Auxiliary power system for electric refuse vehicle

Information

  • Patent Grant
  • 11964566
  • Patent Number
    11,964,566
  • Date Filed
    Tuesday, July 13, 2021
    3 years ago
  • Date Issued
    Tuesday, April 23, 2024
    8 months ago
Abstract
A refuse vehicle including a chassis a body assembly coupled to the chassis, the body assembly defining a refuse compartment, an electric energy system, and an auxiliary power system comprising a reservoir to hold a hydraulic fluid, and a hydraulic pump powered by an electric motor, wherein the hydraulic pump pressurizes the hydraulic fluid to power one or more actuators, and wherein at least one of the electric energy system or the auxiliary power system is configured to provide power to a carry can.
Description
BACKGROUND

Refuse vehicles collect a wide variety of waste, trash, and other material from residences and businesses. Operators of the refuse vehicles transport the material from various waste receptacles within a municipality to a storage or processing facility (e.g., a landfill, an incineration facility, a recycling facility, etc.).


SUMMARY

One embodiment relates to a refuse vehicle including a chassis a body assembly coupled to the chassis, the body assembly defining a refuse compartment, an electric energy system, and an auxiliary power system comprising a reservoir to hold a hydraulic fluid, and a hydraulic pump powered by an electric motor, wherein the hydraulic pump pressurizes the hydraulic fluid to power one or more actuators, and wherein at least one of the electric energy system or the auxiliary power system is configured to provide power to a carry can.


In some embodiments, the auxiliary power system includes a power take-off. In some embodiments, the auxiliary power system is positioned between a cab of the refuse vehicle and the body of the refuse vehicle. In some embodiments, the auxiliary power system is positioned below the body of the refuse vehicle. In some embodiments, the auxiliary power system is mounted on a surface of the body of the refuse vehicle. In some embodiments, the auxiliary power system includes a cooling system configured to thermally regulate the electric motor. In some embodiments, the auxiliary power system includes one or more electrical energy storage devices configured to power the electric motor.


Another embodiment relates to an auxiliary power system for a refuse vehicle including a hydraulic pump configured to pressurize hydraulic fluid and provide the hydraulic fluid to one or more actuators, an electric motor configured to power the hydraulic pump, and wherein the auxiliary power system is configured to provide power to a carry can.


In some embodiments, the auxiliary power system includes a mounting assembly configured to couple the auxiliary power system to the refuse vehicle. In some embodiments, the mounting assembly is configured to couple the auxiliary power system to the carry can. In some embodiments, the mounting assembly is configured to couple the auxiliary power system to a tailgate of the refuse vehicle. In some embodiments, the auxiliary power system includes a power take-off. In some embodiments, the auxiliary power system includes a cooling system configured to thermally regulate the electric motor. In some embodiments, the auxiliary power system includes one or more electrical energy storage devices configured to power the electric motor.


Another embodiment relates to an electric refuse vehicle including a chassis, a body assembly coupled to the chassis, the body assembly defining a refuse compartment, an auxiliary power system comprising a hydraulic pump powered by an electric motor, wherein the hydraulic pump pressurizes the hydraulic fluid to power one or more actuators, and wherein the auxiliary power system is configured to provide power to a carry can.


In some embodiments, the electric refuse vehicle includes one or more electrical energy storage devices configured to provide power to the electric motor, and wherein at least one of the one or more electrical energy storage devices are detachably coupled to the electric refuse vehicle. In some embodiments, the auxiliary power system is coupled to the carry can. In some embodiments, the auxiliary power system includes a power take-off. In some embodiments, the auxiliary power system is coupled to a tailgate of the refuse vehicle. In some embodiments, the auxiliary power system powers at least one of a lift assembly or a packer system of the electric refuse vehicle.


This summary is illustrative only and is not intended to be in any way limiting. Other aspects, inventive features, and advantages of the devices or processes described herein will become apparent in the detailed description set forth herein, taken in conjunction with the accompanying figures, wherein like reference numerals refer to like elements.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 is a perspective view of a refuse vehicle, according to an exemplary embodiment.



FIG. 2 is the refuse vehicle of FIG. 1 having an auxiliary power system, according to an exemplary embodiment.



FIG. 3 is a block diagram of the auxiliary power system of FIG. 2, according to an exemplary embodiment.



FIG. 4A illustrates a power take-off that may be part of the auxiliary power system of FIG. 3, according to an exemplary embodiment.



FIG. 4B illustrates the power take-off of FIG. 4A having a first coaxial ratio, according to an exemplary embodiment.



FIG. 4C illustrates the power take-off of FIG. 4A having a second coaxial ratio, according to an exemplary embodiment.



FIG. 5A illustrates a placement of the auxiliary power system of FIG. 3 for a rear-loading refuse truck, according to an exemplary embodiment.



FIG. 5B illustrates a placement of the auxiliary power system of FIG. 3 for a side-loading refuse truck, according to an exemplary embodiment.



FIG. 5C illustrates a placement of the auxiliary power system of FIG. 3 for a front-loading refuse truck, according to an exemplary embodiment.



FIG. 5D illustrates another placement of the auxiliary power system of FIG. 3 for a front-loading refuse truck, according to an exemplary embodiment.





DETAILED DESCRIPTION

Before turning to the figures, which illustrate certain exemplary embodiments in detail, it should be understood that the present disclosure is not limited to the details or methodology set forth in the description or illustrated in the figures. It should also be understood that the terminology used herein is for the purpose of description only and should not be regarded as limiting.


According to an exemplary embodiment, an auxiliary power system for a refuse vehicle is disclosed herein. The auxiliary power system of the present disclosure provides many advantages over conventional systems. The auxiliary power system may supply power for one or more components of the refuse vehicle. For example, the auxiliary power system may provide electric power to the body of the refuse vehicle, enabling the refuse vehicle to utilize electric actuators, reducing a need for hydraulic actuators, which are prone to leaking hydraulic fluid. Additionally or alternatively, the auxiliary power system may provide hydraulic power to an electric refuse vehicle. For example, an auxiliary power system supplying pressurized hydraulic fluid (via an electric hydraulic pump) may power one or more hydraulic components of the refuse vehicle. The auxiliary power system may be removable to supply power to a location disparate of the refuse vehicle. For example, the auxiliary power system may be integrated with a carry-can coupled to the refuse vehicle such that the auxiliary power system supplies power to the refuse vehicle while the carry-can is attached to the refuse vehicle and supplies power to the carry-can while the carry-can is detached from the refuse vehicle.


Overall Vehicle


As shown in FIG. 1, a vehicle, shown as refuse vehicle 10 (e.g., a garbage truck, a waste collection truck, a sanitation truck, a recycling truck, etc.), is configured as a front-loading refuse truck. In other embodiments, the refuse vehicle 10 is configured as a side-loading refuse truck or a rear-loading refuse truck. In still other embodiments, the vehicle is another type of vehicle (e.g., a skid-loader, a telehandler, a plow truck, a boom lift, etc.). As shown in FIG. 1, the refuse vehicle 10 includes a chassis, shown as frame 12; a body assembly, shown as body 14, coupled to the frame 12 (e.g., at a rear end thereof, etc.); and a cab, shown as cab 16, coupled to the frame 12 (e.g., at a front end thereof, etc.). The cab 16 may include various components to facilitate operation of the refuse vehicle 10 by an operator (e.g., a seat, a steering wheel, actuator controls, a user interface, switches, buttons, dials, etc.).


As shown in FIG. 1, the refuse vehicle 10 includes a prime mover, shown as electric motor 18, and an energy system, shown as energy storage and/or generation system 20. In other embodiments, the prime mover is or includes an internal combustion engine. According to the exemplary embodiment shown in FIG. 1, the electric motor 18 is coupled to the frame 12 at a position beneath the cab 16. The electric motor 18 is configured to provide power to a plurality of tractive elements, shown as wheels 22 (e.g., via a drive shaft, axles, etc.). In other embodiments, the electric motor 18 is otherwise positioned and/or the refuse vehicle 10 includes a plurality of electric motors to facilitate independently driving one or more of the wheels 22. In still other embodiments, the electric motor 18 or a secondary electric motor is coupled to and configured to drive a hydraulic system that powers hydraulic actuators. According to the exemplary embodiment shown in FIG. 1, the energy storage and/or generation system 20 is coupled to the frame 12 beneath the body 14. In other embodiments, the energy storage and/or generation system 20 is otherwise positioned (e.g., within a tailgate of the refuse vehicle 10, beneath the cab 16, along the top of the body 14, within the body 14, etc.).


According to an exemplary embodiment, the energy storage and/or generation system 20 is configured to (a) receive, generate, and/or store power and (b) provide electric power to (i) the electric motor 18 to drive the wheels 22, (ii) electric actuators of the refuse vehicle 10 to facilitate operation thereof (e.g., lift actuators, tailgate actuators, packer actuators, grabber actuators, etc.), and/or (iii) other electrically operated accessories of the refuse vehicle 10 (e.g., displays, lights, etc.). The energy storage and/or generation system 20 may include one or more rechargeable batteries (e.g., lithium-ion batteries, nickel-metal hydride batteries, lithium-ion polymer batteries, lead-acid batteries, nickel-cadmium batteries, etc.), capacitors, solar cells, generators, power buses, etc. In one embodiment, the refuse vehicle 10 is a completely electric refuse vehicle. In other embodiments, the refuse vehicle 10 includes an internal combustion generator that utilizes one or more fuels (e.g., gasoline, diesel, propane, natural gas, hydrogen, etc.) to generate electricity to charge the energy storage and/or generation system 20, power the electric motor 18, power the electric actuators, and/or power the other electrically operated accessories (e.g., a hybrid refuse vehicle, etc.). For example, the refuse vehicle 10 may have an internal combustion engine augmented by the electric motor 18 to cooperatively provide power to the wheels 22. The energy storage and/or generation system 20 may thereby be charged via an on-board generator (e.g., an internal combustion generator, a solar panel system, etc.), from an external power source (e.g., overhead power lines, mains power source through a charging input, etc.), and/or via a power regenerative braking system, and provide power to the electrically operated systems of the refuse vehicle 10. In some embodiments, the energy storage and/or generation system 20 includes a heat management system (e.g., liquid cooling, heat exchanger, air cooling, etc.).


According to an exemplary embodiment, the refuse vehicle 10 is configured to transport refuse from various waste receptacles within a municipality to a storage and/or processing facility (e.g., a landfill, an incineration facility, a recycling facility, etc.). As shown in FIG. 1, the body 14 includes a plurality of panels, shown as panels 32, a tailgate 34, and a cover 36. The panels 32, the tailgate 34, and the cover 36 define a collection chamber (e.g., hopper, etc.), shown as refuse compartment 30. Loose refuse may be placed into the refuse compartment 30 where it may thereafter be compacted (e.g., by a packer system, etc.). The refuse compartment 30 may provide temporary storage for refuse during transport to a waste disposal site and/or a recycling facility. In some embodiments, at least a portion of the body 14 and the refuse compartment 30 extend above or in front of the cab 16. According to the embodiment shown in FIG. 1, the body 14 and the refuse compartment 30 are positioned behind the cab 16. In some embodiments, the refuse compartment 30 includes a hopper volume and a storage volume. Refuse may be initially loaded into the hopper volume and thereafter compacted into the storage volume. According to an exemplary embodiment, the hopper volume is positioned between the storage volume and the cab 16 (e.g., refuse is loaded into a position of the refuse compartment 30 behind the cab 16 and stored in a position further toward the rear of the refuse compartment 30, a front-loading refuse vehicle, a side-loading refuse vehicle, etc.). In other embodiments, the storage volume is positioned between the hopper volume and the cab 16 (e.g., a rear-loading refuse vehicle, etc.).


As shown in FIG. 1, the refuse vehicle 10 includes a lift mechanism/system (e.g., a front-loading lift assembly, etc.), shown as lift assembly 40, coupled to the front end of the body 14. In other embodiments, the lift assembly 40 extends rearward of the body 14 (e.g., a rear-loading refuse vehicle, etc.). In still other embodiments, the lift assembly 40 extends from a side of the body 14 (e.g., a side-loading refuse vehicle, etc.). As shown in FIG. 1, the lift assembly 40 is configured to engage a container (e.g., a residential trash receptacle, a commercial trash receptacle, a container having a robotic grabber arm, etc.), shown as refuse container 60. The lift assembly 40 may include various actuators (e.g., electric actuators, hydraulic actuators, pneumatic actuators, etc.) to facilitate engaging the refuse container 60, lifting the refuse container 60, and tipping refuse out of the refuse container 60 into the hopper volume of the refuse compartment 30 through an opening in the cover 36 or through the tailgate 34. The lift assembly 40 may thereafter return the empty refuse container 60 to the ground. According to an exemplary embodiment, a door, shown as top door 38, is movably coupled along the cover 36 to seal the opening thereby preventing refuse from escaping the refuse compartment 30 (e.g., due to wind, bumps in the road, etc.).


Auxiliary Power System


As shown in FIG. 2, the refuse vehicle 10 includes an auxiliary power system 1410 coupled to the body 14 of the refuse vehicle 10. The auxiliary power system 1410 provides power to one or more components of the refuse vehicle 10. In some embodiments, the power is hydraulic power. Additionally or alternatively, the auxiliary power system 1410 may provide electric power. In some embodiments, the auxiliary power system 1410 is coupled to the energy storage and/or generation system 20 and receives electrical power therefrom. In some embodiments, the auxiliary power system 1410 includes batteries or other energy storage elements itself. In some embodiments, the auxiliary power system 1410 is coupled to a lower rearward panel of panels 32. In some embodiments, the auxiliary power system 1410 is coupled to or integrated with the tailgate 34. In some embodiments, the auxiliary power system 1410 is mounted on the lift assembly 40. Additionally or alternatively, the auxiliary power system 1410 may be detachably coupled to the refuse vehicle 10. For example, the auxiliary power system 1410 may be integrated with or power a carry-can coupled to the refuse vehicle 10. Additionally or alternatively, the auxiliary power system 1410 may be a portable residential auxiliary power unit (APU). It should be understood that the auxiliary power system 1410 can be mounted anywhere on the refuse vehicle 10.


In some embodiments, the auxiliary power system 1410 is coupled to a refuse vehicle having a diesel internal combustion engine prime mover. An internal combustion engine prime mover may charge one or more batteries of the auxiliary power unit 1410 or the energy storage and/or generation system 20. For example, the internal combustion engine may include a power take-off to power an alternator to charge the one or more batteries. In some embodiments, the auxiliary power system 1410 may power one or more components of the body 14 of an internal combustion engine refuse vehicle. For example, the auxiliary power system 1410 may power one or more electric actuators to open/close the tailgate 34. Additionally or alternatively, the auxiliary power system 1410 may augment or supplement the existing power system of a refuse vehicle. For example, the auxiliary power system 1410 may power one or more indicator lights of the refuse vehicle 10. In some embodiments, the auxiliary power system 1410 includes one or more electrical energy storage devices (e.g., batteries, etc.).


In some embodiments, the auxiliary power system 1410 integrates or otherwise combines an electrical and a hydraulic system. For example, the auxiliary power system 1410 may provide electrical power to a motor to power the cover 36 and provide hydraulic power to an actuator of the tailgate 34. Additionally or alternatively, the auxiliary power system 1410 may convert power from one system to another system. For example, the auxiliary power system 1410 may convert hydraulic power to stored potential energy for an electrical motor. As a further example, the auxiliary power system 1410 may convert stored electrical power into hydraulic power for a hydraulic system. In some embodiments, the auxiliary power system 1410 is or includes a power take-off.


As shown in FIG. 3, the auxiliary power system 1410 may provide pressurized hydraulic fluid to actuators 1420. The auxiliary power system 1410 includes a reservoir 1412 filled with a hydraulic fluid, such as oil. In some embodiments, the reservoir is filled with a different type and/or mixture of hydraulic fluid. For example, reservoir 1412 may be filled with water. The hydraulic fluid may be pressurized and/or pumped by a hydraulic pump 1414 powered by motor 1416 to supply the actuators 1420. The hydraulic pump 1414 may be hydrostatic or hydrodynamic. The hydraulic pump 1414 may be a gear pump, a rotary vane pump, a screw pump, a bent axis pump, an inline axial piston pump, a radial piston pump, a peristaltic pump, or any other pump or combination thereof known in the art. The motor 1416 is an electric motor powered by the energy storage and/or generation system 20. In some embodiments, the auxiliary power system 1410 includes one or more batteries or battery cells itself (e.g., to power the motor 1416, etc.). The motor 1416 may be a mechanical commutator motor, an electronic commutator motor, an asynchronous machine type, a synchronous machine type, or any other type and/or combination thereof known in the art. In the case of a fully electric refuse vehicle, the auxiliary power system 1410 can provide hydraulic power to the fully electric refuse vehicle via the motor 1416, the hydraulic pump 1414, and the reservoir 1412.


In some embodiments, the auxiliary power system 1410 includes an electrically controlled hydraulic swash plate coupled to one or more electronic sensors to throttle a flow of the hydraulic fluid to the actuators 1420. In some embodiments, the auxiliary power system 1410 includes a different type, number, or combination of elements. For example, the auxiliary power system 1410 may include a first motor to provide power to the hydraulic pump 1414 and a second motor to provide a power take-off for powering an external device. Additionally or alternatively, the auxiliary power system 1410 may include one or more power lines (e.g., a hydraulic line, an electrical cable, a compressed-air line, etc.) to provide external power. For example, the auxiliary power system 1410 may include a standard power cable as defined by the International Electrotechnical Commission (IEC) 60320 standard.


In various embodiments, the auxiliary power system 1410 includes a controller 1418 to control the auxiliary power system 1410. The controller may receive control signals from the refuse vehicle 10 and/or external systems and provide control signals to components of the auxiliary power system 1410. For example, the controller 1418 may monitor a level of hydraulic fluid in the reservoir 1412 and may operate one or more valves to control the flow of hydraulic fluid between the reservoir 1412 and the hydraulic pump 1414. As a further example, the controller 1418 may monitor a pressure level of hydraulic fluid being supplied to the actuators 1420 and may adjust an operation of the motor 1416 and/or the hydraulic pump 1414 to control the pressure level of the hydraulic fluid. In various embodiments, the controller 1418 includes a processing circuit. For example, the controller 1418 may include a processing circuit having a processor and memory, the memory storing instructions thereon that, when executed by the processor, cause the processor to perform the various operations described herein. In some embodiments, the controller 1418 is configured to determine whether the auxiliary power system 1410 is connected to the refuse vehicle 10. For example, the auxiliary power system 1410 may be integrated with a carry-can coupled to the refuse vehicle 10 and the controller 1418 may determine that the auxiliary power system 1410 is currently coupled to the refuse vehicle 10 and may operate the auxiliary power system 1410 in a first mode. To continue the previous example, the auxiliary power system 1410 may be decoupled from the refuse vehicle 10 and the controller 1418 may detect that the auxiliary power system 1410 is decoupled from the refuse vehicle 10 and may operate the auxiliary power system 1410 in a second mode.


In some embodiments, the auxiliary power system 1410 includes a cooling system 1430. The cooling system 1430 may be configured to regulate a temperature of the auxiliary power system 1410. For example, the cooling system 1430 may include water-cooling elements configured to capture thermal energy associated with the auxiliary power system 1410 and transport the thermal energy away from the auxiliary power system 1410 for dissipation. In some embodiments, the cooling system 1430 is an air cooling system. For example, the cooling system 1430 may use ambient air to cool the motor 1416. Additionally or alternatively, the cooling system 1430 may be a liquid cooling system. For example, the cooling system 1430 may use engine coolant to cool the motor 1416. In some embodiments, the cooling system 1430 includes a heat exchanger such as a radiator.


Referring now to FIGS. 4A-4C, several embodiments of the auxiliary power system 1410 are shown, according to several exemplary embodiments. In some embodiments, the auxiliary power system 1410 includes a power take-off. In various embodiments, the hydraulic pump 1414 couples to the motor 1416. In some embodiments, a first exchange 1500 integrates the hydraulic pump 1414 with the motor 1416. In various embodiments, the exchange is a coaxial ratio. For example, the first exchange 1500 may convert a first gearing associated with the hydraulic pump 1414 to a second gearing associated with the motor 1416. In some embodiments, the first exchange 1500 is a gear train. Additionally or alternatively, the first exchange 1500 may be or include a transmission. In various embodiments, the first exchange 1500 includes one or more interlocking gears. In some embodiments, the first exchange 1500 is configured to couple a component (e.g., a shaft, an axle, etc.) of the hydraulic pump 1414 to a component of the motor 1416. In various embodiments, a component of the hydraulic pump 1414, the motor 1416, and the first exchange 1500 are aligned (e.g., as shown in FIG. 4B). In some embodiments, a second exchange 1502 integrates the hydraulic pump 1414 with the motor 1416. In various embodiments, the second exchange 1502 translates a force associated with a component in a first position (e.g., on a first plane, etc.) to a component in a second position (e.g., on a second plane, etc.). In various embodiments, the second exchange 1502 translates mechanical energy from a component of the hydraulic pump 1414 having a first alignment to a component of the motor 1416 having a second alignment (e.g., as shown in FIG. 4C).


Referring now to FIGS. 5A-5D, several placements of the auxiliary power system 1410 are shown, according to several exemplary embodiments. In various embodiments, the auxiliary power system 1410 includes a power take-off configured to supply power (e.g., electrical, mechanical, hydraulic, etc.) to refuse vehicle 10. For example, the auxiliary power system 1410 may include a power take-off configured to provide hydraulic power to operate actuators of the tailgate 34. In some embodiments, the auxiliary power system 1410 is positioned between the cab 16 and the body 14 of refuse vehicle 10 (e.g., as shown in FIGS. 5A-5B). In some embodiments, positioning the auxiliary power system 1410 between the cab 16 and the body 14 is preferred for rear-loading and side-loading refuse trucks 10. In some embodiments, the auxiliary power system 1410 is positioned on a side of the body 14. For example, the auxiliary power system 1410 may be positioned on a rear quarter panel of panels 32 (e.g., as shown in FIG. 5C). In various embodiments, positioning the auxiliary power system 1410 on a side of the refuse truck 10 facilitates easy access to the auxiliary power system 1410. In some embodiments, the auxiliary power system 1410 is positioned on an underside of the body 14 (e.g., as shown in FIG. 5D). In various embodiments, the auxiliary power system 1410 may be mounted to the frame 12. It should be understood that auxiliary power system 1410 may be positioned anywhere on refuse vehicle 10.


As utilized herein, the terms “approximately,” “about,” “substantially”, and similar terms are intended to have a broad meaning in harmony with the common and accepted usage by those of ordinary skill in the art to which the subject matter of this disclosure pertains. It should be understood by those of skill in the art who review this disclosure that these terms are intended to allow a description of certain features described and claimed without restricting the scope of these features to the precise numerical ranges provided. Accordingly, these terms should be interpreted as indicating that insubstantial or inconsequential modifications or alterations of the subject matter described and claimed are considered to be within the scope of the disclosure as recited in the appended claims.


It should be noted that the term “exemplary” and variations thereof, as used herein to describe various embodiments, are intended to indicate that such embodiments are possible examples, representations, or illustrations of possible embodiments (and such terms are not intended to connote that such embodiments are necessarily extraordinary or superlative examples).


The term “coupled” and variations thereof, as used herein, means the joining of two members directly or indirectly to one another. Such joining may be stationary (e.g., permanent or fixed) or moveable (e.g., removable or releasable). Such joining may be achieved with the two members coupled directly to each other, with the two members coupled to each other using a separate intervening member and any additional intermediate members coupled with one another, or with the two members coupled to each other using an intervening member that is integrally formed as a single unitary body with one of the two members. If “coupled” or variations thereof are modified by an additional term (e.g., directly coupled), the generic definition of “coupled” provided above is modified by the plain language meaning of the additional term (e.g., “directly coupled” means the joining of two members without any separate intervening member), resulting in a narrower definition than the generic definition of “coupled” provided above. Such coupling may be mechanical, electrical, or fluidic.


References herein to the positions of elements (e.g., “top,” “bottom,” “above,” “below”) are merely used to describe the orientation of various elements in the FIGURES. It should be noted that the orientation of various elements may differ according to other exemplary embodiments, and that such variations are intended to be encompassed by the present disclosure.


The hardware and data processing components used to implement the various processes, operations, illustrative logics, logical blocks, modules and circuits described in connection with the embodiments disclosed herein may be implemented or performed with a general purpose single- or multi-chip processor, a digital signal processor (DSP), an application specific integrated circuit (ASIC), a field programmable gate array (FPGA), or other programmable logic device, discrete gate or transistor logic, discrete hardware components, or any combination thereof designed to perform the functions described herein. A general purpose processor may be a microprocessor, or, any conventional processor, controller, microcontroller, or state machine. A processor also may be implemented as a combination of computing devices, such as a combination of a DSP and a microprocessor, a plurality of microprocessors, one or more microprocessors in conjunction with a DSP core, or any other such configuration. In some embodiments, particular processes and methods may be performed by circuitry that is specific to a given function. The memory (e.g., memory, memory unit, storage device) may include one or more devices (e.g., RAM, ROM, Flash memory, hard disk storage) for storing data and/or computer code for completing or facilitating the various processes, layers and modules described in the present disclosure. The memory may be or include volatile memory or non-volatile memory, and may include database components, object code components, script components, or any other type of information structure for supporting the various activities and information structures described in the present disclosure. According to an exemplary embodiment, the memory is communicably connected to the processor via a processing circuit and includes computer code for executing (e.g., by the processing circuit or the processor) the one or more processes described herein.


The present disclosure contemplates methods, systems and program products on any machine-readable media for accomplishing various operations. The embodiments of the present disclosure may be implemented using existing computer processors, or by a special purpose computer processor for an appropriate system, incorporated for this or another purpose, or by a hardwired system. Embodiments within the scope of the present disclosure include program products comprising machine-readable media for carrying or having machine-executable instructions or data structures stored thereon. Such machine-readable media can be any available media that can be accessed by a general purpose or special purpose computer or other machine with a processor. By way of example, such machine-readable media can comprise RAM, ROM, EPROM, EEPROM, or other optical disk storage, magnetic disk storage or other magnetic storage devices, or any other medium which can be used to carry or store desired program code in the form of machine-executable instructions or data structures and which can be accessed by a general purpose or special purpose computer or other machine with a processor. Combinations of the above are also included within the scope of machine-readable media. Machine-executable instructions include, for example, instructions and data which cause a general purpose computer, special purpose computer, or special purpose processing machines to perform a certain function or group of functions.


Although the figures and description may illustrate a specific order of method steps, the order of such steps may differ from what is depicted and described, unless specified differently above. Also, two or more steps may be performed concurrently or with partial concurrence, unless specified differently above. Such variation may depend, for example, on the software and hardware systems chosen and on designer choice. All such variations are within the scope of the disclosure. Likewise, software implementations of the described methods could be accomplished with standard programming techniques with rule-based logic and other logic to accomplish the various connection steps, processing steps, comparison steps, and decision steps.


It is important to note that the construction and arrangement of the refuse vehicle 10 and the systems and components thereof as shown in the various exemplary embodiments is illustrative only. Additionally, any element disclosed in one embodiment may be incorporated or utilized with any other embodiment disclosed herein. Although only one example of an element from one embodiment that can be incorporated or utilized in another embodiment has been described above, it should be appreciated that other elements of the various embodiments may be incorporated or utilized with any of the other embodiments disclosed herein.

Claims
  • 1. A system for a refuse vehicle, comprising: a carry can including a grabber arm; andan auxiliary power system including: a hydraulic pump coupled to the carry can and configured to pressurize hydraulic fluid and provide the hydraulic fluid to one or more actuators; andan electric motor coupled to the carry can and configured to power the hydraulic pump,wherein the auxiliary power system is configured to provide the pressurized hydraulic fluid to the carry can.
  • 2. The system of claim 1, further comprising a power take-off.
  • 3. The system of claim 1, further comprising a cooling system configured to thermally regulate the electric motor.
  • 4. The system of claim 1, further including one or more electrical energy storage devices configured to power the electric motor.
  • 5. The system of claim 4, wherein at least one of the one or more electrical energy storage devices are removably coupled to the refuse vehicle.
  • 6. A system for a refuse vehicle, comprising: a tailgate; andan auxiliary power system including: a hydraulic pump coupled to the tailgate and configured to pressurize hydraulic fluid and provide the hydraulic fluid to one or more actuators; andan electric motor coupled to the tailgate and configured to power the hydraulic pump;wherein the auxiliary power system is configured to provide the pressurized hydraulic fluid to a carry can.
  • 7. The system of claim 6, further comprising a power take-off.
  • 8. The system of claim 6, further comprising a cooling system configured to thermally regulate the electric motor.
  • 9. The system of claim 6, further including one or more electrical energy storage devices configured to power the electric motor.
  • 10. The system of claim 9, wherein at least one of the one or more electrical energy storage devices are removably coupled to the refuse vehicle.
  • 11. A refuse vehicle, comprising: a chassis;a body assembly coupled to the chassis, the body assembly defining a refuse compartment;a lift assembly coupled to the chassis;a carry can removably coupled to the lift assembly; andan auxiliary power system including: a hydraulic pump coupled to the carry can and configured to pressurize hydraulic fluid and provide the hydraulic fluid to one or more actuators; andan electric motor coupled to the carry can and configured to power the hydraulic pump,wherein the auxiliary power system is configured to provide the pressurized hydraulic fluid to the carry can.
  • 12. The refuse vehicle of claim 11, further comprising a power take-off.
  • 13. The refuse vehicle of claim 11, further comprising a cooling system configured to thermally regulate the electric motor.
  • 14. The refuse vehicle of claim 11, further including one or more electrical energy storage devices configured to power the electric motor.
  • 15. The refuse vehicle of claim 14, wherein at least one of the one or more electrical energy storage devices are removably coupled to the body assembly of the refuse vehicle.
CROSS-REFERENCE TO RELATED PATENT APPLICATIONS

The present application is a continuation of U.S. patent application Ser. No. 17/007,236, filed Aug. 31, 2020, which is a continuation of U.S. patent application Ser. No. 16/851,152, filed Apr. 17, 2020, which claims the benefit of and priority to (i) U.S. Provisional Patent Application No. 62/843,062, filed May 3, 2019, and (ii) U.S. Provisional Patent Application No. 62/881,089, filed Jul. 31, 2019, all of which are hereby incorporated by reference in their entireties.

US Referenced Citations (245)
Number Name Date Kind
3662911 Harman May 1972 A
3666126 Rempel May 1972 A
3771674 Clucker Nov 1973 A
3804277 Brown et al. Apr 1974 A
4016988 Dahlin Apr 1977 A
4096959 Schaffler Jun 1978 A
4175903 Carson Nov 1979 A
4200330 Scott Apr 1980 A
4225182 Werner Sep 1980 A
4229135 Malmros Oct 1980 A
4252495 Cook Feb 1981 A
4286911 Benjamin Sep 1981 A
4441848 Bailey Apr 1984 A
4618306 Dorsch Oct 1986 A
4704062 Hale Nov 1987 A
4771837 Appleton et al. Sep 1988 A
5171121 Smith et al. Dec 1992 A
5378010 Marino et al. Jan 1995 A
5607277 Zopf Mar 1997 A
5639201 Curotto Jun 1997 A
5731705 Guinn Mar 1998 A
5833428 Szinte Nov 1998 A
5919026 Appleton Jul 1999 A
5919027 Christenson Jul 1999 A
5934858 Christenson Aug 1999 A
5934867 Christenson Aug 1999 A
5938394 Christenson Aug 1999 A
5951235 Young et al. Sep 1999 A
5967731 Brandt Oct 1999 A
5971694 McNeilus et al. Oct 1999 A
5984609 Bartlett Nov 1999 A
6033176 Bartlett Mar 2000 A
6062803 Christenson May 2000 A
6071057 Duron et al. Jun 2000 A
6089813 McNeilus et al. Jul 2000 A
6105984 Schmitz et al. Aug 2000 A
6120235 Humphries et al. Sep 2000 A
6123500 McNeilus et al. Sep 2000 A
6135536 Ciavaglia et al. Oct 2000 A
6210094 McNeilus et al. Apr 2001 B1
6213706 Christenson Apr 2001 B1
6224317 Kann et al. May 2001 B1
6224318 McNeilus et al. May 2001 B1
6247713 Konop Jun 2001 B1
6266598 Pillar et al. Jul 2001 B1
6315515 Young et al. Nov 2001 B1
6336783 Young et al. Jan 2002 B1
6350098 Christenson et al. Feb 2002 B1
6421593 Kempen et al. Jul 2002 B1
6447239 Young et al. Sep 2002 B2
6474928 Christenson Nov 2002 B1
6497547 Maglaras Dec 2002 B1
6516914 Andersen et al. Feb 2003 B1
6553290 Pillar Apr 2003 B1
6565305 Schrafel May 2003 B2
6652213 Mitchell et al. Nov 2003 B1
6843148 Marcel Jan 2005 B2
7018155 Heberling et al. Mar 2006 B1
7070382 Pruteanu et al. Jul 2006 B2
7261354 Lozano Aug 2007 B1
7284943 Pruteanu et al. Oct 2007 B2
7556468 Grata Jul 2009 B2
7559735 Pruteanu et al. Jul 2009 B2
7597172 Kovach et al. Oct 2009 B1
7654354 Otterstrom Feb 2010 B1
7878750 Zhou et al. Feb 2011 B2
8182194 Pruteanu et al. May 2012 B2
8215892 Calliari Jul 2012 B2
8360607 Bretschneider et al. Jan 2013 B2
8360706 Addleman et al. Jan 2013 B2
8398176 Haroldsen et al. Mar 2013 B2
8540475 Kuriakose et al. Sep 2013 B2
8550764 Rowland et al. Oct 2013 B2
8554643 Kortelainen Oct 2013 B2
8807613 Howell et al. Aug 2014 B2
8857567 Raymond Oct 2014 B1
9045014 Verhoff et al. Jun 2015 B1
9067730 Curotto Jun 2015 B2
9114804 Shukla et al. Aug 2015 B1
9132736 Shukla et al. Sep 2015 B1
9174686 Messina et al. Nov 2015 B1
9216856 Howell Dec 2015 B2
9290093 Turner et al. Mar 2016 B2
9296558 Parker Mar 2016 B2
9376102 Shukla et al. Jun 2016 B1
9387985 Gillmore Jul 2016 B2
9511932 Curotto et al. Dec 2016 B2
9656640 Verhoff et al. May 2017 B1
9707869 Messina et al. Jul 2017 B1
9880581 Kuriakose et al. Jan 2018 B2
9902559 Parker Feb 2018 B2
9926134 Ford Mar 2018 B2
9981803 Davis et al. May 2018 B2
10035648 Haddick et al. Jul 2018 B2
10144584 Parker Dec 2018 B2
10144585 Curotto Dec 2018 B2
10196205 Betz et al. Feb 2019 B2
D843281 Gander et al. Mar 2019 S
10351340 Haddick et al. Jul 2019 B2
10407242 Rimsa Sep 2019 B2
10414067 Datema et al. Sep 2019 B2
10414266 Wiegand et al. Sep 2019 B1
10456610 Betz et al. Oct 2019 B1
10457533 Puszkiewicz et al. Oct 2019 B2
D869332 Gander et al. Dec 2019 S
D871283 Gander et al. Dec 2019 S
10513392 Haddick et al. Dec 2019 B2
10556622 Calliari et al. Feb 2020 B1
10558234 Kuriakose et al. Feb 2020 B2
10611204 Zhang et al. Apr 2020 B1
10647025 Fox et al. May 2020 B2
D888629 Gander et al. Jun 2020 S
11097617 Rocholl Aug 2021 B2
20020014754 Konop Feb 2002 A1
20020065594 Squires et al. May 2002 A1
20020103580 Yakes et al. Aug 2002 A1
20020112851 O'Donnell Aug 2002 A1
20030091417 Swann May 2003 A1
20030130765 Pillar et al. Jul 2003 A1
20030158638 Yakes et al. Aug 2003 A1
20030158640 Pillar et al. Aug 2003 A1
20030163228 Pillar et al. Aug 2003 A1
20030163229 Pillar et al. Aug 2003 A1
20030163230 Pillar et al. Aug 2003 A1
20030171854 Pillar et al. Sep 2003 A1
20030200015 Pillar Oct 2003 A1
20030205422 Morrow et al. Nov 2003 A1
20040004346 Humphries Jan 2004 A1
20040019414 Pillar et al. Jan 2004 A1
20040024502 Squires et al. Feb 2004 A1
20040039510 Archer et al. Feb 2004 A1
20040069865 Rowe et al. Apr 2004 A1
20040133332 Yakes et al. Jul 2004 A1
20050080520 Kline et al. Apr 2005 A1
20050109549 Morrow May 2005 A1
20050113988 Nasr et al. May 2005 A1
20050114007 Pillar et al. May 2005 A1
20050119806 Nasr et al. Jun 2005 A1
20050209747 Yakes et al. Sep 2005 A1
20050234622 Pillar et al. Oct 2005 A1
20050285365 Manser et al. Dec 2005 A1
20060065451 Morrow et al. Mar 2006 A1
20060065453 Morrow et al. Mar 2006 A1
20060066109 Nasr Mar 2006 A1
20060070776 Morrow et al. Apr 2006 A1
20060070788 Schimke Apr 2006 A1
20060071466 Rowe et al. Apr 2006 A1
20060071645 Bolton Apr 2006 A1
20060106521 Nasr et al. May 2006 A1
20060280582 Kouri Dec 2006 A1
20070061054 Rowe et al. Mar 2007 A1
20070088469 Schmiedel et al. Apr 2007 A1
20070173987 Rowe et al. Jul 2007 A1
20070185625 Pillar et al. Aug 2007 A1
20070288131 Yakes et al. Dec 2007 A1
20070291130 Broggi et al. Dec 2007 A1
20070292249 Wilson Dec 2007 A1
20080004777 Quigley Jan 2008 A1
20080012280 Humphries Jan 2008 A1
20080059014 Nasr et al. Mar 2008 A1
20080065285 Yakes et al. Mar 2008 A1
20080071438 Nasr et al. Mar 2008 A1
20080114513 Pillar et al. May 2008 A1
20080150350 Morrow et al. Jun 2008 A1
20080215190 Pillar et al. Sep 2008 A1
20080221754 Rowe et al. Sep 2008 A1
20090015716 Doedens Jan 2009 A1
20090018716 Ambrosio Jan 2009 A1
20090079839 Fischer et al. Mar 2009 A1
20090127010 Morrow et al. May 2009 A1
20090194347 Morrow et al. Aug 2009 A1
20090205885 Strong Aug 2009 A1
20100116569 Morrow et al. May 2010 A1
20100183410 Curotto Jul 2010 A1
20100281654 Curotto Nov 2010 A1
20100301668 Yakes et al. Dec 2010 A1
20110312459 Morrow et al. Dec 2011 A1
20120143430 Broggi et al. Jun 2012 A1
20130196806 Morrow et al. Aug 2013 A1
20140020415 Heyl Jan 2014 A1
20140257621 Zych Sep 2014 A1
20140291045 Collett et al. Oct 2014 A1
20150093220 Parker Apr 2015 A1
20150159564 Wildgrube et al. Jun 2015 A1
20150165871 Miller et al. Jun 2015 A1
20150283894 Morrow et al. Oct 2015 A1
20150321546 Oue Nov 2015 A1
20160001765 Shukla et al. Jan 2016 A1
20160023548 Crist et al. Jan 2016 A1
20160059690 Wildgrube Mar 2016 A1
20160152188 Handschke et al. Jun 2016 A1
20160297417 Shukla et al. Oct 2016 A1
20160304041 Lennevi Oct 2016 A1
20160361987 Morrow et al. Dec 2016 A1
20170008507 Shukla et al. Jan 2017 A1
20170036628 Nelson et al. Feb 2017 A1
20170121108 Davis et al. May 2017 A1
20170158050 Crist et al. Jun 2017 A1
20170247186 Whitfield, Jr. Aug 2017 A1
20170253221 Verhoff et al. Sep 2017 A1
20170341860 Dodds et al. Nov 2017 A1
20170349373 Gentry et al. Dec 2017 A1
20170349374 Haddick et al. Dec 2017 A1
20170361491 Datema et al. Dec 2017 A1
20170361492 Datema et al. Dec 2017 A1
20180072303 Shukla et al. Mar 2018 A1
20180215354 Linsmeier et al. Aug 2018 A1
20180250847 Wurtz et al. Sep 2018 A1
20180327183 Peek et al. Nov 2018 A1
20180334324 Haddick et al. Nov 2018 A1
20180345783 Morrow et al. Dec 2018 A1
20190039407 Smith Feb 2019 A1
20190047413 Crist et al. Feb 2019 A1
20190091890 Rocholl et al. Mar 2019 A1
20190118721 Handschke et al. Apr 2019 A1
20190121353 Datema et al. Apr 2019 A1
20190137324 Curotto May 2019 A1
20190185077 Smith et al. Jun 2019 A1
20190193934 Rocholl et al. Jun 2019 A1
20190270587 Haddick et al. Sep 2019 A1
20190291711 Shukla et al. Sep 2019 A1
20190292975 Hou et al. Sep 2019 A1
20190299791 Gonze et al. Oct 2019 A1
20190322321 Schwartz et al. Oct 2019 A1
20190325220 Wildgrube et al. Oct 2019 A1
20190344475 Datema et al. Nov 2019 A1
20190351758 Wiegand et al. Nov 2019 A1
20190351883 Verhoff et al. Nov 2019 A1
20190359184 Linsmeier et al. Nov 2019 A1
20190360600 Jax et al. Nov 2019 A1
20190381990 Shukla et al. Dec 2019 A1
20200031641 Puszkiewicz et al. Jan 2020 A1
20200038700 Betz et al. Feb 2020 A1
20200039341 Morrow et al. Feb 2020 A1
20200047586 Gonze et al. Feb 2020 A1
20200078986 Clifton et al. Mar 2020 A1
20200087063 Haddick et al. Mar 2020 A1
20200102145 Nelson et al. Apr 2020 A1
20200130746 Calliari et al. Apr 2020 A1
20200230841 Datema et al. Jul 2020 A1
20200230842 Datema et al. Jul 2020 A1
20200231035 Crist et al. Jul 2020 A1
20200262366 Wildgrube et al. Aug 2020 A1
20200265656 Koga et al. Aug 2020 A1
20210253347 Pung Aug 2021 A1
Related Publications (1)
Number Date Country
20210339632 A1 Nov 2021 US
Provisional Applications (2)
Number Date Country
62881089 Jul 2019 US
62843062 May 2019 US
Continuations (2)
Number Date Country
Parent 17007236 Aug 2020 US
Child 17373883 US
Parent 16851152 Apr 2020 US
Child 17007236 US