
Number | Date | Country |
---|---|---|
649733 | Jun 1985 | CH |
10106050 | Aug 2002 | DE |
202004020217 | May 2005 | DE |
0249037 | Dec 1987 | EP |
0791436 | Aug 1997 | EP |
Number | Date | Country | |
---|---|---|---|
20100005629 A1 | Jan 2010 | US |